
GPU implementation of coupled models of bed load transport
and multi-layered shallow water model

Mohamed Boubekeur, Fayssal Benkhaldoun
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GPU implementation of coupled models of bed load transport and
multi-layered shallow water model

Inroduction :

Modelling water flows is based on the formulation of the appropriate
equations of continuity and motion of water.
Free-surface flows represent a three-dimensional turbulent Newtonian
flow :

Complicated geometrical domains.
Moving boundaries.

High computational cost.
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Introduction

The shallow water models.
environmental and hydraulic engineering : tidal flows in an estuary or
coastal regions, rivers, reservoir and open channel.

Multi-layered shallow water models.
avoid the expensive three-dimensional Navier-Stokes equations.
obtain stratified horizontal flow velocities as the pressure distribution is
nearly hydrostatic.

Higher is the number of layer, better is.

Increase the computational cost.

Need of HPC Resources.

A cost effective way is using Graphics Processor Units.

CUDA implementation for NVIDA card’s.
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The shallow water model

The equations of shallow water flows are :
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∂t
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∂y
(hv) = 0

∂

∂t
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2
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2
gh2

)
= −gh∂Z

∂y
− fchu

where

(u, v) the velocity field.

h is the water height.

Z is the topography of the bed.

g is the gravity.

fc is the Coriolis forces.
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Conservative form

The conservative form of the equations is :

∂W

∂t
+
∂F (W )

∂x
+
∂G(W )

∂y
= Q(W ) + R(W ).

where W is the vector of conserved variable, F and G the vectors of flux
functions, Q and R are the vector of source terms.

W =

 h
hu
hv

 , F (W ) =

 hu
hu2 + 1

2
gh2

huv

 , G(W ) =

 hv
huv
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2
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 ,

Q(W ) =
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−gh ∂Z
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 , R(W ) =

 0
fchv
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 ,
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Numerical scheme

A hybrid finite volume-characteristics scheme (FVC) introduced by F.
Benkhaldoun and M. Seaid in 2010.

Predictor-corrector.

Avoid the solution of Riemann problems during the time integration.

Use the method of characteristics to construct the numerical fluxes.

well balanced, conservative, non-oscillatory.

Easily parallelizable.
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Numerical scheme

The spatial domain is descritized into control volumes
Ci,j = [xi− 1

2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] with uniform sizes.

The semi-discrete equation is :

dWi,j

dt
+

Fi+ 1
2
,j − Fi− 1

2
,j

∆x
+

Gi,j+ 1
2
− Gi,j− 1

2

∆y
= Qi,j + Ri,j

Fi± 1
2
,j = F (Wi± 1

2
,j), Gi,j± 1

2
= G(Wi,j± 1

2
) are the numerical fluxes.

They are obtained by the FVC method.

Qi,j = Q(Wi,j) and Ri,j = R(Wi,j) are the source terms.

We adopt the following notations :

Wi± 1
2
,j(t) = W (t, xi± 1

2
, yj)

Wi,j± 1
2
(t) = W (t, xi , yj± 1

2
)

Wi,j =
1

∆x

1

∆y

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

W (t, x , y)dydx
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Numerical scheme

The time discretization is an explicit Euler scheme

W n+1
i,j = W n

i,j −∆t
F n
i+ 1

2
,j
− F n

i− 1
2
,j

∆x
−∆t

G n
i,j+ 1

2
− G n

i,j− 1
2

∆y
+ ∆tQn

i,j + ∆tRn
i,j

The CFL condition C is specified as :

∆t = C
min(∆x ,∆y)

max(λ, µ)

where C is the Courant number to be chosen less than unity, λ and µ are the
maximum of eigenvalues associated to the model defined as :

λ = max(|u +
√

gh|, |u|, |u −
√

gh|)

µ = max(|v +
√

gh|, |v |, |v −
√

gh|)

9 / 37



Introduction
The shallow water model

The multi-layer shallow water model
The multi-layer shallow water model over movable bed

Conclusions and outlooks

CUDA implementation

Considering each thread as a volume control.

The code architecture :

Compute the fluxes :
The predictor step.
The corrector step.

Compute W n+1.

Draw the water height H with OpenGL.

minimize communication between CPU and GPU
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Numerical result

Ω = [−10, 10]× [−10, 10].

Neumann boundary conditions.

Initial condition.

h(0, x , y) =

{
3 if x < 0.

1 elsewhere.

u(0, x , y) = 0

v(0, x , y) = 0
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GPU vs CPU

CPU : Intel(R) Core(TM) i7-4930MX CPU @ 3.00GHz

GPU : NVIDIA Quadro K5100M

mesh GPU CPU
8 cores 1 core

50× 50 0.02 0.07 0.16
100× 100 0.44 0.59 1.31
200× 200 1.33 4.13 1.78
400× 400 6.06 26.71 87.21
600× 600 18.04 88.12 293.61
800× 800 37.73 215.15 693.89

1000× 1000 66.43 383.71 1361.25

Execution times in seconds obtained for tend = 5s
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Water heights and velocity fields obtained for t = 10s

Water heights (left) and velocity fields (right) obtained for dam-break problem t = 10s
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Numerical result

Ω = [−5, 5]× [−5, 5].

Neumann boundary conditions.

Initial condition.

h(0, x , y) = 1 +
1

4

(
1− tanh

(√
ax2 + by 2 − 1

c

))
u(0, x , y) = 0

v(0, x , y) = 0

where a = 52 , b = 25 and c = 0.1.

The gravity g = 1 and the Coriolis fc = 1.
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Free surface evolution

(a) t = 0 (b) t = 0.5

(c) t = 2 (d) t = 4
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The multi-layer shallow water model

The equations for multi-layered shallow water flows with mass exchange
are :

∂h

∂t
+

n∑
α=1

∂

∂x
(lαhuα) +

n∑
α=1

∂

∂y
(lαhvα) = 0

∂

∂t
(lαhuα) +

n∑
α=1

∂

∂x

(
lαhu

2
α +

1

2
glαh

2

)
+

n∑
α=1

∂

∂y
(lαhuαvα) = −glαh

∂Z

∂x
+ Fα

∂

∂t
(lαhvα) +

n∑
α=1

∂

∂x
(lαhuαvα) +

n∑
α=1

∂

∂y

(
lαhv

2
α +

1

2
glαh

2

)
= −glαh

∂Z

∂y
+ Gα

with

Fα = Fu + Fb + Fw + Fµ

Gα = Gv + Gb + Gw + Gµ

and

lα > 0,
M∑
α=1

lα = 1
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Some parameters definition

The advection terms Fu and Gv are given by :

Fu = uα+ 1
2
ξuα+ 1

2
− uα− 1

2
ξuα− 1

2

Gv = vα+ 1
2
ξvα+ 1

2
− vα− 1

2
ξvα− 1

2

where the mass exchange term ξu
α+ 1

2
can be computed as :

ξuα+ 1
2

=
α∑
β=1

(
∂(lβhuβ)

∂x
− lβ

n∑
γ=1

∂(lγhuγ)

∂x

)

and the interface velocity is computed by a simple upwinding following the sign
of the mass exchange term as :

uα+ 1
2

=

uα, if ξu
α+ 1

2
> 0

uα+1, if ξu
α+ 1

2
< 0

17 / 37



Introduction
The shallow water model

The multi-layer shallow water model
The multi-layer shallow water model over movable bed

Conclusions and outlooks

Some parameters definition

The vertical kinematic eddy viscosity terms Fµ and Gµ take into account
the friction between neighbouring layers and they are defined as :

Fµ = 2ν(1− δnα)
uα+1 − uα

(lα+1 + lα)h
− 2ν(1− δ1α)

uα − uα−1

(lα + lα−1)h

Gµ = 2ν(1− δnα)
vα+1 − vα

(lα+1 + lα)h
− 2ν(1− δ1α)

vα − vα−1

(lα + lα−1)h

ν is the eddy viscosity and δkα represents the Kronecker symbol.

The external friction terms are given by :

Fb = −δ1α
ζb
ρ

Gb = −δ1α
ηb
ρ

Fw = δnα
ζw
ρ

Gw = δnα
ηw
ρ

with ρ is the water density, ζb and ηb are the bed shear stress, ζw and ηw are
the shear of the blowing wind. 18 / 37
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Numerical scheme

The time discretization is done with an operator splitting method.
The first step is :

W ∗
i,j = W n

i,j + ∆tRn
i,j

with Rn
i,j = Ri,j(tn).

The second steps is :

W n+1
i,j = W ∗

i,j −∆t
F ∗
i+ 1

2
,j
− F ∗

i− 1
2
,j

∆x
−∆t

G∗
i,j+ 1

2
− G∗

i,j− 1
2

∆∂y
+ ∆tQ∗

i,j

the fluxes are computed using FVC method.
The time integration scheme is explicit, The CFL condition C is specified
as :

∆t = C
min(∆x ,∆y)

max(λ, µ)

where C is the Courant number to be chosen less than unity, λ and µ are the
maximum of eigenvalues associated to the single-layer model defined as :

λ = max
α=1,...,n

(|uα +
√

gh|, |uα|, |uα −
√

gh|)

µ = max
α=1,...,n

(|vα +
√

gh|, |vα|, |vα −
√

gh|)
19 / 37



Introduction
The shallow water model

The multi-layer shallow water model
The multi-layer shallow water model over movable bed

Conclusions and outlooks

CUDA implementation

Considering each thread as a volume control.

The code architecture :

Compute the source terme R.

Compute W ∗.

Compute the fluxes :
The predictor step.
The corrector step.

Compute W n+1.

Draw the water height H with OpenGL.

minimize communication between CPU and GPU
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Numerical result

Ω = [−10, 10]× [−10, 10].

Neumann boundary conditions.

Initial condition.

h(0, x , y) = 1 +
1

4

(
1− tanh

(√
ax2 + by 2 − 1

c

))
uα(0, x , y) = 0 for α = 1, ..., n

vα(0, x , y) = 0 for α = 1, ..., n

where a = 52 , b = 25 and c = 0.1.

The gravity g = 1 and the eddy viscosity ν = 0.01.
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GPU vs CPU

5 layers

50× 50 100× 100 200× 200 500× 500
CPU 1 core 0.92 7.62 65.45 1046.14
CPU 8 cores 0.54 3.65 24.76 355.31
GPU 0.47 1.54 6.98 77.26

10 layers

50× 50 100× 100 200× 200 500× 500
CPU 1 core 1.81 15.68 134.40 2202.90
CPU 8 cores 0.96 6.70 45.25 738.15
GPU 0.77 2.82 13.29 157.0

20 layers

50× 50 100× 100 200× 200 500× 500
CPU 1 core 3.43 31.94 273.74 4349.97
CPU 8 cores 1.87 12.90 96.85 1496.98
GPU 1.42 5.71 28.71 360.50

Execution times in seconds obtained for tend = 10s
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Water heights and velocity fields obtained for t = 1s

Water heights (left) and velocity fields (right) obtained for dam-break problem with 20
layers for t = 1s
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Water heights and velocity fields obtained for t = 3s

Water heights (left) and velocity fields (right) obtained for dam-break problem with 20
layers for t = 3s
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Water heights and velocity fields obtained for t = 5s

Water heights (left) and velocity fields (right) obtained for dam-break problem with 20
layers for t = 5s
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Wind-driven circulation flow problem 1D case

Comparisons of numerical predictions with the analytical solution for the wind-driven circulation
flow : (top) with bottom friction, (bottom) without bottom friction : (left) FVC scheme, (right)
Kinetic scheme.
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Wind-driven circulation flow 2D case

Wind circulation on a flat bottom 10 and 20 layers
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The multi-layer shallow water model over movable bed

To update the bed-load in the multilayer system, the Exner equation is
used :

(1− p)
∂Z

∂t
+
∂Q1(u1, v1)

∂x
+
∂Q2(u1, v1)

∂y
= 0

p is the sediment porosity assumed to be constant.

Q1 and Q2 are the sediment discharge defined by :

Q1(u1, v1) = Au1(u2
1 + v 2

1 )
m−1

2

Q2(u1, v1) = Av1(u2
1 + v 2

1 )
m−1

2

An upwind scheme is used to evaluate Z .
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Numerical result

Ω = [0, 10]× [0, 10].

Neumann boundary conditions.

Initial condition.

h(0, x , y) =

{
2 if x < 5.

0.125 elsewhere.

u(0, x , y) = 0

v(0, x , y) = 0

Z(0, x , y) = 0
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Dam break problem over erodible bed

Dam break over a movable bottom - Free surface (left) and Bottom topography (right)
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Wind circulation with single layer
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Wind circulation with multi layer
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Numerical result

Ω = [0, 1000]× [0, 1000].

Neumann boundary conditions.

Initial condition.

h(0, x , y) = 10− z(0, x , y)

uα(0, x , y) =
Q

h(0, x , y)

vα(0, x , y) = 0

Z(0, x , y) =

{
sin2

(
(x−500)π

200

)
sin2

(
(y−400)π

200

)
if x ∈ [500, 700]× [400, 600].

0 elsewhere.

where Q = 10, p = 0.4 and A = 1

The gravity g = 9.81 and the eddy viscosity ν = 0.01.
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Evolution of the bed (Z )

(a) t = 0 (b) t = 200

(c) t = 500 (d) t = 750
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Conclusions and outlooks

Conclusions :

A GPU implementation of FVC scheme is presented.

Solving single and multi-layered shallow water equation in two dimensions.

Comparaison with CPU’s simulations.

Coupling with Exner equation.

Outlooks :

Using Meyer-Peter model instead Grass model.

Using unstructured mesh.
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Thanks for your attention !
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pour l’approximation des équations de Saint-Venant, TAMTAM 2017,
ARIMA.

Boubekeur M., Benkhaldoun F., Seaid M., GPU accelerated finite volume
methods for three-dimensional shallow water flows, FVCA 8, Springer.

Benkhaldoun F., Seaid M., A simple finite volume method for the shallow
water equations, Journal of Computational and Applied Mathematics,
vol. 234, no. 1 : (2010) pp. 58–72.

Audusse E, Benkhaldoun F., Sari S., Seaid M., Tassi P., : A fast finite
volume solver for multi-layered shallow water flows with mass exchange,
Journal of Computational Physics, vol. 272 : (2014) pp. 23–45.

Benkhaldoun F., Sari S., Seaid M., Projection finite volume method for
shallow water flows, Mathematics and Computers in Simulation, vol. 118 :
(2015) pp. 87–101.

Castro M. J., Ortega S., Asunción M., Mantas J. M., Gallardo J. M., GPU
computing for shallow water flow simulation based on finite volume
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