Multi-level adaptive vertex-centered finite volume methods for diffusion problems

Fayssal Benkhaldoun

supervising: Tarek Ghoudi - PhD Joint work with Imad Kissami Postdoc

$$
\text { July 3, } 2018
$$

- Adaptive FE-FV are now widely used in the numerical solution of (PDEs) to achieve better accuracy with minimum degrees of freedom.
- We first solve the PDE to get the solution on the current mesh.
- The error is estimated using the solution, and used to mark a set of triangles that are to be refined.
- Triangles are refined in such a way to keep mesh regularity and conformity.

- A typical loop of (AFE-FVM) through local refinement involves:

\checkmark Conformity of the mesh
\checkmark Prevent the propagation of refinement levels
\checkmark Efficiency of estimator
\checkmark Convergence of error
\checkmark Performance of CPU time

Let $a: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a given nonlinear function.
Typically, $a(x)=x^{p-2}$ for some real number $p \in(1,+\infty)$. Let σ such that

$$
\begin{equation*}
\sigma(\xi)=a(|\xi|) \xi \quad \forall \xi \in \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

where $|$.$| is the Euclidean norm in \mathbb{R}^{d}$. Then, for a given source function $f: \Omega \rightarrow \mathbb{R}$, the nonlinear Laplace problem consists in looking for $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
-\operatorname{div}(\sigma(\nabla u)) & =f \text { in } \Omega \tag{2}\\
u & =\operatorname{gon} \partial \Omega
\end{align*}
$$

Problem: find $p \in H_{0}^{1}(\Omega),(\mathcal{S})\left\{\begin{aligned}-\operatorname{div}(\mathbb{K} \nabla p)=f & \text { in } \Omega \quad \subset \mathbb{R}^{d=2,3} \\ p=g & \text { on } \partial \Omega\end{aligned}\right.$
(3)

Unicity and Existence

Assumptions:

- (H1) $\mathbb{K} \in \mathbb{L}^{\infty}(\Omega)$.
- (H2) $f \in \mathbb{L}^{2}(\Omega)$.
- (\mathcal{S}) has a unique solution.

Remark: The problem (2) represents,for instance, the extension of the problem (3) which takes into account the nonlinear dependence of the Darcy velocity on the pressure head gradient ∇p. Note that (2) and (3) coincide, for $a(x)=x^{p-2}$, when $p=2$.

Figure: Dual cell

- S_{1}, S_{2}, and S_{3} are the vertices of a triangle T,
- B its barycentre, $\Sigma_{1}^{o p p}, \Sigma_{2}^{o p p}$ and $\Sigma_{3}^{o p p}$ The edges $\left[S_{2} S_{3}\right],\left[S_{1} S_{3}\right]$ et $\left[S_{1} S_{2}\right]$;
- $\vec{n}_{1}^{\text {opp }}, \vec{n}_{2}^{\text {opp }}$ and $\vec{n}_{3}^{\text {opp }}$ outgoing unit normals such that $\overrightarrow{n_{p q}} \perp \stackrel{1}{M_{p q} B}$ and $\overrightarrow{n_{p q}} \cdot \overrightarrow{S_{p} S_{q}}>0$

The approximation of the diffusive flux is based on an implicit scheme:

$$
\begin{align*}
-\int_{\partial D_{h}} \mathbb{K} \nabla p \cdot \vec{n} d \sigma & =\int_{D_{h}} f(x) d x \tag{4}\\
-\sum_{T \cap D_{h} \neq \emptyset} \int_{\partial D_{h} \cap T_{h}} \mathbb{K}_{T} \nabla p \cdot \vec{n} d \sigma & =\int_{D_{h}} f(x) d x \tag{5}
\end{align*}
$$

We note the elementary diffusion terms by:

$$
\begin{aligned}
& k_{12}^{\text {flow }}(T)=|T| \mathbb{K}_{T} \frac{\mid \Sigma_{1}^{\text {opp }}}{2|T|} \frac{\left|\Sigma_{2}^{\text {opp }}\right|}{2|T|} \vec{n}_{1}^{\text {opp }} \vec{n}_{2}^{\text {opp }} \\
& k_{13}^{\text {flow }}(T)=|T| \mathbb{K}_{T} \frac{\mid \Sigma_{1}^{\text {opp }}}{2|T|} \frac{\left|\Sigma_{3}^{\text {opp }}\right|}{2|T|} \vec{n}_{1}^{\text {opp }} \vec{n}_{3}^{\text {opp }}
\end{aligned}
$$

Finally, the finite volume scheme for the flow equation is written:

$$
\begin{equation*}
\sum_{T \in D_{h}} k_{12}^{\text {flow }}(T)\left(p_{2}-p_{1}\right)+k_{13}^{\text {flow }}(T)\left(p_{3}-p_{1}\right)=\int_{D_{h}} f(x) d x \tag{6}
\end{equation*}
$$

Figure: Primal mesh \mathcal{T}_{h}, Dual mesh \mathcal{D}_{h} and the fine simplicial mesh \mathcal{S}_{h}

Remark: the flux $-\mathbb{K} \nabla p \in \mathrm{H}(\operatorname{div}, \Omega)$ but $-\mathbb{K} \nabla p_{h} \notin \mathrm{H}(\operatorname{div}, \Omega)$ Flux reconstruction (exploits the local conservativity):

$$
\begin{aligned}
\mathbf{t}_{h} & \in \mathrm{RTN}_{0}\left(\mathcal{S}_{h}\right) \subset \mathrm{H}(\operatorname{div}, \Omega) \\
\left(\operatorname{div} \mathbf{t}_{h}, 1\right)_{D} & =(f, 1)_{D}, \quad \forall D \in \mathcal{D}_{h}^{\text {int }}
\end{aligned}
$$

Construction of t_{h} by Direct Prescription : We solved the following system (\mathcal{S}^{\prime}):

$$
\left(\mathcal{S}^{\prime}\right)\left\{\begin{array}{l}
\mathbf{t}_{h} \cdot \overrightarrow{N 1}=-\mathbb{K} \nabla \mathbf{p}_{h} \cdot \overrightarrow{N 1} \\
\mathbf{t}_{h} \cdot \overrightarrow{N 2}=-w_{K, s}\left(\mathbb{K}_{\mid K} \nabla \mathbf{p}_{h} \cdot \overrightarrow{N 2}\right)-w_{L, s}\left(\mathbb{K}_{\left.\left.\right|_{L} \nabla \mathbf{p}_{h} \cdot \overrightarrow{N 2}\right)}^{\mathbf{t}_{h} \cdot \overrightarrow{N 3}=-\mathbb{K} \nabla \mathbf{p}_{h} \cdot \overrightarrow{N 3}}\right.
\end{array}\right.
$$

- $\mathbb{K}_{\mid K}\left(\mathbb{K}_{\mid L}\right)$ is an approximation of the tensor of permeability on the triangle $K(L)$
- $\overrightarrow{N 1}, \overrightarrow{N 2}$ and $\overrightarrow{N 3}$: unit normal vectors.
- Harmonic averaging :

$$
W_{K, s}=\frac{\mathbb{K}_{K}}{\mathbb{K}_{K}+\mathbb{K}_{L}}, W_{L, s}=\frac{\mathbb{K}_{L}}{\mathbb{K}_{K}+\mathbb{K}_{L}}
$$

Error estimator:

$$
\begin{gather*}
\left\|p-p_{h}\right\|_{\Omega}^{2}=\left\|\mathbb{K}^{\frac{1}{2}} \nabla\left(p-p_{h}\right)\right\|_{\Omega}^{2}=\int_{\Omega}\left(\mathbb{K}^{\frac{1}{2}} \nabla p+\mathbb{K}^{-\frac{1}{2}} t_{h}\right)^{2} \tag{7}\\
\left\|p-p_{h}\right\|^{2} \leq \sum_{D \in \mathcal{D}_{h}}(\underbrace{m_{D}\left\|f-\operatorname{div} \mathbf{t}_{h}\right\|_{D}}_{\text {residual error }}+\underbrace{\left\|\mathbb{K}^{\frac{1}{2}} \nabla p_{h}+\mathbb{K}^{-\frac{1}{2}} \mathbf{t}_{h}\right\|_{D}}_{\text {flux error }})^{2} \\
\text { - } m_{D, a}=\frac{C_{P, D} h_{D}^{2}}{C_{a, D}} \text { if } D \in D_{h}^{\text {int }}, \quad m_{D, a}=\frac{C_{F, D}^{2} h_{D}^{2}}{C_{a, D}} \text { if } D \in D_{h}^{\text {ext }}
\end{gather*}
$$

- $C_{P, D}$ is equal $\frac{1}{\pi^{2}}$ if D is convexe, $C_{F, D}$ is equal to 1 on general.
- Effectivity index: $\frac{\left(\sum_{D \in D_{h}}\left(\eta_{R, D}+\eta_{D F, D}\right)^{2}\right)^{\frac{1}{2}}}{\left\|p-p_{h}\right\|_{\Omega}}$
$T:=$ Triangulation of Ω, for all $\tau \in T$ we define $v(\tau)$ the " newest vertex". $E(\tau):=$ Is the longest edge of $\tau, v(\tau)$ is the vertex opposite to $E(\tau)$.
- (R1): The first step consists in dividing the elements by joining $v(\tau)$ to the middle l of $E(\tau)$.
- (R2): I becomes the "newest vertex" of each of the two created triangles.
- (R3): Neighbor refinement by $R 1$ and conformity.

Figure: Bisect a triangle and Completion by Newest-Vertex-Bisection strategy

Figure: Mesh refinement with ADAPT and conformity with propagation levels

Figure: Mesh refinement with ADAPT-NEWEST

- First we proceed in a first time by refining our mesh by the ADAPT strategy, then for the conformity one uses the method Newest vertex bisection.
- There is no more propagation of the refinement on triangles T_{1}, T_{2} et T_{4}.

Test with an analytical solution, $\alpha=0,127$

- Problem:

$$
\begin{array}{rll}
-\operatorname{div}(\mathbb{K} \nabla p) & =f & \text { in } \Omega=(-1,1)^{2} \\
p & =0 & \text { on } \partial \Omega
\end{array}
$$

- heterogeneous permeability

$$
\mathbb{K}=\left\{\begin{aligned}
1 . \mathbb{I}_{2} & \text { if } x \in \Omega_{1,4} \\
100 \cdot \mathbb{I}_{2} & \text { else. }
\end{aligned}\right.
$$

- Solution

$$
\begin{aligned}
& p \in H^{1+\alpha}(\Omega), a_{i}, b_{i}=\text { const. } \\
& p(r, \theta)=r^{\alpha}\left(a_{i} \sin (\alpha \theta)+b_{i} \cos (\alpha \theta)\right)
\end{aligned}
$$

Regular mesh: $\alpha=0.127$

Figure: Energy Error, Estimator, Efficiency

NewestVB approach

				ϵ_{1}	ϵ_{2}	f_{η}
iter	DoFs	η	CPU			
1	128	103.3915	15.836	0.30586	6.5289	0.679237
6	436	67.4077	10.0475	0.13689	6.7089	0.668070
12	942	44.08	8.8284	0.074364	4.993	0.074364
24	2170	18.4356	7.4593	0.02977	2.4715	1.426176
59	7162	7.0814	5.3987	0.021182	1.3117	4.063058
Total						$\mathbf{7 5 . 1 3}$

Regular mesh : $\alpha=0.127$

Figure: Estimateur, erreur energie (gauche), efficacité (droite)

AdaptNVB approach

iter	DoFs	η	ϵ_{1}	ϵ_{2}	f_{η}	CPU
1	240	103.3915	15.836	0.30586	6.5289	0.671513
6	1040	42.7369	10.677	0.081534	4.0027	0.918080
13	2160	20.8044	7.846	0.035467	2.4715	1.462513
24	4920	9.3623	5.8007	0.022808	1.614	2.870125
29	7296	6.9263	5.104	0.022277	1.357	3.995373
Total						$\mathbf{3 5 . 1 3}$

Irregular mesh : $\alpha=0.127$

Figure: Estimateur, erreur energie (gauche), efficacité (droite)

Nested adaptive vertex-centered finite volume

The diffusion in a two-dimensional closed medium $\Omega \subset \mathbb{R}^{2}$ with boundary $\partial \Omega$ is described by the following equation

$$
\begin{align*}
-\nabla \cdot(\mathbb{K} \nabla u(\mathbf{x})) & =f(\mathbf{x}), & & \forall \mathbf{x} \in \boldsymbol{\Omega}, \tag{8}\\
u(\mathbf{x}) & =g(\mathbf{x}), & & \forall \mathbf{x} \in \partial \boldsymbol{\Omega},
\end{align*}
$$

where f is the external force, g the boundary source, and \mathbb{K} is a piecewise constant diffusion coefficient.

Number of vertices

ner or vorices

Number of vertices

Number of vertices

電

Figure: Results using conventional approach (left) and using nested approach (right).

Table: Comparison between the conventional and nested approaches.
CPU times are in seconds.
Conventional approach

iter	DoFs	η	ϵ_{1}	ϵ_{2}	f_{η}	CPU
1	240	103.3915	15.836	0.30586	6.5289	0.71
6	2256	42.0556	10.298	0.079115	4.0838	1.45
20	9903	10.617	5.2289	0.020684	2.0305	5.5
Total						$\mathbf{6 0 . 6 9 1}$

Nested approach

iter	DoFs	η	ϵ_{1}	ϵ_{2}	f_{η}	CPU	
1	1046	103.3915	15.836	0.30586	6.5289	0.39	
3	3054	37.5234	9.6343	0.065962	3.8948	1.5	
10	10082	7.9307	5.5007	0.024378	1.4418	6.8	
Total						$\mathbf{3 5 . 1 3}$	

Algorithm

Parameter	Signification
$\mathcal{I}_{\text {adiv }}$	Table have the values 0 or 1, 1: the triangle that contains this vertice must be refined, and 0 otherwise
$\mathcal{M}_{\text {arker }}$	Table that indicates whether an edge should be marked or not.
$\mathcal{N}_{\text {Lev }}$	maximum number of multi-level refinement.
$\mathcal{N}_{\text {adiv }}$	contains 0 or 1, 0: the edge is not yet divided, 1: the node is already created in the middle of the edge.
$\mathcal{N}_{\text {Ref }}$	Maximum level of refinement.

- First step construction of dual mesh \mathcal{D}_{h}, simplical mesh \mathcal{S}_{h}.
- We compute the estimators on the simplicial mesh edges which will allow us to calculate the estimator in the node that surrounds these edges.
- With the aid of this estimator, a threshold is defined in order to obtain the iadiv in the node.
- After calculating iadiv in the cell (this information will allow us to know if the cell must be adapted or not and also know its level of refinement.
- If for example the level of refinement is 3 one proceeds as follows:
We will iterate 3 times and in each iteration we will make an adaptation (Adapt strategy) and the conformity (new-vertex).

Parameter	Signification
$\mathcal{I}_{\text {adiv }}$	Table have the values 0 or 1, 1: the triangle that contains this vertice must be refined, and 0 otherwise
$\mathcal{M}_{\text {arker }}$	Table that indicates whether an edge should be marked or not.
$\mathcal{N}_{\text {Lev }}$	maximum number of multi-level refinement.
$\mathcal{N}_{\text {adiv }}$	contains 0 or 1, 0: the edge is not yet divided, 1: the node is already created in the middle of the edge.
$\mathcal{N}_{\text {Ref }}$	Maximum level of refinement.

```
1 fort:=1 to N⿱亠⿻⿰丨丨⿱一一⿻上丨又秋do
2 Creitonofall datastrccures
3 Calculof onumnerial solution
calcul ofscimamar
; Calul ofexacteror
COmplte ofciteria
```



```
8 Meshrefmmmenwiwh Aldpitstratey
9 Confomily wihhleveretB Satregy
Makkingofnew timangles rexedt toveremed
| end
12 end
```


Conclusion

- Coupled method Adpat-Newest to refine the mesh.
- Convergence of error to .
- Performance of CPU time using multi-level adaptation.

THANK YOU FOR YOUR ATTENTION !!

