Multi-level adaptive vertex-centered finite volume methods for diffusion problems

Fayssal BENKHALDOUN

supervising: Tarek Ghoudi - PhD Joint work with Imad Kissami Postdoc

July 3, 2018

- Adaptive FE-FV are now widely used in the numerical solution of (PDEs) to achieve better accuracy with minimum degrees of freedom.
- We first solve the PDE to get the solution on the current mesh.
- The error is estimated using the solution, and used to mark a set of triangles that are to be refined.
- Triangles are refined in such a way to keep mesh regularity and conformity.

• A typical loop of (AFE-FVM) through local refinement involves:

- \checkmark Conformity of the mesh
- $\checkmark\,$ Prevent the propagation of refinement levels
- ✓ Efficiency of estimator
- ✓ Convergence of error
- ✓ Performance of CPU time

Let $a : \mathbb{R}_+ \to \mathbb{R}$ be a given nonlinear function. Typically, $a(x) = x^{p-2}$ for some real number $p \in (1, +\infty)$. Let σ such that

$$\sigma(\xi) = \mathbf{a}(|\xi|)\xi \quad \forall \xi \in \mathbb{R}^d \tag{1}$$

where |.| is the Euclidean norm in \mathbb{R}^d . Then, for a given source function $f: \Omega \to \mathbb{R}$, the nonlinear Laplace problem consists in looking for $u: \Omega \to \mathbb{R}$ such that

$$-\operatorname{div}(\sigma(\nabla u)) = f \operatorname{in} \Omega$$

$$u = g \operatorname{on} \partial \Omega$$
(2)

Problem: find
$$p \in H_0^1(\Omega)$$
, $(S) \begin{cases} -\operatorname{div}(\mathbb{K}\nabla p) = f & \text{in } \Omega \subset \mathbb{R}^{d=2,3} \\ p = g & \text{on } \partial\Omega \end{cases}$
(3)

1

Unicity and Existence Assumptions:

- (H1) $\mathbb{K} \in \mathbb{L}^{\infty}(\Omega)$.
- (H2) $f \in \mathbb{L}^2(\Omega)$.
- (\mathcal{S}) has a unique solution.

Remark: The problem (2) represents, for instance, the extension of the problem (3) which takes into account the nonlinear dependence of the Darcy velocity on the pressure head gradient ∇p . Note that (2) and (3) coincide, for $a(x) = x^{p-2}$, when p = 2.

Figure: Dual cell

- S_1 , S_2 , and S_3 are the vertices of a triangle T,
- B its barycentre, Σ₁^{opp}, Σ₂^{opp} and Σ₃^{opp} The edges[S₂S₃], [S₁S₃] et [S₁S₂]; *n*₁^{opp}, *n*₂^{opp} and *n*₃^{opp} outgoing unit normals such that *n*_{pq}⊥*M*_{pq}*B* and *n*_{pq}.*S*_p*S*_q > 0

The approximation of the diffusive flux is based on an implicit scheme:

$$-\int_{\partial D_{h}} \mathbb{K} \nabla p. \overrightarrow{n} \, d\sigma = \int_{D_{h}} f(x) dx \qquad (4)$$
$$-\sum_{T \cap D_{h} \neq \emptyset} \int_{\partial D_{h} \cap T_{h}} \mathbb{K}_{T} \nabla p. \overrightarrow{n} \, d\sigma = \int_{D_{h}} f(x) dx \qquad (5)$$

We note the elementary diffusion terms by:

$$k_{12}^{flow}(T) = |T| \mathbb{K}_T \frac{|\Sigma_1^{opp}|}{2|T|} \frac{|\Sigma_2^{opp}|}{2|T|} \overrightarrow{n}_1^{opp} \overrightarrow{n}_2^{opp}$$
$$k_{13}^{flow}(T) = |T| \mathbb{K}_T \frac{|\Sigma_1^{opp}|}{2|T|} \frac{|\Sigma_3^{opp}|}{2|T|} \overrightarrow{n}_1^{opp} \overrightarrow{n}_3^{opp}$$

Finally, the finite volume scheme for the flow equation is written:

$$\sum_{T\in D_h} k_{12}^{flow}(T)(p_2-p_1) + k_{13}^{flow}(T)(p_3-p_1) = \int_{D_h} f(x)dx \qquad (6)$$

Figure: Primal mesh \mathcal{T}_h , Dual mesh \mathcal{D}_h and the fine simplicial mesh \mathcal{S}_h

Remark: the flux $-\mathbb{K}\nabla p \in H(\operatorname{div},\Omega)$ but $-\mathbb{K}\nabla p_h \notin H(\operatorname{div},\Omega)$ **Flux reconstruction** (exploits the local conservativity):

$$\mathbf{t}_h \in \operatorname{RTN}_0(\mathcal{S}_h) \subset \operatorname{H}(\operatorname{div}, \Omega)$$
$$(\operatorname{div} \mathbf{t}_h, 1)_D = (f, 1)_D, \quad \forall D \in \mathcal{D}_h^{\operatorname{int}}$$

FV-FE scheme

Construction of t_h by Direct Prescription : We solved the following system (S'):

$$(\mathcal{S}') \begin{cases} \mathbf{t}_h \cdot \overrightarrow{N1} = -\mathbb{K}\nabla \mathbf{p}_h \cdot \overrightarrow{N1} \\ \mathbf{t}_h \cdot \overrightarrow{N2} = -w_{\mathcal{K},s} \left(\mathbb{K}_{|\mathcal{K}} \nabla \mathbf{p}_h \cdot \overrightarrow{N2} \right) - w_{\mathcal{L},s} \left(\mathbb{K}_{|\mathcal{L}} \nabla \mathbf{p}_h \cdot \overrightarrow{N2} \right) \\ \mathbf{t}_h \cdot \overrightarrow{N3} = -\mathbb{K}\nabla \mathbf{p}_h \cdot \overrightarrow{N3} \end{cases}$$

- $\mathbb{K}_{|K}$ ($\mathbb{K}_{|L}$) is an approximation of the tensor of permeability on the triangle K(L)• $\overrightarrow{N1}$, $\overrightarrow{N2}$ and $\overrightarrow{N3}$: unit
- normal vectors.
- Harmonic averaging : $w_{K,s} = \frac{\mathbb{K}_{K}}{\mathbb{K}_{K} + \mathbb{K}_{I}}, w_{L,s} = \frac{\mathbb{K}_{L}}{\mathbb{K}_{K} + \mathbb{K}_{I}}$

Error estimator

$$\||p - p_h|\|_{\Omega}^2 = \left\|\mathbb{K}^{\frac{1}{2}}\nabla(p - p_h)\right\|_{\Omega}^2 = \int_{\Omega} (\mathbb{K}^{\frac{1}{2}}\nabla p + \mathbb{K}^{-\frac{1}{2}}t_h)^2 \quad (7)$$

$$\left\|\left|p - p_{h}\right\|\right|^{2} \leq \sum_{D \in \mathcal{D}_{h}} \left(\underbrace{m_{D}\left\|f - \operatorname{div} \mathbf{t}_{h}\right\|_{D}}_{\text{residual error}} + \underbrace{\left\|\mathbb{K}^{\frac{1}{2}}\nabla p_{h} + \mathbb{K}^{-\frac{1}{2}}\mathbf{t}_{h}\right\|_{D}}_{\text{flux error}}\right)^{2}$$

•
$$m_{D,a} = \frac{C_{P,D}h_D^2}{c_{a,D}}$$
 if $D \in D_h^{int}$, $m_{D,a} = \frac{C_{F,D}h_D^2}{c_{a,D}}$ if $D \in D_h^{ext}$
• $C_{P,D}$ is equal $\frac{1}{\pi^2}$ if D is convexe, $C_{F,D}$ is equal to 1 on general.

$$\frac{\left(\sum_{D\in D_h} (\eta_{R,D} + \eta_{DF,D})^2\right)^{\frac{1}{2}}}{\left\|\left\|p - p_h\right\|\right\|_{\Omega}}$$

• Effectivity index:

F. Benkhaldoun

- T: = Triangulation of Ω , for all $\tau \in T$ we define $v(\tau)$ the "newest vertex".
- $E(\tau)$: = Is the longest edge of τ , $v(\tau)$ is the vertex opposite to $E(\tau)$.
 - (R1): The first step consists in dividing the elements by joining v(τ) to the middle *I* of E(τ).
 - (R2): I becomes the "newest vertex" of each of the two created triangles.
 - (R3): Neighbor refinement by R1 and conformity.

Figure: Mesh refinement with ADAPT and conformity with propagation levels

Figure: Mesh refinement with ADAPT-NEWEST

- First we proceed in a first time by refining our mesh by the ADAPT strategy, then for the conformity one uses the method Newest vertex bisection.
- There is no more propagation of the refinement on triangles *T*₁, *T*₂ et *T*₄.

Test with an analytical solution, $\alpha=0,127$

Problem:

heterogeneous permeability

$$\mathbb{K} = \left\{ \begin{array}{ll} 1.\mathbb{I}_2 & \text{if } x \in \Omega_{1,4} \\ 100.\mathbb{I}_2 & \text{else.} \end{array} \right.$$

• Solution $p \in H^{1+lpha}(\Omega), a_i, b_i = \text{ const.}$

 $p(r, \theta) = r^{\alpha}(a_i \sin(\alpha \theta) + b_i \cos(\alpha \theta))$

Ω,	Ω
Ω_3	Ω.

E SQA

Regular mesh: $\alpha = 0.127$

(日) (四) (三) (三) (三)

Figure: Energy Error, Estimator, Efficiency

NewestVB	approach
----------	----------

iter	DoFs	η	ϵ_1	ϵ_2	f_{η}	CPU
1	128	103.3915	15.836	0.30586	6.5289	0.679237
6	436	67.4077	10.0475	0.13689	6.7089	0.668070
12	942	44.08	8.8284	0.074364	4.993	0.074364
24	2170	18.4356	7.4593	0.02977	2.4715	1.426176
59	7162	7.0814	5.3987	0.021182	1.3117	4.063058
Total						75.13

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Regular mesh : $\alpha = 0.127$

Figure: Estimateur, erreur energie (gauche), efficacité (droite)

iter	DoFs	η	ϵ_1	ϵ_2	f_{η}	CPU
1	240	103.3915	15.836	0.30586	6.5289	0.671513
6	1040	42.7369	10.677	0.081534	4.0027	0.918080
13	2160	20.8044	7.846	0.035467	2.4715	1.462513
24	4920	9.3623	5.8007	0.022808	1.614	2.870125
29	7296	6.9263	5.104	0.022277	1.357	3.995373
Total						35.13

Irregular mesh : $\alpha = 0.127$

Nested adaptive vertex-centered finite volume

The diffusion in a two-dimensional closed medium $\Omega\subset\mathbb{R}^2$ with boundary $\partial\Omega$ is described by the following equation

$$\begin{aligned} -\nabla \cdot (\mathbb{K} \nabla u(\mathbf{x})) &= f(\mathbf{x}), & \forall \, \mathbf{x} \in \mathbf{\Omega}, \\ u(\mathbf{x}) &= g(\mathbf{x}), & \forall \, \mathbf{x} \in \partial \mathbf{\Omega}, \end{aligned}$$
(8)

where f is the external force, g the boundary source, and \mathbb{K} is a piecewise constant diffusion coefficient.

Irregular mesh

Figure: Results using conventional approach (left) and using nested approach (right).

Table: Comparison between the conventional and nested approaches. CPU times are in seconds.

			Conventio	nal approach		
iter	DoFs	η	ϵ_1	ϵ_2	f_{η}	CPU
1	240	103.3915	15.836	0.30586	6.5289	0.71
6	2256	42.0556	10.298	0.079115	4.0838	1.45
20	9903	10.617	5.2289	0.020684	2.0305	5.5
Total						60.691

Nested approach

iter	DoFs	η	ϵ_1	ϵ_2	f_{η}	CPU
1	1046	103.3915	15.836	0.30586	6.5289	0.39
3	3054	37.5234	9.6343	0.065962	3.8948	1.5
10	10082	7.9307	5.5007	0.024378	1.4418	6.8
Total						35.13

Algorithm

Algorithm

Parameter	Signification
\mathcal{I}_{adiv}	Table have the values 0 or 1, 1: the triangle that contains this vertice must be refined, and 0 otherwise
\mathcal{M} arker	Table that indicates whether an edge should be marked or not.
N_{Lev}	maximum number of multi-level refinement.
N_{adiv}	contains 0 or 1, 0: the edge is not yet divided, 1: the node is already created in the middle of the edge.
N_{Ref}	Maximum level of refinement.

- First step construction of dual mesh \mathcal{D}_h , simplical mesh \mathcal{S}_h .
- We compute the estimators on the simplicial mesh edges which will allow us to calculate the estimator in the node that surrounds these edges.
- With the aid of this estimator, a threshold is defined in order to obtain the jadiv in the node.
- After calculating iadiv in the cell (this information will allow us to know if the cell must be adapted or not and also know its level of refinement.

• If for example the level of refinement is 3 one proceeds as follows:

We will iterate 3 times and in each iteration we will make an adaptation (Adapt strategy) and the conformity (new-vertex).

Parameter	Signification
\mathcal{I}_{adiv}	Table have the values 0 or 1, 1: the triangle that contains this vertice must be refined, and 0 otherwise
\mathcal{M} arker	Table that indicates whether an edge should be marked or not.
N_{Lev}	maximum number of multi-level refinement.
\mathcal{N}_{adiv}	contains 0 or 1, 0: the edge is not yet divided, 1: the node is already created in the middle of the edge.
N_{Ref}	Maximum level of refinement.

1 f	or $t:=1$ to \mathcal{N}_{Ref} do			
2	Creation of all data structures			
3	Calcul of numerical solution			
4	calcul of estimator			
5	Calcul of exact error			
6	Compute of criteria			
1	for $k := l$ to \mathcal{N}_{Lev} do			
8	Mesh refinement with Adapt strategy			
9	Conformity with NewestVB startegy			
10	Marking of new triangles created to be refined			
11	end			
12 e	nd			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Algorithm

Conclusion

- Coupled method Adpat-Newest to refine the mesh.
- Convergence of error to .
- Performance of CPU time using multi-level adaptation.

THANK YOU FOR YOUR ATTENTION !!