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Introduction

@ Heterogeneous computing system.

o Parallel programing paradigm of Machine learning (ML).

@ Need of specific construction languages to configure and reconfigure
hardware according to the machine learning needs.
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Introduction

Problematic

@ Slow hardware designs.
@ Slow testing and evaluation time.
@ Slow and expensive fabrication.

@ Design cost dominate.
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Introduction

Objective

@ Performance optimizations for heterogeneous machine learning
computing.
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Generality

Machine Learning
Building hardware or software that can achieve tasks such as:
@ Extracting features from data in order to explore or solve predictive
problems,

@ Automatically learn to recognize complex patterns and make
intelligent decisions based on insight generated by learning from
examples.
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Generality

Continues increase in data size

v

Consequences

Driven by the need for more explanatory power, tremendous pressure has
been on ML methods to scale beyond a single machine, due to both space
and time bottlenecks.

Foutse Yuehgoh (AIMS) July 5, 2017 7/32



Generality

Complexity of algorithms

Their learning time grows as the size and complexity of the training
dataset increases.

Fortunately, they have special properties which, if properly harnessed by a
well-designed system, can yield a 10x or even 100x speed boost.
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Generality

Importance

Efficient computational methods and algorithms
@ On very large data sets,
@ in parallel to complete the machine learning tasks in reasonable time.

v

Processing vast amounts of data simultaneously, is important in neural
networks and machine learning algorithms, just as it is the case for the
human brain.
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Review of results

Speeding up multidimensional clustering in statistical data analysis has
been the focal point of numerous papers that have employed different
techniques to accelerate the clustering algorithms.

v
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Generality

Constructing Hardware in a Scala Embedded Language (Chisel)

Chisel eases the building of simple, reliable, and efficient software to
harness the parallelism inherent in FPGA technology.

Software
Cormpilation

CHet E
Simulation

' —
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Heterogeneous Architecture

Definition

A heterogeneous architecture is a novel architecture that incorporates
both general-purpose and specialized cores on the same chip.

@ Takes care of generic control and computation;

@ Accelerates frequently used or heavy weight applications.

Challenge

v

Foutse Yuehgoh (AIMS) July 5, 2017 12 / 32



Heterogeneous Architecture

(a) CBEA: Traditional CPU core and eight SIMD accelerator cores.

(b) GPU: 30 highly multi-threaded SIMD accelerator cores in
combination with a standard multicore CPU.

(c) FPGA: An array of logic blocks in combination with a standard
multi-core CPU.
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Heterogeneous Architecture

Serial and Parallel Computing

Serial computing Parallel computing

SPLIT

Do a thing

Do a thing Do another thing | [ Do a third thing

Do another thing

Three
things are
Three done!
things are
done!

Figure 4: Serial and parallel computing, image by David Taylor

@ Parallel computing enables us to solve problems that benefits from or
need faster solutions and require large amount of memory.

v
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Heterogeneous Architecture

Hardware difficulties
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Our Approach

Strategy

Direct implementation of the algorithm on FPGA development board.

@ How do we split and partition the ML program over a heterogeneous
machines, and which best language do we use?

TS
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Our Approach

MEAN-SHIFT ALGORITHM

Goal: Produce clusters on input data.
@ Fixes a window around each data point;
@ Computes the mean of the data within the window;

@ Shifts the window to the mean and repeat until we have convergence.

v

Key Property

An exceptionally appealing and non-parametric clustering techniques that
deal without prior notion on the number of clusters.
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Our Approach

Computing The[Mean Shift]

Yet another Kernel
density estimation !

Simple Mean Shift procedure:
* Compute mean shift vector
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*Translate the Kernel window by m(x)
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Field Programmable Gate Array (FPGA)
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Field Programmable Gate Array (FPGA) :

Key Properties
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Why FPGA?

Speed Cost Parallelism
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Important properties of Chisel

Chisel Design
Description

Chisel Compiler

FPGA
Verilog

ASIC
Verilog

m FPGA Tools m
G FPGA

Simulator Emulation GDS Layout

v
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Why Chisel?

Maximum of a vector

class Max2 extends Module {
val 10 = new Bundle {
val x = UInt(INPUT, 8)
val y = UInt(INPUT, 8)
val z = UInt(OUTPUT, 8) }
i0.z := Mux(io.x > i0.y, 10.x, i0.y)

}

Max
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Why Chisel?

Manual Code parallelization

val ml =
Module(new Max2())

ml.io.x := a t’ "

ml.io.y := b

val m2 = .)
Module(new Max2()) o o

m2.i0.x := ¢

m2.i0.y :=d

val m3 = o %@ .
Module (new Max2()) () 0’

m3.i0.x := ml.io.z m2

m3.i0.y :=m2.i0.2
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Why Chisel?

Chisel Code parallelization

class MaxN(val n: Int, val w: Int) extends Module {
private def Max2(x: UInt, y: UInt) = Mux(x >y, X, y)

val 1o = I0(new Bundle {
val ins = Input(Vec(n, UInt(w.K)))
val out = Output(UInt(w.W))

N

io.out := {o.ins.reduceleft(Max2)

}

O O OO

g
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Running the Chisel Simulation

Generated Verilog

|"ifdef RAMDOMIZE GARBAGE_ASSIGHN
“define RAMDOMIZE

Tendif

Tifdef RAMDOMIZE_ IMVALID ASSIGM
Tdefine RANDOMIZE

Tendif

"ifdef RAMDOMIZE_REG_IMNIT
Tdefine RANMDOMIZE

Tendif

Tifdef RAMDOMIZE_MEM_IMIT
“define RAMDOMIZE

Tendif

module MaxM(
input clock .,

input io_ins_2,
input io _dins 3,
output io_out
)
wire
wire T_13;
T_15;
T 17
= T 17;
io_ins_0 = ie_ins_1;
_T 12 ? io_dins_ 0@ : io_ins_1;
=T 13 = io_ins_2;
= _T_ 14 7 _T_ 12 : io_ins_2;
= _T_15% = io_ins_3:;
assign _T_ = _T_ 16 7 _T_15% : io_ins_3;
endmodule
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Challenges encountered

Errors in Chisel

o Type mismatches, syntax, (Scala compiler errors).

@ Errors found during low level transforms and verilog emission (Firrtl
errors).

o lllegal chisel but legal scala (Chisel checks).

o Underlying implementation crashed(Java Stack Trace).
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Advantages with Chisel for hardware implementation [1]

Important advantages of Chisel

@ Designer productivity with 3-stage 32-bit RISC processor reviles a 3x
code reduction with Chisel compared to hand written Verilog.

@ Quality of results:

Source  Clock Period ~ Total Area Logic Area
Chisel ~ Tns 62197 um® 60801 um”
Verilog  7ns 62881 um® 61485 um’
Chisel ~ 2.5ns, Retimed 66472 um® 61279 um?
Verlog 2.5ns, Retimed 67034 um® 62227 um’
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Advantages with Chisel for hardware implementation|[1]

Important advantages of Chisel
@ Simulator Speed with a (88, 291, 350 cycles total) Processor:

Simulator Time () Speedup
VCS RTL simulator 5390 L0
Chisel C++ RTL simulator 694 11
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Conclusion

@ Chisel breaks the barrier between hardware and software thus is a
good tool for hardware design.

@ Rather than slowing-down data sender (during fast arrival of data in
chunks), an FPGA allows you to add more processing " blocks” to
accelerate the processing.

@ An FPGA, for example, can process 10 data streams in parallel (i.e
concurrently), whereas in software each stream would have to be
buffered and processed one at a time.

Hence this approach is worth giving it a try!!!
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