
A logical framework to deal with variability
(research in progress)

S. Gnesi
joint work with

P. Asirelli, M.H. ter Beek, A. Fantechi

ISTI–CNR
Università di Firenze

WG 1.3 meeting

Etelsen , 6 July 2010

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 1 / 24

Outline

1 Background, aim, contributions and a running example

2 Deontic logic and deontic characterization of feature models

3 Modal Transition Systems (MTSs)

4 MHML: Hennesy–Milner Logic with Until over MTSs

5 Expressing static and behavioural properties of product families

6 Model-checking algorithms for MHML and verification results

7 Deriving correct products from a product family

8 Conclusions and a vision for future research
S. Gnesi et al. (ISTI–CNR) A logical framework for variability 2 / 24

Product Line Engineering (PLE)

Paradigm
To develop a family of products using a common platform and mass
customization

Aim
To lower production costs of the individual products by

letting them share an overall reference model of the product family
allowing them to differ w.r.t. particular characteristics to serve, e.g.,
different markets

Production process
Organized so as to maximize commonalities of the products and at the
same time minimize the cost of variations

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 3 / 24

Product Line Engineering (PLE)

Paradigm
To develop a family of products using a common platform and mass
customization

Aim
To lower production costs of the individual products by

letting them share an overall reference model of the product family
allowing them to differ w.r.t. particular characteristics to serve, e.g.,
different markets

Production process
Organized so as to maximize commonalities of the products and at the
same time minimize the cost of variations

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 3 / 24

Product Line Engineering (PLE)

Paradigm
To develop a family of products using a common platform and mass
customization

Aim
To lower production costs of the individual products by

letting them share an overall reference model of the product family
allowing them to differ w.r.t. particular characteristics to serve, e.g.,
different markets

Production process
Organized so as to maximize commonalities of the products and at the
same time minimize the cost of variations

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 3 / 24

Variability in PLE

Feature modelling
Provide compact representations of all the products of a product family
(product line) in terms of their features

Variability modelling
How to explicitly define the features or components of a product family
that are optional, alternative, or mandatory

Managing variability with formal methods
Show that a certain product belongs to a product family or, instead,
derive a product from a family by means of a proper selection of the
features or components

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 4 / 24

Variability in PLE

Feature modelling
Provide compact representations of all the products of a product family
(product line) in terms of their features

Variability modelling
How to explicitly define the features or components of a product family
that are optional, alternative, or mandatory

Managing variability with formal methods
Show that a certain product belongs to a product family or, instead,
derive a product from a family by means of a proper selection of the
features or components

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 4 / 24

Variability in PLE

Feature modelling
Provide compact representations of all the products of a product family
(product line) in terms of their features

Variability modelling
How to explicitly define the features or components of a product family
that are optional, alternative, or mandatory

Managing variability with formal methods
Show that a certain product belongs to a product family or, instead,
derive a product from a family by means of a proper selection of the
features or components

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 4 / 24

Aim of our research activity

To develop a logical framework that is able to deal with variability
To provide tools to support this framework with formal verification

Current contributions
We present a straightforward characterization of feature models
by means of a deontic logic
We define the action-based branching-time temporal logic MHML,
allows expressing both constraints over the products of a family
and constraints over their behaviour in a single logical framework
We define the semantics of MHML over MTSs, leading to a novel
deontic interpretation of classical modal and temporal operators
We provide a global model-checking algorithm to verify MHML
formulae over MTSs, i.e., a first step towards a verification
framework based on model-checking techniques for MHML

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 5 / 24

Aim of our research activity

To develop a logical framework that is able to deal with variability
To provide tools to support this framework with formal verification

Current contributions
We present a straightforward characterization of feature models
by means of a deontic logic
We define the action-based branching-time temporal logic MHML,
allows expressing both constraints over the products of a family
and constraints over their behaviour in a single logical framework
We define the semantics of MHML over MTSs, leading to a novel
deontic interpretation of classical modal and temporal operators
We provide a global model-checking algorithm to verify MHML
formulae over MTSs, i.e., a first step towards a verification
framework based on model-checking techniques for MHML

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 5 / 24

Static & behavioural requirements of product families

Static requirements identify the features constituting different products
and behavioural requirements the admitted sequences of operations

Static requirements of product families
The only accepted coins are the 1 euro coin (1e), exclusively for
the European products and the 1 dollar coin (1$), exclusively for
the US products (1e and 1$ are alternative features)
A cappuccino is only offered by European products (excludes
relation between features)

Behavioural requirements of product families
After inserting a coin, the user has to choose whether or not (s)he
wants sugar, by pressing one of two buttons, after which (s)he
may select a beverage
The machine returns to its idle state when the beverage is taken

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 6 / 24

Static & behavioural requirements of product families

Static requirements identify the features constituting different products
and behavioural requirements the admitted sequences of operations

Static requirements of product families
The only accepted coins are the 1 euro coin (1e), exclusively for
the European products and the 1 dollar coin (1$), exclusively for
the US products (1e and 1$ are alternative features)
A cappuccino is only offered by European products (excludes
relation between features)

Behavioural requirements of product families
After inserting a coin, the user has to choose whether or not (s)he
wants sugar, by pressing one of two buttons, after which (s)he
may select a beverage
The machine returns to its idle state when the beverage is taken

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 6 / 24

Static & behavioural requirements of product families

Static requirements identify the features constituting different products
and behavioural requirements the admitted sequences of operations

Static requirements of product families
The only accepted coins are the 1 euro coin (1e), exclusively for
the European products and the 1 dollar coin (1$), exclusively for
the US products (1e and 1$ are alternative features)
A cappuccino is only offered by European products (excludes
relation between features)

Behavioural requirements of product families
After inserting a coin, the user has to choose whether or not (s)he
wants sugar, by pressing one of two buttons, after which (s)he
may select a beverage
The machine returns to its idle state when the beverage is taken

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 6 / 24

Running example: Coffee machine family

Feature model:

requires

Coffee1$ 1e

Coin Beverage

Coffee Machine

Ringtone

Tea Cappuccino

mandatoryoptional alternative excludes

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 7 / 24

Deontic logic

Deontic logic provides a natural way to formalize concepts like
violation, obligation, permission and prohibition
Deontic logic seems to be very useful to formalize product families
specifications, since they allow one to capture the notions of
optional, mandatory and alternative features
Deontic logic seems to be very useful to formalize feature
constraints such as requires and excludes.

⇒ Deontic logic seems to be a natural candidate for expressing
the conformance of products with respect to variability rules

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 8 / 24

Deontic logic

Deontic logic provides a natural way to formalize concepts like
violation, obligation, permission and prohibition
Deontic logic seems to be very useful to formalize product families
specifications, since they allow one to capture the notions of
optional, mandatory and alternative features
Deontic logic seems to be very useful to formalize feature
constraints such as requires and excludes.

⇒ Deontic logic seems to be a natural candidate for expressing
the conformance of products with respect to variability rules

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 8 / 24

Deontic logic – continued

A deontic logic consists of the standard operators of propositional logic,
i.e. negation (¬), conjunction (∧), disjunction (∨) and implication (=⇒),
augmented with deontic operators (O and P in our case)

The most classic deontic operators, namely it is obligatory that (O) and
it is permitted that (P) enjoy the duality property

Informal meaning of the deontic operators
O(a): action a is obligatory
P(a) = ¬O(¬a): action a is permitted

if and only if its negation is not obligatory

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 9 / 24

Deontic logic – continued

A deontic logic consists of the standard operators of propositional logic,
i.e. negation (¬), conjunction (∧), disjunction (∨) and implication (=⇒),
augmented with deontic operators (O and P in our case)

The most classic deontic operators, namely it is obligatory that (O) and
it is permitted that (P) enjoy the duality property

Informal meaning of the deontic operators
O(a): action a is obligatory
P(a) = ¬O(¬a): action a is permitted

if and only if its negation is not obligatory

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 9 / 24

Construction of deontic characterization of FM

• If A is a feature and A1 and A2 are subfeatures, add the formula:

A =⇒ Φ(A1, A2), where Φ(A1, A2) is defined as:

Φ(A1, A2) = (O(A1) ∨O(A2)) ∧ ¬(P(A1) ∧ P(A2)) if A1, A2 alternative,
and otherwise:
Φ(A1, A2) = φ(A1) ∧ φ(A2), in which Ai , for i ∈ {1, 2}, is defined as:

φ(Ai) =

{
P(Ai) if Ai is optional
O(Ai) if Ai is mandatory

• If A requires B, add the formula A =⇒ O(B)

• If A excludes B, add the formula (A =⇒ ¬P(B)) ∧ (B =⇒ ¬P(A))

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 10 / 24

Construction of deontic characterization of FM

• If A is a feature and A1 and A2 are subfeatures, add the formula:

A =⇒ Φ(A1, A2), where Φ(A1, A2) is defined as:

Φ(A1, A2) = (O(A1) ∨O(A2)) ∧ ¬(P(A1) ∧ P(A2)) if A1, A2 alternative,
and otherwise:
Φ(A1, A2) = φ(A1) ∧ φ(A2), in which Ai , for i ∈ {1, 2}, is defined as:

φ(Ai) =

{
P(Ai) if Ai is optional
O(Ai) if Ai is mandatory

• If A requires B, add the formula A =⇒ O(B)

• If A excludes B, add the formula (A =⇒ ¬P(B)) ∧ (B =⇒ ¬P(A))

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 10 / 24

Construction of deontic characterization of FM

• If A is a feature and A1 and A2 are subfeatures, add the formula:

A =⇒ Φ(A1, A2), where Φ(A1, A2) is defined as:

Φ(A1, A2) = (O(A1) ∨O(A2)) ∧ ¬(P(A1) ∧ P(A2)) if A1, A2 alternative,
and otherwise:
Φ(A1, A2) = φ(A1) ∧ φ(A2), in which Ai , for i ∈ {1, 2}, is defined as:

φ(Ai) =

{
P(Ai) if Ai is optional
O(Ai) if Ai is mandatory

• If A requires B, add the formula A =⇒ O(B)

• If A excludes B, add the formula (A =⇒ ¬P(B)) ∧ (B =⇒ ¬P(A))

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 10 / 24

Expressing feature models with deontic logic

Characteristic formula of Coffee machine family

O(Coin) ∧O(Beverage) ∧ P(Ringtone)

∧
Coin =⇒ (O(1$) ∨O(1e)) ∧ ¬(P(1$) ∧ P(1e))

Beverage =⇒ O(Coffee) ∧ P(Tea) ∧ P(Cappuccino)

∧
Cappuccino =⇒ O(Ringtone)

(1$ =⇒ ¬P(Cappuccino)) ∧ (Cappuccino =⇒ ¬P(1$))

Two example coffee machines

CM1 = {Coin, 1e, Beverage, Coffee}
CM2 = {Coin, 1e, Beverage, Coffee, Cappuccino}

CM1 in family, but CM2 not: Cappuccino =⇒ O(Ringtone) false
S. Gnesi et al. (ISTI–CNR) A logical framework for variability 11 / 24

Expressing feature models with deontic logic

Characteristic formula of Coffee machine family

O(Coin) ∧O(Beverage) ∧ P(Ringtone)

∧
Coin =⇒ (O(1$) ∨O(1e)) ∧ ¬(P(1$) ∧ P(1e))

Beverage =⇒ O(Coffee) ∧ P(Tea) ∧ P(Cappuccino)

∧
Cappuccino =⇒ O(Ringtone)

(1$ =⇒ ¬P(Cappuccino)) ∧ (Cappuccino =⇒ ¬P(1$))

Two example coffee machines

CM1 = {Coin, 1e, Beverage, Coffee}
CM2 = {Coin, 1e, Beverage, Coffee, Cappuccino}

CM1 in family, but CM2 not: Cappuccino =⇒ O(Ringtone) false
S. Gnesi et al. (ISTI–CNR) A logical framework for variability 11 / 24

Expressing feature models with deontic logic

Characteristic formula of Coffee machine family

O(Coin) ∧O(Beverage) ∧ P(Ringtone)

∧
Coin =⇒ (O(1$) ∨O(1e)) ∧ ¬(P(1$) ∧ P(1e))

Beverage =⇒ O(Coffee) ∧ P(Tea) ∧ P(Cappuccino)

∧
Cappuccino =⇒ O(Ringtone)

(1$ =⇒ ¬P(Cappuccino)) ∧ (Cappuccino =⇒ ¬P(1$))

Two example coffee machines

CM1 = {Coin, 1e, Beverage, Coffee}
CM2 = {Coin, 1e, Beverage, Coffee, Cappuccino}

CM1 in family, but CM2 not: Cappuccino =⇒ O(Ringtone) false
S. Gnesi et al. (ISTI–CNR) A logical framework for variability 11 / 24

Modal Transition System (MTS)

LTS
A Labelled Transition System (LTS) is a quadruple (Q, A, q,−→), where
Q is a set of states, A is a set of actions, q ∈ Q is the initial state, and
−→⊆ Q × A×Q is the transition relation. If (q, a, q′) ∈−→, then we also
write q a−→ q′. A full path is a path that cannot be extended any further.

MTS
A Modal Transition System (MTS) is a quintuple (Q, A, q,−→�,−→♦)
such that (Q, A, q,−→� ∪ −→♦) is an LTS, called its underlying LTS. An
MTS has two distinct transition relations: −→♦⊆ Q × A×Q is the may
transition relation, which expresses possible transitions, while
−→�⊆ Q × A×Q is the must transition relation, which expresses
required transitions. By definition, any required transition is also
possible, i.e. −→�⊆−→♦. A must path is a path of only must transitions.

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 12 / 24

Modal Transition System (MTS)

LTS
A Labelled Transition System (LTS) is a quadruple (Q, A, q,−→), where
Q is a set of states, A is a set of actions, q ∈ Q is the initial state, and
−→⊆ Q × A×Q is the transition relation. If (q, a, q′) ∈−→, then we also
write q a−→ q′. A full path is a path that cannot be extended any further.

MTS
A Modal Transition System (MTS) is a quintuple (Q, A, q,−→�,−→♦)
such that (Q, A, q,−→� ∪ −→♦) is an LTS, called its underlying LTS. An
MTS has two distinct transition relations: −→♦⊆ Q × A×Q is the may
transition relation, which expresses possible transitions, while
−→�⊆ Q × A×Q is the must transition relation, which expresses
required transitions. By definition, any required transition is also
possible, i.e. −→�⊆−→♦. A must path is a path of only must transitions.

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 12 / 24

Modelling the family of coffee machines

(a) LTS modelling the family (b) MTS modelling the family

MTS can thus model optional and mandatory features,
but neither alternative nor excludes features

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 13 / 24

Modal Transition System (MTS): product derivation

Given an MTS F = (Q, A, q,−→�,−→♦) specifying a family, a set of
products specified as a set of LTSs {Pi = (Qi , Ai , qi ,−→i) | i > 0 } may
be consistently derived by considering the transition relation −→i to be
−→� ∪R, with R ⊆−→♦, and by pruning all states that are not reachable
from q.
More precisely, we say that Pi is a product of F , denoted by Pi ` F , if
and only if qi ` q, where qi ` q holds, for some qi ∈ Qi and q ∈ Q, if
and only if:

whenever q a−→� q′, for some q′ ∈ Q, then ∃q′
i ∈ Qi : qi

a−→i q′
i and

q′
i ` q′, and

whenever qi
a−→i q′

i , for some q′
i ∈ Qi , then ∃q′ ∈ Q : q a−→♦ q′ and

q′
i ` q′.

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 14 / 24

Products of the coffee machine family

(c) LTS of a European Coffee Machine (d) LTS of an American Coffee Machine

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 15 / 24

MHML: Deontic Hennesy–Milner Logic with Until

Allows expressing both constraints over the products of a family
and constraints over their behaviour in a single logical framework
Interpreted over MTSs rather than LTSs, leading to novel deontic
interpretation of the classical modal and temporal operators

Syntax of MHML

φ ::= true | ¬φ | φ ∧ φ′ | 〈a〉φ | [a] φ | E π | A π

π ::= φ U φ′ | φ U� φ′

Informal meaning of nonstandard operators
〈a〉φ: a next state exists, reachable by must transition executing a, where φ holds

[α]φ: in all next states, reachable by whatever transition executing a, φ holds

φ U φ′: in the current or in a future state of a path, φ′ holds, while φ holds in all
preceding states of the path

φ U� φ′: in the current or in a future state of a path, φ′ holds, while φ holds in all
preceding states of the path, and the path leading to that state is a must path

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 16 / 24

MHML: Deontic Hennesy–Milner Logic with Until

Allows expressing both constraints over the products of a family
and constraints over their behaviour in a single logical framework
Interpreted over MTSs rather than LTSs, leading to novel deontic
interpretation of the classical modal and temporal operators

Syntax of MHML

φ ::= true | ¬φ | φ ∧ φ′ | 〈a〉φ | [a] φ | E π | A π

π ::= φ U φ′ | φ U� φ′

Informal meaning of nonstandard operators
〈a〉φ: a next state exists, reachable by must transition executing a, where φ holds

[α]φ: in all next states, reachable by whatever transition executing a, φ holds

φ U φ′: in the current or in a future state of a path, φ′ holds, while φ holds in all
preceding states of the path

φ U� φ′: in the current or in a future state of a path, φ′ holds, while φ holds in all
preceding states of the path, and the path leading to that state is a must path

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 16 / 24

MHML: Deontic Hennesy–Milner Logic with Until

Allows expressing both constraints over the products of a family
and constraints over their behaviour in a single logical framework
Interpreted over MTSs rather than LTSs, leading to novel deontic
interpretation of the classical modal and temporal operators

Syntax of MHML

φ ::= true | ¬φ | φ ∧ φ′ | 〈a〉φ | [a] φ | E π | A π

π ::= φ U φ′ | φ U� φ′

Informal meaning of nonstandard operators
〈a〉φ: a next state exists, reachable by must transition executing a, where φ holds

[α]φ: in all next states, reachable by whatever transition executing a, φ holds

φ U φ′: in the current or in a future state of a path, φ′ holds, while φ holds in all
preceding states of the path

φ U� φ′: in the current or in a future state of a path, φ′ holds, while φ holds in all
preceding states of the path, and the path leading to that state is a must path

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 16 / 24

MHML: Semantics over MTSs

The satisfaction relation |= of MHML over MTSs is defined as follows
(q is a state and σ is a full path)

Semantics of MHML
q |= true always holds
q |= ¬φ iff not q |= φ

q |= φ ∧ φ′ iff q |= φ and q |= φ′

q |= 〈a〉φ iff ∃q′ ∈ Q : q a−→� q′ and q′ |= φ

q |= [a]φ iff q a−→♦ q′, for some q′ ∈ Q, implies q′ |= φ

q |= E π iff ∃σ′ ∈ path(q) : σ′ |= π

q |= A π iff ∀σ′ ∈ path(q) : σ′ |= π

σ |= [φ U φ′] iff ∃ j ≥ 1 : σ(j) |= φ′ and ∀1 ≤ i < j : σ(i) |= φ

σ |= [φ U� φ′] iff ∃ j ≥ 1 : σ�(j) |= φ′ and ∀1 ≤ i < j : σ�(i) |= φ

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 17 / 24

MHML: Deontic interpretation

Abbreviations
false = ¬true, φ ∨ φ′ = ¬(¬φ ∧ ¬φ′), φ =⇒ φ′ = ¬φ ∨ φ′, Fφ =
(true U φ), F� φ = (true U� φ), AGφ = ¬EF¬φ, AG� φ = ¬EF� ¬φ

Note
Classical duality rules of Hennessy–Milner logic (〈a〉φ = ¬[a]¬φ)
and of deontic logics (P(a) = ¬O(¬a)) do not hold for MHML
In fact, ¬[a]¬φ corresponds to a weaker version of the classical
diamond operator, namely:

q |= P(a) φ iff a next state may exist, reachable by executing
action a, in which φ holds

MHML can express both permitted (P(·)) and obligatory (〈·〉)

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 18 / 24

MHML: Deontic interpretation

Abbreviations
false = ¬true, φ ∨ φ′ = ¬(¬φ ∧ ¬φ′), φ =⇒ φ′ = ¬φ ∨ φ′, Fφ =
(true U φ), F� φ = (true U� φ), AGφ = ¬EF¬φ, AG� φ = ¬EF� ¬φ

Note
Classical duality rules of Hennessy–Milner logic (〈a〉φ = ¬[a]¬φ)
and of deontic logics (P(a) = ¬O(¬a)) do not hold for MHML
In fact, ¬[a]¬φ corresponds to a weaker version of the classical
diamond operator, namely:

q |= P(a) φ iff a next state may exist, reachable by executing
action a, in which φ holds

MHML can express both permitted (P(·)) and obligatory (〈·〉)

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 18 / 24

Example static and behavioural properties of families

A actions 1e and 1$ are exclusive (alternative features):

(EF 〈1$〉 true ∨ EF 〈1e〉 true) ∧ ¬(EF P(1$) true ∧ EF P(1e) true)

B action cappuccino cannot be executed in American coffee
machines (excludes relation between features):

((EF 〈cappuccino〉 true) =⇒ (AG¬P(1$) true)) ∧
((EF 〈1$〉 true) =⇒ (AG¬P(cappuccino) true))

C a ringtone is rung whenever a cappuccino is delivered (requires
relation between features):

(EF 〈cappuccino〉 true) =⇒ (AF 〈ring_a_tone〉 true)

D once user has selected a coffee, a coffee is eventually delivered:

AG [coffee] AF� 〈pour_coffee〉 true

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 19 / 24

Global model-checking algorithm for MHML
for all q ∈ Q do

L(q) := {true}
for i = 1 to length(ψ) do

for all subformulae φ of ψ such
that length(φ) = i do

if φ = true then
{nothing to do}

else if φ = ¬φ1 then
for all q ∈ Q do

if φ1 /∈ L(q) then
L(q) := L(q) ∪ {φ}

else if φ = φ1 ∧ φ2 then
for all q ∈ Q do

if φ1 ∈ L(q) and φ2 ∈ L(q)
then

L(q) := L(q) ∪ {φ}
else if φ = [a]φ1 then

for all q ∈ Q do
if ∀ q′ : q a−→♦ q′, φ1 ∈ L(q′)
then

L(q) := L(q) ∪ {φ}

else if φ = 〈a〉φ1 then
for all q ∈ Q do

if ∃ q′ : q a−→� q′, φ1 ∈ L(q′) then
L(q) := L(q) ∪ {φ}

else if φ = P(a)φ1 then
for all q ∈ Q do

if ∃ q′ : q a−→♦ q′, φ1 ∈ L(q′) then
L(q) := L(q) ∪ {φ}

else if φ = E (φ1 U� φ2) then
T := { q | φ2 ∈ L(q) }
for all q ∈ T do

L(q) := L(q) ∪ {E (φ1 U� φ2)}
while T 6= ∅ do

choose q ∈ T
T := T \ {q}
for all p such that p −→� q do

if E (φ1 U� φ2) /∈ L(p) and φ1 ∈ L(p)
then

L(p) := L(p) ∪ {E (φ1 U� φ2)}
T := T ∪ {p}

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 20 / 24

Products of the coffee machine family

(e) LTS of a European Coffee Machine (f) LTS of an American Coffee Machine

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 21 / 24

Model-checking results

Property Fig. (a) Fig. (b) Fig. (c) Fig. (d)
A false false true true
B false true true true
C false true true true
D true true true true

Table: Results of verifying properties A–D on Figs.(a)–(d)

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 22 / 24

Deriving correct products from a product family

Behavioural properties of families
Idea: prune optional (may) transitions in the MTS in a counter-
example-guided way, i.e., based on model-checking techniques
An algorithm can be devised in which the conjunction of the
constraints is repeatedly model checked, first over the MTS of the
product family and then over the resulting (set of) pruned MTSs
These intermediate MTSs are obtained by pruning may transitions
in a counterexample-guided way until the formula (conjunction of
constraints) is found to be true

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 23 / 24

A vision for future research

Our aim is to develop rigorous modelling techniques as well as analysis and
verification tools that can be used for the systematic, large-scale provision and
market segmentation of software services

We foresee flexible design techniques with which software service line
organizations can develop novel classes of service-oriented applications that
can easily be adapted to customer requirements as well as to changes in the
context in which, and while, they execute

By superposing variability mechanisms on current languages for service design,
based on policies and strategies defined by service providers, we envision the
possibility to identify variability points that can be triggered at run-time to
increase adaptability and optimize the (re)use of resources

The resulting design techniques and support tools will be able to assist
organizations to plan, optimize, and control the quality of software service
provision, both at design- and at run-time

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 24 / 24

A vision for future research

Our aim is to develop rigorous modelling techniques as well as analysis and
verification tools that can be used for the systematic, large-scale provision and
market segmentation of software services

We foresee flexible design techniques with which software service line
organizations can develop novel classes of service-oriented applications that
can easily be adapted to customer requirements as well as to changes in the
context in which, and while, they execute

By superposing variability mechanisms on current languages for service design,
based on policies and strategies defined by service providers, we envision the
possibility to identify variability points that can be triggered at run-time to
increase adaptability and optimize the (re)use of resources

The resulting design techniques and support tools will be able to assist
organizations to plan, optimize, and control the quality of software service
provision, both at design- and at run-time

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 24 / 24

Concrete proposal: Modelling Variability, Evolvability,
and Adaptability in Service Computing

First focus on the definition of the formal modelling framework,
with a threefold objective:

1 Extend (semi)formal existing notations and languages for SOC
with notions of variability through which increased levels of
flexibility and adaptability can be achieved in software service
provision

2 Define a rigorous semantics of variability over behavioural models
of services that can support a number of design- and run-time
analysis techniques

3 Develop analysis and verification techniques that remain effective
over specifications with variability points, including situations in
which the variability is triggered at run-time

S. Gnesi et al. (ISTI–CNR) A logical framework for variability 25 / 24

	Background, aim, contributions and a running example
	Deontic logic and deontic characterization of feature models
	Modal Transition Systems (MTSs)
	MHML: Hennesy--Milner Logic with Until over MTSs
	Expressing static and behavioural properties of product families
	Model-checking algorithms for MHML and verification results
	Deriving correct products from a product family
	Conclusions and a vision for future research

