
Orchestrating Heterogeneous and Dynamic Computing Systems with
Publish-Subscribe

Leila Abidi∗, Christophe Cérin∗, Jonathan Lejeune∗, Yanik Ngoko∗ and Walid Saad∗†

Université de Paris 13, LIPN∗ and University of Tunis, LATICE†
∗ 99, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
† ENSIT, 5 av. Taha Hussein, B.P. 56, Bab Mnara, Tunis, Tunisia

Email:{leila.abidi,christophe.cerin,jonathan.lejeune,yanik.ngoko,walid.saad}@lipn.univ-paris13.fr

Abstract—In this paper, we consider the problem of

orchestrating a scientific workflow in a highly hetero-

geneous and dynamic environment. In such environ-

ments, we promote the development of opportunistic

strategies that can automatically adjust the process-

ing of tasks to changes in the environment, according

to global objectives defined by the user. Our work

shows how we can develop an opportunistic orchestra-

tor in extending an existing desktop grid middleware

(RedisDG) and supporting the Publish/Subscribe

paradigm. The implementation of this paradigm in-

troduces different challenging problems, among them

the design of effective solutions for controlling the

allocation of tasks. We solve this problem in designing

algorithms that depend on different strategies and

reflecting different points of view for the SLA metrics

such as load, fairness, energy consumption of the

computing nodes. A multi-criteria approach for the

allocation is also introduced in this paper as well

as an experimental study for the dynamicity of the

RedisDG system. In this latter case, nodes can enter

or leave the system in a controled manner at any

time. Then we conduct experiments on the Grid5000

testbed in executing the MONTAGE workflow from

the NASA and also the ADAPT workflow (Computa-

tional Fluid Dynamics) from our laboratory. Finally

we analyze our experimental results and we sketch

perspectives.

Index Terms—Cloud applications and services, Sci-

entific Workflow as a Service, Resource management

and optimization in the cloud, Scheduling and allo-

cation, Publish-Subscribe paradigm.

1. Motivation and scientific positioning

In this paper, we deal with the execution of a sci-
entific workflow in a highly dynamic and heterogeneous
infrastructure. The workflow execution is a pretext for
presenting a general framework and architecture for
highly dynamic and heterogeneous infrastructures. The

execution is also controled by the RedisDG system in
order to make our ideas concrete.

The context we consider is of particular interest for
the development of extreme edge and edge cloud. A hard
question, that the dynamicity causes here, is that given
a workflow to schedule, we do not have any a-priori
knowledge on the resources that are available. To ad-
dress it, we propose to implement a Publish/Subscribe-
based mechanism for resource discovery and allocation.
The mechanism is implemented in a prior system we
developed for workflow orchestration in deskop grid en-
vironment: the RedisDG system.

The Publish-Subscribe paradigm is an asynchronous
mode for communicating between entities [1]. Some
users, namely the subscribers or clients or consumers,
express and record their interests under the form of
subscriptions, and are notified later by another event
produced by other users, namely the producers. This
communication mode is multipoint, anonymous and im-
plicit. Thus, it allows spatial decoupling (the interacting
entities do not know each other), and time decoupling
(the interacting entities do not need to participate at
the same time). The total decoupling between the pro-
duction and the consumption of services increases the
scalability by eliminating many sorts of explicit depen-
dencies between participating entities.

Given a workflow to schedule, our ’RedisDG Publish-
Subscribe’ orchestrator proceeds as follows: first, tasks
or subset of tasks that could be processed are selected
(depending on tasks and data dependencies). Then, it
publishes events for the execution of the tasks. Sub-
scribers start to answer and at a chosen date, the or-
chestrator decides to deploy the tasks with the list of
subscribers it knows. There are two challenges here: the
first one is to decide on the date at which we consider
that the sub-list of subscribers we have is enough. In-
deed, the more we wait, the more we have subscribers,
but the more we globally delay the processing of the
workflow. The second challenge is to decide on the best
allocation for the subscribers. In this paper, we propose a
formalization of this problem and make an experimental
evaluation of several heuristics based on the energy,

fairness and load of the computing nodes. Data-aware
heuristics [2] for RedisDG are not considered in this
paper because of the page limit.

We do believe that, as the resources are highly dy-
namic, the decisions on resources must be automated
in an opportunistic way. Our intent is to build such a
system that will guarantee that: the workflow is pro-
cessed quickly and that resources are intensively and
fairly used. Here, the fairness is important because the
dynamic context we consider can be a volunteer com-
puting setting where users have rewards proportionally
to the computing time that they offer for the processing
of jobs. Note that availability problems may also appear
with the Amazon or other major cloud services providers
context. The Spot instances of AWS is launched when
your bid exceeds the current Spot market price, and will
continue run until you choose to terminate it, or until
the Spot market price exceeds your bid.

The contributions of the papers are twofold. First
we provide with a generic architecture for dealing
with highly dynamic and heterogeneous computing sys-
tems. Second, as a concrete contribution, we introduce
an extended version of the RedisDG workflow engine
equipped with a series of new scheduling algorithms,
including a multicriteria one, for a better usage of dy-
namic computing resources. The initial scheduling deci-
sions implemented in RedisDG was based only on the
FCFC (First Come First Serve) policy. More efficient
policies for controlling multiple SLA constraints (load,
fairness, energy) are introduced in this paper. We also
provide with intensive experimentation, on the Grid5000
testbed, to analyze and to validate the proposed algo-
rithms and the impact of the middleware on perfor-
mance. Experiments illustrate the different situations in
which our new RedisDG system can be faced to. They
also illustrate how our measures and solutions can be
fine.

Indeed, we support the thesis that for building sys-
tems for heterogeneous and highly dynamic environ-
ments we need to be compliant with:

1) a publish-subscribe layer for the orchestration
of the components of the system;

2) a set of opportunistic strategies for allocat-
ing tasks that are also based on the publish-
subscribe layer;

3) a small number of software dependencies for the
system and the ability to deploy the system
and its applications on demand. This point is
not specifically discussed in this paper but we
promoted the ’easy to use’, and systems that can
be deployed without a system administrator1.

This paper is organized as follows. After this intro-
duction about the context of our work, we present in
Section 2 our architecture for dealing with highly dy-
namic and heterogeneous systems. Section 3 introduces

1. https://lipn.univ-paris13.fr/ abidi/CloudComDemo/Tuto-
RedisDG-Vagrant.pdf

some related works on scheduling. Section 4 defines
some concepts that will be used later in the paper and
related to scheduling. Section 5 is devoted to scheduling
mechanisms, and we introduce some heuristics. Section 6
is about the experimental evaluation. We start by intro-
ducing our use cases: the MONTAGE and the ADAPT
workflows, and then we describe the different scenarios
of experimentation. Section 7 concludes the paper and
opens on future work.

2. Architecture

2.1. A classification of computing systems

In this subsection we introduce computing architec-
tures, at the academic level, through recent advances
and examples.

2.1.1. Cloud. We do not comment here the well known
cloud services as they are provided by Amazon, Google,
Microsoft. . . but we do rather make a focus on the
Chameleon academic project2. This project is for a
broad range of supported research that includes develop-
ing Platforms as a Service, creating new and optimizing
existing Infrastructure as a Service components, investi-
gating software-defined networking, and optimizing vir-
tualization technologies.

To summarize, it is a project for doing research
on Systems like the Grid5000 testbed in France. One
objective is to offer basic services, on top of which
we can run an experiment or build a new service for
the purpose of studying them. To effectively support
Computer Science experiments Chameleon offers bare
metal reconfigurability on most of the hardware.

For instance Chameleon offers the OpenStack Load
Balancer as a Service. The OpenStack networking com-
ponent, Neutron, includes a Load Balancer as a Service
(LBaaS). This service lets you configure a load balancer
that runs outside of your instances and directs traffic to
your instances. A common use case is when you want
to use multiple instances to serve web pages and meet
performance or reliability goals.

The Chameleon Infrastructure (CHI) is made of 65%
of OpenStack, 10% of Grid5000 and 25% of ”special
sauce”. In our case we also experiment on a very ex-
perimental testbed that introduces new challenges, for
instance the deployment of the system under study. We
do not deal, in this paper, with such consideration, as
said in the introduction.

2.1.2. Grid. The DIET was initially designed as a
software for grid-computing. We use it here to illustrate
advanced grid middleware since DIET is now able to
request for resources in clouds. It was designed for high-
performance computing. It is currently developed by
INRIA, ÃL’cole Normale SupÃl’rieure de Lyon, CNRS,

2. https://www.chameleoncloud.org/about/chameleon/

Claude Bernard University Lyon 1, and the SysFera
company. Like NetSolve/GridSolve and Ninf, DIET is
compliant with the GridRPC standard from the Open
Grid Forum.

Basically, DIET’s architecture is composed of:

• a client - the application that uses DIET to solve
problems. Clients can connect to DIET from a
web page or through an API or compiled pro-
gram.

• a Master Agent (MA) that receives computation
requests from clients. The MA then collects com-
putation abilities from the servers and chooses
one based on scheduling criteria. The reference
of the chosen server is returned to the client. A
client can be connected to an MA by a specific
name server or a web page that stores the var-
ious MA locations. A multi-MA extension was
developed by the University of Franche-ComtÃl’.
Those Master Agents are connected by a com-
munication graph. Several DIET platforms are
shared by interconnecting their respective Master
Agent (MA).

• a Local Agent (LA) that aims at transmit-
ting requests and information between MAs and
servers. The information stored on an LA is the
list of requests and, for each of its subtrees, the
number of servers that can solve a given prob-
lem and information about the data distributed
in this subtree. Depending on the underlying
network topology, a hierarchy of LAs may be
deployed between an MA and the servers.

• a Server Daemon (SeD) that is the point of entry
of a computational server. It manages a processor
or a cluster. The information stored on a SeD is
the list of the data available on a server (possibly
with their distribution and the way to access
them), the list of the problems than can be solved
on it, and all the information concerning its load
(e.g., CPU capacity, available memory).

For workflow management, DIET uses an additional
entity called MA DAG. This entity can work in two
modes: one in which it defines a complete scheduling of
the workflow (ordering and mapping), and one in which
it defines only an ordering for the workflow execution.
Mapping is then done in the next step by the client,
using the Master Agent to find the server where the
workflow services should be run.

Recently in [3] Caron and all. introduced a differen-
tial evolution approach for cloud workflow placements
under simultaneous optimization of multiple objectives.
One objective is regarding the energy.

Data management is provided to allow persistent
data to stay within the system for future re-use. This
feature avoids unnecessary communication when depen-
dencies exist between different requests.

As an extension to the DIET platform, the DIET
team has added a new type of service daemon: SeD

Cloud. It offers an access to the a library providing the
Amazon EC2 interface. By using the SeD Cloud, the
DIET user can access to virtual resources from an IaaS
Cloud that implements the Amazon EC2 interface.

2.1.3. Internet of things.

2.1.4. Desktop Grid. We also deal with Desktop Grid
[4] systems because they represent first an alternative to
supercomputers and parallel machines. They offer com-
puting power at low cost. Desktop grids (DGs) are built
out of commodity PCs and use Internet as the communi-
cation layer. DGs also aim at exploiting the resources of
idle machines over Internet. Second the increasing num-
ber of devices and new business opportunities put a pres-
sure to make existing applications to support these new
devices in order to remain competitive. Web and Cloud
technologies now provide feasible means to put almost
any desktop functionality ”on the Internet”. However, we
believe that an effort should be done earlier in the design
stage for the interactions between the components of
the system to be built to get confidence in the Internet-
centric system, especially when Publish/Subscribe is the
privileged communicating paradigm.

Indeed, DGs have important features that explain
the large number of international projects aiming to
better exploit the computational potential. Many DGs
systems [4] have been developed using a centralized
model. The most popular are BOINC [5], Condor [6],
OurGrid [7] and Xtremweb [8].

Let’s talk about BOINC [5] to introduce a typical
Desktop Grid infrastructure. BOINC handles a variety
of factors that are unique to volunteer computing:

• Scale: The system must handle millions of nodes
and tens of millions of jobs per day.

• Heterogeneity: Volunteer hosts are highly diverse
in terms of software, hardware, and network con-
nectivity.

• Trust and reliability: Incorrect computational re-
sults may be intentionally returned by malfunc-
tioning or malicious participants.

• Communication access: Many systems are behind
rewalls that allow only outgoing HTTP traffic.

• Availability: Volunteer hosts have sporadic pres-
ence and a high churn rate.

• Ease of use: The client software must be ex-
tremely simple to install and must work with no
conguration or user intervention.

We recognize at least two important features for our
concern: Heterogeneity and Availability. However, it is
extremely hard to offer BOINC as a service, we mean a
BOINC service on demand. By experience [9] we know
that the ’cloudification of a system’ is made easy if we
count on a limited number of technologies and soft-
ware dependencies. Taking resources inside major cloud
providers is also hard with BOINC because BOINC is
essentially based on the volunteering principle. At last,

BOINC scheduling mecanisms do not take into account
multi-criteria approaches based on the energy and the
load (for instance) to decide on the tasks allocation.

BOINC is based on the master/worker principle. A
master/coordinator is in charge of distributing work to
workers/slaves. If we have a look to the BOINC task
server only, we found the following components:

1) Work generator – generates workunits. A
workunit represents the inputs to a computa-
tion: the application a set of references input
files, and sets of command-line arguments and
environment variables. Each workunit has pa-
rameters such as compute, memory and storage
requirements and a soft deadline for completion.

2) Scheduler – determines appropriate workunits
for a client. BOINC scheduler implements a
”local scheduling policy”. This policy has several
goals: a) To maximize resource usage (i.e. to
keep all processors busy); b) To satisfy result
deadlines; c) To respect the participantâĂŹs
resource share allocation among projects; d) To
maintain a minimal ”variety” among projects.

3) Feeder – caches database information. To reduce
database access and contention, the scheduler
uses a cache of ready-to-send jobs in a shared-
memory structure that is replenished by a single
feeder program.

4) Transitioner – The transitioner implements the
redundant computing logic: it generates new
results as needed and identifies error conditions.

5) Validater – The validater examines sets of re-
sults and selects canonical results. It includes an
application-specific result-comparison function.

6) Assimilater – The assimilater handles newly-
found canonical results. Includes an application-
specific function which typically parses the re-
sult and inserts it into a science database

2.2. Our architecture is inspired by Desktop
Grid architecture

In this subsection we first introduce our proposition
for an architecture dealing with highly dynamic and
heterogeneous infrastructures, then we summarize re-
cent advances for the RedisDG platform, our concrete
implementation of the proposed architecture. At last,
we introduce the coordination mechanism between the
component of the architecture (the so called RedisDG
protocol). Note that RedisDG can be seen either as the
orchestration protocol or the concrete system for the
execution of workflows.

2.2.1. Proposed architecture. The proposed archi-
tecture for dealing with heterogeneous and highly dy-
namic environments is depicted on Figure 1. The Physi-
cal Layer is composed of physical machines denoted M .
They are notified by the Orchestration Layer of what

they have to do and when. Machines can play the role
of a Worker, a Coodinatoor, a Checker, a Monitor or a
Broker, and as follows:

• Broker – This component ”splits” the application
task graph into chuncks and eventually dupli-
cates the tasks. This component serves to analyze
the task graph to pre-configure the execution in
order to optimize it. For instance, root tasks may
receive a special treatment.

• Coordinator – This component is in charge of
allocation tasks to workers. It implements strate-
gies to choose the ”best worker” in a dynamic and
heterogeneous context. It is the core component
of the system where decisions are taken;

• Worker – This component implements the behav-
ior of a worker i.e. it is in charge of the execution
of a task. It can upload/download files according
to the specification of the DAG. I is in charge
of information to the coordinator, fo instance
its availability, the energy consumption of the
physical machine. . .

• Checker – This component ensures the results
certification, for instance with a MD5 (hash func-
tion producing a 128-bit hash value) computation
when tasks are duplicated.

• Monitor – This component monitor the machines
to check if they are alive, for instance through a
hearbeat mechanism. This component also learn
about the newtwok bandwidth and the availabil-
ity of nodes through machine learning algorithms
(work in progress).

The application layer is composed, concretely, of an
XML file that depicts the DAG and all the executable
files and input files for the DAG. The user is in charge
of providing this information to the system.

2.2.2. Recent advances for RedisDG. In this paper
we add new features to the RedisDG [10], [11], [12] mid-
dleware which was initially designed as a light desktop
grid middleware.

RedisDG has been formally designed and verified in
[10]. In the grid computing and workflow engine fields,
we are not accustomed to formally model our systems.
We rather follow the traditional approach to design
system which involves: the design according to ad-hoc
methods, the realization and tests following simple sce-
narios to check if its behavior is satisfactory and if it
is necessary to improve it or even design again. This
is called an intuitive approach. Thus the alternative is
modeling. For a specific scenario, a model can provide
an accurate view of all feasible states that a system may
have. Then, a simulation step is used to test whether
the system behavior is satisfactory and highlights some
problems. It does not completely replace experimenta-
tion which is necessary at the end of a satisfactory simu-
lation but we get a high view of main system requirement

Application
Graph (DAG)

Broker

CoordinatorWorkerCheckerMonitor

Publish-Subscribe Orchestration Layer

Core Component Layer

Application Layer

Physical LayerM M M M M M....................

Figure 1. Architecture of our system and software components

and we can reason about specific or general properties
in an automatic way.

RedisDG is based on Redis3 for the Publish/Sub-
scribe layer. Redis has special properties for a publish
instruction faced to no registration that makes the de-
sign of scheduling decisions difficult. To get confidence
into Redis we conducted in [13], [14] a formal modeling
of the RedisDG protocol, based on our initial modeling
of the Publish/Subscribe paradigm [15] and adapted to
Redis interactions.

Recently, in [2] we proposed data-aware heuristics for
the RedisDG system. Such heuristics are, for instance,
based on the number of files requested by a task. The
heuristics attempt to minimize the number of files trans-
fers between computing nodes. We made experiments
on the Grid5000 testbed in a context of containers and
in a context of no containers. We demonstrated the
effectiveness of our approaches.

2.2.3. RedisDG protocol. In this subsection, we re-
call the coordination algorithm of RedisDG system
which is the core of our paper regarding the concrete
implementation. It corresponds to the highest view pos-
sible. Some technical details are given in the experi-
ments section. The algorithm is entirely based on the
Publication-Subscription paradigm. To be short, the
middleware offers the same features as the majority of
desktop grid middleware such as Condor and BOINC.
It manages scheduling strategies especially the depen-
dencies between tasks, the execution of tasks and the
verification/certification of the results.

In Figure 2, we depicts the steps of an application ex-
ecution. In RedisDG, a task may have five states: Wait-
ingTasks, TasksToDo, TasksInProgress, TasksToCheck
and FinishedTasks. These states are managed by five
actors: a broker, a coordinator, a worker, a monitor

3. http://redis.io

WaitingTasks

TasksToDo

TasksInProgress

TasksToCheck

FinishedTasks

Volunteer
Workers

Select
Volunteers

Emergency

Monitor

Checker

Broker

Workers

Coordinator

Figure 2. Interactions between components of the RedisDG system

and a checker. Taken separately, the behavior of each
component in the system may appear simple, but we
are rather interested in the coordination of these compo-
nents, which makes the problem more difficult to solve.

The key idea is to allow the connection of dedicated
components (coordinator, checker, . . .) in a general coor-
dination mechanism in order to avoid building a mono-
lithic system. The behavior of our system as shown in
Figure 2 is as follows:

1) Tasks batches submission. Each batch is a
series-parallel graph of tasks to execute.

2) The Broker retrieves tasks and publishes them
on the channel called WaitingTasks.

3) The Coordinator is listening on the channel
WaitingTasks.

4) The Coordinator begins publishing independent
tasks on the channel TasksToDo.

5) Workers announce their volunteering on the
channel VolunteerWorkers.

6) The coordinator is aware of worker volunteering
by listening the VolunteerWorkers channel.

7) The coordinator selects Workers according to
several criteria (e.g. SLA).

8) The Workers, listening beforehand on the chan-
nel TasksToDo start executing the published
tasks. The event ’execution in progress’ is pub-
lished on the channel TasksInProgress.

9) During the execution, each task is under the
supervision of the Monitor whose role is to en-
sure the correct execution by checking if the
node is alive. Otherwise the Monitor publishes
again, tasks that do not arrive at the end of
their execution. It publishes, on the channel
TasksToDo, in order to make the execution of
the task done by other Workers.

10) Once the execution is completed, the Worker
publishes the task on channel TasksToCheck
by indicating information about task execution
(e.g. time execution, CPU consumption, etc.).

11) The Checker verifies the result returned and
publishes the corresponding task on the channel
FinishedTasks.

12) The Coordinator checks dependencies between
completed tasks and those waiting, and restarts
the process in step (4).

13) Once the application is completed (no more
tasks), the Coordinator publishes a message on
the channel Emergency to notify all the compo-
nents by the end of the process.

3. Related works on scheduling

This section is an exhaustive survey of scheduling
algorithms, mainly dedicated to workflow scheduling. It
reveals stategies and methods. We also introduce some
tools and we explain how our approach is different to all
of these works.

Our work falls in the general category of online
scheduling with unavailability constraints. In particular,
we consider the particular case of opportunistic sched-
ulers where the goal is to exploit the spatial diversity
within the time of our compute nodes. In this special
cases, there are several interesting proposals like the
work of Meyer [16] and the general state of art of Dong
and Akl [17]. We would like in particular to highly rec-
ommend the theoretical modeling proposed by Arnold
Rosenberg [18]. The proposed model states various qual-
itative metrics that could be used to estimate the quality
of an opportunistic scheduling of DAGs. Though we do
not use these metrics, some of our heuristics exploit the
underlying idea. Despite the large know-how in the op-
portunistic scheduling of workflow, we found few works
that address the problem we consider. This is due to

the particular usage we make of the Publish-Subscribe
paradigm.

If we consider the building of a System, the closer
work we found is the Google Cloud Pub/Sub4. The
system offers for instance asynchronous messaging that
allows for secure and highly available communication be-
tween independently written applications. Google Cloud
Pub/Sub helps developers quickly integrate systems
hosted on the Google Cloud Platform and externally.
For example, a large queue of tasks can be efficiently
distributed among multiple workers, such as Google
Compute Engine instances or an order processing ap-
plication can place an order on a topic, from which it
can be processed by one or more workers.

Workflow management systems related works are
presented in the synthesis from Valduriez [19] or in the
work of Carole Goble [20]. These two papers are more
related to cloud computing and data intensive scientific
workflows in putting an emphasis on data management.

Many studies as those in [21], [22], [23], [24] may also
serve as complimentary readings on workflow scheduling
and they can be considered as conventional works. Many
works validate the strategies through simulations. In our
case our option is to run real world applications (MON-
TAGE and ADAPT) which requires a special effort for
designing an experimental plan, to check the repro-
ducibility of the experiments. . . Moreover, the context
of these works are not adapted to our context because
they do not take into account a dynamic view of the
system in reacting to events when they arrive. Static
information are supposed to be available (task graph,
date of the events, task duration and costs. . .). They
take a scheduling decision on the basis of a fixed number
of workers. With the Publish-Subscribe paradigm in
mind a ’more efficient’ worker may join the system in
the near future.

The context of these works are not adapted to our
context because:

• they do not take into account a dynamic view of
the system in reacting to events when they arrive;

• they are ’clairvoyant’-like. Static information are
supposed to be available (task graph, date of
the events, task duration and costs. . .). They
take a scheduling decision on the basis of a fixed
number of workers. With the Publish/Subscribe
paradigm in mind a ’more efficient’ worker may
join the system in the near future.

In [25] authors consider the pipelined workflow
scheduling where the execution of a large class of ap-
plication can be orchestrated by utilizing task-, data-,
pipelined-, and/or replicated-parallelism. Indeed, they
focused on the scheduling of applications that contin-
uously operate on a stream of data sets, which are
processed by a given workflow, and hence the term
pipelined. These data sets all have the same size (which

4. https://cloud.google.com/pubsub/overview

is not part of our assumption) and the DAG (Directed
Acyclic Graph) model is used to describe the applica-
tions. Authors also dealt mainly with the throughput
and latency performance metrics which are not under
concern in our work. The main contribution of this
survey is in structuring existing works by considering
different levels of abstraction (workflow models, system
models, performance models).

In [26] authors consider the problem of co-scheduling
which means that we can execute several applications
concurrently. They partition the original application set
into a series of packs, which are executed one by one. The
objective is to determine a partition into packs, and an
assignment of processors to applications, that minimize
the sum of the execution times of the packs. Authors
assume that they know the execution profiles i.e. the
execution time of each task on each processor, which is
not part of our assumption.

In [27] authors investigated the problem of schedul-
ing independent tasks under the paradigm of the master-
worker. They consider heterogeneous situations where
resources can have different speeds of computation and
communication. The most interesting part of the work
is to focus on the question of determining the optimal
steady state scheduling strategy for each processor (the
fraction of time spent computing and the fraction of time
spent communicating with each neighbor). This question
is quite different from the question of minimizing the
total execution time, and the authors solve the problem
is polynomial time. The paper demonstrate that we can
observe the behavior of a system from a point of view
that is not always focused on the execution time, as in
our case.

In [28] authors considered the problem of dynamic
load-balancing on hierarchical platforms. They focused
more specifically on the work-stealing paradigm which
is an online scheduling technique. They reviewed some
existing variations and proposed two new algorithms, in
particular the HWS algorithm which was analyzed in
the case of fork-join task graphs. In their framework the
authors considered that the graph is generated online
during the execution. This is not our assumption. In
our case we assume that new workers can potentially
join the system in a dynamic way. However the analysis
part in this work is interesting because it exemplifies
the use of graph parameters such as the critical path.
The execution time (mono criteria) is discussed in the
paper as opposed to our work that offers a multi-criteria
performance metric.

Swift [29] is an implicitly parallel programming lan-
guage that allows the writing of scripts that manage pro-
gram execution across distributed computing resources,
including clusters, clouds, grids, and supercomputers.
The JETS middleware [30] component is closely re-
lated to Swift and it provides high performance sup-
port for many-parallel-task computing (MPTC). The
MTC model [31] consists of many, usually sequential,
individual tasks that are executed on processor cores,

without inter-task communication. The tasks communi-
cate only through the standard file system interfaces,
and optimization are possible [32]. We do not assume in
our work the availability of a global file system. Data
exchange between tasks are explicitly specified in the
workflow description. With RedisDG, data exchange are
implemented through Redis servers or by a ’scp-like’
implementation, in a transparent way from the user
point of view.

For the JETS middleware [30], authors notice that
‘the native schedulers and application-launch mecha-
nisms of today’s supercomputers do not support a suf-
ficiently fast task scheduling, start-up, and shutdown
cycle to allow implementations of the many-task com-
puting model to work efficiently, but the development of
a specialized, single-user scheduler can allow many task
applications to use a high fraction of the system compute
resources’. Thus, the paper is about a coupling between
a ’system scheduler’ and a ’user scheduler’. The key
idea is as follows. First, the Swift script is compiled
to the workflow language Karajan (internal represen-
tation), which contains a complete library of execution
and data movement operations. Tasks resulting from this
workflow are scheduled by well-studied, configurable al-
gorithms and distributed to underlying service providers
(external schedulers) including local execution, SSH,
PBS, Globus, Condor or the Coasters provider [33].
The CoasterService uses task submission to deploy one
or more allocations of pilot jobs, called Coaster Work-
ers, in blocks of varying sizes and duration. Then the
CoasterService schedules user tasks inside these blocks
of available computation time and rapidly launches them
via RPC-like communication over a TCP/IP socket. At
least, we noticed that JETS currently operates according
to a simple FIFO queuing approach. Authors plan to
explore the addition of priority-based scheduling and
backfill and to measure scheduler performance on work-
loads of varying size tasks. Our work is one step in that
direction.

The AWS cloud system [34] and some other cloud
management services such as enStratus [35], RightScale
[36], and Scalr [37] offer schedule-based (or predeter-
mined) and rule-based (dynamic) auto-scaling mecha-
nisms. Schedule-based auto-scaling mechanisms allow
users to add and remove capacity at a given time that
is fixed in advance. Rule-based mechanisms allow users
to define simple triggers by specifying instance scaling
thresholds and actions, for instance to add/remove in-
stance when the CPU utilization verifies a certain prop-
erty making the framework dynamic. These mechanisms
are simple and convenient when users understand their
application workload and when the relationship between
the scaling indicator and the performance goal is easy
to determine. From a purely cloud point of view it is
not realistic to let the user make actions at this level:
more automation is needed because clouds are for non
expert users in order to serve requests on-demand and
in a self-service way.

The paper [38] presents the Maximum Effective Re-
duction (MER) algorithm, which optimizes the resource
efficiency of a workflow schedule generated by any par-
ticular scheduling algorithm. MER takes as input a
workflow schedule generated by an existing scheduling
algorithm then, with the allowance of a limited increase
in the original makespan, it consolidates tasks into a
fewer number of resources than that used for the original
schedule. To do this, MER essentially optimizes the
trade-off between makespan increase and resource usage
reduction. The paper introduce three building blocks,
firstly the delay limit identification algorithm for find-
ing the minimum makespan increase for the maximal
resource reduction, second the task consolidation algo-
rithm and third the resource consolidation algorithm.
Finally, MER is evaluated in a simulated environment
with three different scheduling algorithms and under
four different workflow applications.

In [39] authors present an approach whereby the
basic computing elements are virtual machines (VMs) of
various sizes/costs, jobs are specified as workflows, users
specify performance requirements by assigning (soft)
deadlines to jobs. Then, the optimization problem is
to ensure all jobs are finished within their deadlines at
minimum financial cost. One key point is to dynamically
allocating/deallocating VMs and scheduling tasks on the
most cost-efficient instances. Another key point about
a user intervention is that authors use deadlines that
serve as the performance requirements specified by the
users, and deadline misses are not strictly forbidden.
Authors use deadline assignment techniques to calculate
an optimized resource plan for each job and determine
the number of instances using the Load Vector idea
(intuitively, the vector is the number of the machines
needed to finish the task on VMm).

In [40] authors propose a resource-efficient workflow
scheduling algorithm for business processes and Cloud-
based computational resources. Through the integration
into the Vienna Platform for Elastic Processes and an
evaluation, they show the practical applicability and the
benefits of the approach. Authors schedule workflows
and not tasks inside workflows. This paper is related
to cloud scheduling strategies and not, as in our case,
to scheduling tasks that have yet been deployed in a
physical environment/infrastructure. The scheduling al-
gorithm for elastic processes is responsible for finding
a workflow execution plan which makes sure that all
workflows are carried out under the given constraints.
These constraints could be defined in a Service Level
Agreement (SLA). Authors also assume that: a) each
Backend VM hosts exactly one service instance, i.e., it is
not possible that different service types are instantiated
at the same Backend VM and, b) all VMs offer the
same capabilities in terms of computational resources
and costs. Authors also specify the Scheduler and Rea-
soner, which are responsible, respectively for creating
a detailed scheduling plan according to the workflow
deadlines, and lease or release the required Cloud-based

computational resources. The reasoner made use of the
Java Library Apache Commons Math to solve the OLS
(Ordinary Least Square - Linear Regression) problem.

The paper [41] introduces a new scheduling criterion,
Quality-of-Data (QoD), which describes the require-
ments about the data that are worthy of the triggering of
tasks in workflows. Based on the QoD notion, authors
propose a novel service-oriented scheduler planner, for
continuous data processing workflows, that is capable of
enforcing QoD constraints and guide the scheduling to
attain resource efficiency. QoD describes the minimum
impact that new input data needs to have in order to
trigger re-execution of processing steps in a workflow.
This impact is measured in terms of data size, magnitude
of values and update frequency. QoD can also be seen
as a metric of triggering relaxation or optimist reuse
of previous results. The core of the paper is a new
scheduling algorithm for the Cloud that is guided by
QoD, budget, and time constraints. The Markov Deci-
sion Process (MDP) technique is used to transform the
problem. Authors explain that branch scheduling on the
MDP representation is performed by starting from the
most ’complex’ branch to the ’least’ complex one. In fact
they exhibit an optimization problem they solve using a
dynamic programming algorithm.

In a series of works [42], [43] Marc Fr̂ıncu and all.
explore the dynamic and unpredictable nature of the
grid systems to offer mechanisms for adaptation at any
given moment. For instance, the author proposed in [42]
a scheduling algorithm which minimizes each task’s es-
timated execution time by considering the total waiting
time of a task, the relocation to a faster resource once a
threshold has been reached and the fact that it should
not be physically relocated at each reassignment but
only at a precise moment, through a simple marking,
to reduce the network traffic. The key advantage of
the proposed solution is to consider tasks of multiple
workflows when they arrive and not batch after batch.
One drawback is that the algorithm is based on user
estimates for the value of the execution time and au-
thors propose that this information be obtained by using
historical data and applying some learning mechanisms.

In [43] the focus is cloud computing and the au-
thors noticed that vendors do prefer to use their own
scheduling policies and often choose their negotiation
strategies. In the framework of workflow scheduling, the
goal in that paper is the minimization of the overall
user cost. The problem addressed in the paper is to
access services provided by different cloud vendors, each
with their own internal policies. Two major problems
are dealt with: finding cloud resources and orchestrating
services from different cloud vendors. The key idea in
the paper is, once the workflow is submitted, an agent
tries to schedule the tasks on the best available service
through negotiation with other agents. It can be noticed
that no static scheduling decisions are made and that
tasks are scheduled one by one as they become ready
for scheduling.

In [44] authors developed the concept of dynamic
dataflows which utilize alternate tasks as additional con-
trol over the dataflow’s cost and QoS. Dataflow systems
allow users to compose applications as task graphs that
consume and process continuous data, and execute on
distributed commodity clusters and clouds. The key
point in the paper is that authors addressed the prob-
lem of scheduling tasks when the input rates changes.
The goal is to build dataflow systems with a greater
concern for self-manageability. Indeed authors investi-
gated autonomous runtime adaptations in response to
fluctuations in both input data rates and cloud resource
performance. Authors formulated the underlying opti-
mization problem as a constrained utility maximization
problem during the period for which the dataflow is
executed. Then they first use meta-heuristics to solve it,
for instance a genetic algorithm-based algorithm. Second
they proposed greedy heuristics to find an approximate
solution to the optimization problem. At last, they
evaluated the proposed heuristics through a simulation
study based (partly) on the popular CloudSim [45] sim-
ulator.

In [46] the authors addressed the lack of integrated
support for data models, including streaming data,
structured collections and files, that are limiting the
ability of workflow engines to support emerging appli-
cations that are stream oriented. The key idea of the
proposed framework is in its ability to transition from
one data model to another one. The paper is more about
architectural issues than scheduling issues. However the
workflow framework evaluation is done on a private
Eucalyptus cloud which is always challenging because
of the complex nature of real systems.

In [21] authors reviewed the solutions for allocating
suitable resources to workflow tasks so that the execu-
tion can be completed to satisfy objective functions spec-
ified by users. This paper can be considered as studying
conventional solutions for the workflow scheduling prob-
lem. The context is Grid computing and the authors first
introduced workflow management systems that define,
manage and execute workflows on computing resources.
Our context is more related to volunteer computing
and we want to design, as a whole, the interactions
of components, especially the interactions between the
workflow scheduling and data movement components.
Moreover, there are two types of abstract workflow
model, deterministic and non-deterministic. In a deter-
ministic model, the dependencies of tasks and I/O data
are known in advance, whereas in a non-deterministic
model, they are only known at run time. In our case the
dependencies are known in advance but nodes publish
their volunteering. We may consider them as active
and not passive, making a strong distinction with other
works.

The heuristics recalled in [21] are based on the per-
formance estimation for task execution and I/O data
transmission. In our work, we do not make any assump-
tion about performance estimation, apriori known. De-

pendency mode scheduling algorithms intends to provide
a strategy to order and map workflow tasks on hetero-
geneous resources based on analyzing the dependencies
of the entire task graph, in order to complete these
interdependent tasks at earliest time. The strategy ranks
the priorities of all tasks in a workflow application at one
time. One issue with this strategy is to set weights on
tasks. One idea is to set the weight of each task and
edge to be equal to its estimation execution time and
communication time. In our case we assume that the
execution context is fluctuating (nodes may enter/leave
the system at any time) making the estimates of weights
a challenging problem.

Fair resource allocation problem address how to di-
vide resources fairly to a set of users in a system where
users have different resource demands. Previous works in
computer science [47], [48] mainly focused on the alloca-
tion of a single resource and took place in the field of net-
working. For instance authors first transform selection of
the best users and rates issued from a complex general
optimization problem into a set of two formulations:
a multi-user scheduling problem that maximizes total
system throughput and a control-update problem that
ensures long-term deterministic or probabilistic fairness
constraints.

In [49] authors proposed a multi-resource allocation
mechanism, which is the generalized form extending a
single resource allocation to multiple types resources
allocation, known as Dominant Resource Fairness(DRF)
mechanism. DRF equalizes user’s dominant share among
all users, and it provides several attractive fairness prop-
erties: sharing incentive (allocation should be better
than dividing each resource equally among all users),
envy-freeness (no user would like to trace his allocation
with any other user), Pareto efficiency (no user can
increase his allocation without decreasing allocation of
other users) and strategy-proof (a user cannot increase
her allocation by lying about her requirements). DRF
has quickly attracted a lot of attention and has been
extended to many dimensions.

Dolev and al. in [50] proposed another alternative
notion of fairness for multi-resource allocation, called
Bottleneck-Based Fairness (BBF). Roughly speaking, an
allocation of resources is considered fair if every user
either gets all the resources he wishes for, or else gets
at least his entitlement on some bottleneck resource,
and therefore cannot complain about not receiving more.
Recently, Wang et al. in [51] proposed a new allocation
model BAA based on the notion of per-device bottleneck
sets. Th context of he work is multi-tiered storage made
up of heterogeneous devices. Clients bottlenecked on the
same device receive throughput in proportion to their
fair shares, while allocation ratios between clients in
different bottleneck sets are chosen to maximize system
utilization.

Gutman and Nisan [52] formalized both fairness no-
tions in economic terms, extending them to apply to a
larger family of utilities. The technical results are algo-

rithms for finding fair allocations corresponding to two
fairness notions. First of all, regarding the notion sug-
gested by Ghodsi and al., they presented a polynomial-
time algorithm that computes an allocation for a general
class of fairness notions, in which their notion is in-
cluded. Second, they showed that a competitive market
equilibrium achieves the desired notion of fairness.

In [53] Wong and al. generalized the DRF mechanism
and plunged it into a unifying framework trying to
capture the tradeoffs between fair allocation and system
efficiency. Intuitions behind the analysis are explained
in two visualizations of multi-resource allocation.

Recently, Wang and al. [?] proposed DRFH, a gen-
eralization of DRF to an environment with multiple
servers. They also designed a simple heuristic that im-
plements DRFH in real-world systems. Large-scale sim-
ulations driven by Google cluster traces showed that
DRFH significantly outperforms the traditional slot-
based scheduler, leading to much higher resource uti-
lization with substantially shorter job completion times.

Parkes and al. [54] extended DRF in several ways and
considered the zero demands of some resources required
by a user, and in particular they studied the case of
indivisible tasks. Authors also charted the boundaries
of the possible in this setting, contributing to a new
relaxed notion of fairness and providing both possibility
and impossibility results.

In [55] Cole and al. revisited the classic problem of
fair division from a mechanism design perspective and
provided an elegant truthful mechanism that yields sur-
prisingly good approximation guarantees for the widely
used solution of Proportional Fairness. They proposed
a new mechanism, called the Partial Allocation mech-
anism, that discards a carefully chosen fraction of the
allocated resources in order to incentivize the agents to
be truthful in reporting their valuations. This mecha-
nism introduced a way to implement interesting truthful
outcomes in settings where monetary payments are not
an option.

4. Definitions related to the allocation of
tasks

We now define the set of notions we deal with, we
mean the set of definitions regarding the system and
the performance criteria. These notions are of particular
interest for the scheduling heuristics we will introduce
later on.

4.1. System definition

The system is defined according to the following
basics sets:

• W being the set of workers of the system
• T being the set of instants representing the ex-

ecution time of the system. This set is totally
ordered by the chronological order. Consequently,

t < t′, if t is older than t′. We denote t0 and tend
the instants which correspond respectively to the
the starting and the end of the system.

A job j is defined as a set of task denoted Πj . This set
is partially ordered according to a precedence relation ≺.
Consequently two tasks pa, pb ∈ Πj verify the property
pa ≺ pb iff pb has to wait the end of pa to begin its
execution.

An execution of a job j is the set Ej being the set
of all its task executions. A task execution e ∈ Ej

where Ej ⊂ Πj × P(W) × T × T is a quadruplet
(pe, {w1

e , w
2
e , · · · , wn

e }, be, ee) with pe the task associated
to the execution e, {w1

e , w
2
e , · · · , wn

e } is the set of workers
executing the different replicas of e, be is the moment
when task pe starts its execution of its first replica
(including input data retrieving) on the worker set and
ee is the moment when pe finishes its execution, i.e., the
moment where the system elects the definitive result of
task pe. We denote for job j :

• tbj ∈ T the moment when the first task of job j
starts its execution.

• tej ∈ T the moment when the last task of job j
finishes its execution.

We define a time window tw ∈ T×T being the couple
of instants (btw, etw), verifying the property btw < etw
and btw being the instant of tw beginning and etw being
the instant of tw ending.

The set Etw, defines all task execution e of any job
where the associate task has been executed in the time
window tw. A task execution belongs to a time window,
if (1) the beginning of e ranges between btw and etw, or
(2) the end of e ranges between btw and etw or (3) the
beginning and the end of tw ranges between be and ee.
Formally,

Etw = {e | e ∈ E∧
(btw ≤ be < etw ∨ btw ≤ ee < etw ∨ be ≤ btw < ee)}

We can define the function Texe(e, tw) to compute
the execution time of an execution task e in a given
time window tw:

Texe(e, twin) = min(ee, etwin)−max(be, btwin)

4.2. Performance criteria definition

In our work we consider three criteria: the execution
time, the fairness and the energy consumption. With this
choice we would like to underline that we are building a
general framework for which we can plug a wide variety
of performance criteria. We will see later on that we also
manage, in our concrete tool, a large variety of decision
criteria.

Execution time criteria definition. The global
execution time for a given job j is defined as
ExecutionT ime(j) = tej − tbj

Fairness criteria definition. We define the fairness
as the standard deviation of the cumulative computing
time, for each worker, on a given time window. Formally
this metric is defined by the function Fairness(tw) =
σ{CT (w, tw) | w ∈W} where the function CT is defined
as CT (w, tw) =

∑
e∈Etw

Texe(e, tw).

We can now define the fairness for a given job j,
denoted JobFairness(j) = Fairness((tbj , tej)) being
the fairness of the full period of time to execute all tasks
belonging to j.

As the same principle, we can define the global
fairness of the system denoted GlobalFairness =
Fairness((t0, tend)).

Consequently the higher the value, the less the sys-
tem is fair.

Energy consumption criteria definition. We denote
CPULoad(w, x) the average CPU load during the ex-
ecution of a task x on a worker w. We assume that
each worker can express a value of energy consumption
of a task instance from the CPU load thanks to a
function E . This function depends of the consumption
model of the hardware, i.e. the CPU, installed on the
worker w. Consequently, EnergyConsumption(w, x) =
E
(
CPULoad(w, x)

)
.

Then we define the energy consumption for a
given job j which is the sum of energy con-
sumption of each executed task replica. Formally,
JobEnergyConsumption(j) =∑

(pe,We,be,ee)∈Ej

(∑
w∈We

EnergyConsumption(w, pe)
)

Concerning, the energy consumption model, we as-
sume, as for the concrete work done by the VI-
FIB/NEXEDI5 team related to the SlapOS cloud6, that
we have a discrete model that, for a given CPU load,
gives the power (Watt) that the processor card con-
sumes. In our work we use the following discrete models
representing the power consumed by 3 processor cards
as reported by VIFIB:

• Shuttle Computer: :

E(x) =

{
21.5 + 1.06 ∗ x when x ≤ 25%
48 + 0.29 ∗ x otherwise

• Intel NUC:7

E(x) =

{
8.5 + 0.46 ∗ x when x ≤ 25%
20 + 0.08 ∗ x otherwise

• Rikomagic Linux device:8

E(x) =

{
2.2 + 0.04 ∗ x when x ≤ 25%
3.2 + 0.008 ∗ x otherwise

5. http://www.vifib.com/press/news-CO2
6. https://www.slapos.org
7. http://www.intel.com/content/www/us/en/motherboards/

desktop-motherboards/nuc.html
8. http://www.cloudsto.com/mk802iii-le-mini-linux-pc.html

4.2.1. Availability of workers. In the field of desktop
grids, the studies on the availability of workers [?], [?]
by Kondo et al. show that workers follows different
statistical laws. Authors have identified:

1) six clusters of nodes with different statistical
laws (Gamma (4) - Log-Normal (1) and Weibull
(1)) ;

2) a global law for all the workers that follows
a Weibull law of shape of 0.3787 and scale of
3.0932. We keep this model for our work despite
the fact that this choice is questionable versus
the choice of a model with six clusters because
the variability in the distributions in the clusters
seems important as quoted by the authors;

In our experiments the workers can follow two laws in
playing with the scale parameter of the law. This allows
to generate a model where the worker is present on the
first time interval and then no longer available on the
other intervals. The second model makes it possible to
simulate a machine not really available at the beginning
and at the end of the time interval and available on
intermediate time intervals. When the worker execution
starts, we choose at random one law for the availability
of the worker.

In our RedisDG system, any worker is now running
as follows. When the coordinator publishes a request
to execute a task, the workers now publish, among the
information that return to the coordinator, if they are
available. For that, the workers look at the current time
interval and according to a threshold, the workers decide
if they are available or not. In our implementation, when
a period of time ends, we restart a new generation for
a Weibull law in order to not wait indefinitely. This
process helps in avoiding deadlock problems because
we have ensured that the threshold, which determines
whether the machine is available or not, is always greater
than the smallest of the probability values. So, at each
new generation there will be at least one time interval
for which the machine will be available.

4.3. Theoretical view of the global problem

We now describe the problem that we want to solve.
Let us assume a bag of N jobs where each job corre-
sponds to a set of tasks. Our allocation problem can be
formulated as a decision problem with N rounds. In the
round i, the scheduler publishes and decides on the best
allocation of tasks of the ith job.

The round i starts at date tpub with the publica-
tion of a request for the processing of the set of tasks
Ji = {Ti,1, . . . , Ti,n}. These tasks could be processed
by at most |Wi| workers according to a finite set of
strategies S1, . . . , Sk. A strategy defines how the sched-
uler deploys Ji on the workers (Wi). We assume a time
interval]tpub, tw] in which the scheduler could wait be-
fore deciding on the allocation of all tasks. At any date
t ∈]tpub, tw], there is a finite set Wi(t) of Workers that

subscribed to the published request. The goal for the
scheduler is to choose, at the beginning of each round i, a
maximal waiting time (or a closing date) topti ∈]tpub, tw]
and a strategy Sopt

i for the processing of Ji such as to
maximize a total reward R

N∑
i=1

R(tpub, S
opt
i ,Wi(t

opt
i))

In this model the reward, we can expect from a strat-
egy, could include several possible dimensions (response
time, fairness, energy etc.). It also depends on the pub-
lishing time tpub and the closing date topti . The closing
date is used because it decides on the set of workers
to which a task could be assigned. The publishing date
is considered to handle the cases where the strategy
that was chosen will start to deploy the tasks at date
t′ = tpub + ε which is the first date coming after tpub and
where Wi(tpub + ε) is not null. In this general model, we
also make the following considerations:

1) At any date t < t′, W (t) is unknown;
2) At the beginning of each round, the scheduler

does not know the reward that any strategy and
closing date could lead to.

This general decision problem is hard to solve. In-
deed, we can formulate some of its variants as a multi-
armed bandit problem [56]. For instance, let us assume
that the time is discretized and that we have only one
strategy. Then, the problem we have consists in choosing
a date between tpub and tw such as to maximize the
total reward on a finite set of rounds; this corresponds to
the multi-armed bandit problem. In the same way, if we
consider that topti is always fixed, we have again a bandit
problem that consists of choosing among k strategies in
N rounds.

Our paper will not provide a solution to the general
online problem. Instead, our objective will be to formu-
late some interesting strategies that could be practically
considered in this general problem. The interest in these
strategies is in particular due to the fact that they
are implementable in a real publish-subscribe system.
In addition to the formulation of strategies, we will
also propose a performance characterization that gives
insights on the rewards we could expect depending on
the strategy we choose.

5. Scheduling mechanisms

In this section we introduce six heuristics to schedule
the tasks of a set of job on a set of workers and according
to the RedisDG publish/subscribe framework. We intro-
duce heuristics to progressively answer to our general
open question: what is the best strategy to satisfy, based
on a single given criteria like fairness, execution time or
energy consumption or a combination of criteria.

5.1. Considered heuristics

Heuristic 1 (FCFS): Upon a task becomes inde-
pendent, the coordinator publishes it to all the workers.
This task is allocated on the first answering worker.

Heuristic 2: Upon a task becomes independent, the
coordinator publishes it to all the workers. If a worker w
is free it answers directly, otherwise it delays the answer
to the coordinator until it becomes free. This ensure the
liveness property because at least one worker answers
eventually. When the coordinator receives a reply from
a worker w for task t, it first saves this will for t. If
t has been already allocated to another worker, the
coordinator allocates to w another task t′ that has not
yet been executed among those for which w wished to
execute.

Heuristic 3: Upon a task becomes independent, the
coordinator publishes it to all the workers and starts
a timer for λ time unit. All worker answer whatever
their state ensuring thus the liveness. During λ, the
coordinator saves all volunteer workers for a task. Upon
the expiration of the timer (timeout), it chooses a worker
among the set of volunteers according to a policy de-
scribed in the section ??. If no worker has answered,
the coordinator activates again the timer.

Heuristics 3-bis captures the availability of nodes in
the selection process as follows.

Heuristics 3-bis: upon a task becomes indepen-
dent, the coordinator publishes it to all the workers
and starts a timer for λ time unit. All workers answer,
whatever their states, ensuring thus the liveness and
also publish if they are available or not. During λ, the
coordinator saves all volunteer workers for a task. Upon
the expiration of the timer (timeout), it chooses a worker
among the set of available volunteers according to a
policy described in the beginning of section ?? (see the
discussion about methods and rewards). If no worker has
answered or if all the workers that have answered are
unavailable, the coordinator activates again the timer
and it publishes again the task.

Our proposition for implementing a multicriteria ap-
proach for selecting workers is also based on the above-
mentionned Heuristics 3, and is as follows.

Heuristics 3-ter: upon a task becomes indepen-
dent, the coordinator publishes it to all the workers
and starts a timer for λ time unit. All workers answer
whatever their state ensuring thus the liveness and also
publish if they are available or not. During λ, the coor-
dinator saves all volunteer workers for a task. Upon the
expiration of the timer (timeout), it chooses a worker
among the set of available volunteers according to a
Pareto front computation and based on the load, energy
and fairness rewards. If no worker has answered or if
all the workers that have answered are unavailable, the
coordinator activates again the timer and it publishes
again the task. Among the points on the Pareto front
we choose the ’first’ as the winner (others policies are

also possible but they are left for future works: random
choice or according to the value of one criteria. . .).

Note that Pareto (see [57] for an example in the
context of cloud computing) efficiency is a balance of
resource distribution such that one individualâĂŹs lot
cannot be improved without impairing the lot of one or
more other individuals.

Heuristic 4: The aim of this heuristic is to promote
the communication between workers avoiding the mas-
ter node solicitation and thus useless communication.
Indeed, it is possible to transfer directly intermediate
data between two workers which execute two dependant
tasks. To achieve this goal, the procedure is identical to
the heuristic 3 except that:

• all tasks are published by the master at the job
submission time to make a priori allocation based
on policies described in the section ??. Thus, once
all tasks are assigned it is possible to determine
the communication scheme.

• workers subscribe to the FinishedTask channel
in order to know when their predecessors has
finished leading to a data downloading.

The choice of λ parameter has an impact over per-
formance. A too small value implies that only quickest
workers will answer that degrades the fairness and a
too large value induces latency degrading the workflow
execution time.

Among these four heuristics, heuristic 4 is the most
clairvoyant one because the scheduling takes into ac-
count the shape of the task graph. This point could be
improved by considering not only direct successor tasks
but potentially a larger set of successors. This would
surely make more complex the decision of the elected
volunteer and we are not convinced that this option
would bring significant improvement.

6. Experimental evaluation

In this section we studied the impact of the schedul-
ing over the different performance criteria described
in section 4.2 by experimenting the execution of two
workflows on a real platform.

6.1. Workflow used in the experiments

The MONTAGE [58] project has been created by
NASA/IPAC Infrared Science Archive as an open-source
toolbox to generate personalized mosaic of the sky from
images in the Flexible Image Transport System (FITS)
format. During the final production of the mosaic, the
geometry of the output is computed from the geometry
of the input [59], [60].

In our experiment, we used an instance of MON-
TAGE represented by 1446 tasks and 3722 dependency
links between tasks. The 1446 tasks are dispatched on
the different levels of the workflow as shown in the

Figure ??. The execution of this quite large instance re-
quires 9423 input files (including the intermediary files)
and it generates 2889 files (including the intermediary
files).

ADAPT is a framework for solving problems in fluid
mechanics (CFD). We have formulated a workflow view
for the problem depicted in [61]. We consider an ADAPT
workflow with 506 tasks. The ADAPT workflow, has
the following properties, different from the MONTAGE
workflow, when we execute it on a real platform:

1) The cost in time for executing the first two
stages of the workflow (METIS step) is very low
comparing to the other costs;

2) The cost of transferring data between nodes is
also very low. The transferring data correspond
to the exchange of parameters of the model;
Heuristics taking into account this cost has no
influence on the result and may degrade the
overall performance if the time cost for deciding
or realizing the ’optimized’ transfers is high.

3) The dag is symmetric, ’horizontally’ and ’verti-
cally’. If we observe the dag from the top to the
bottom and excepting the initial METIS step,
we note a succession of exchange and merge
steps that repeat each others. The execution
time of any ’path’ from the root node to the sink
node is the same, meaning that all the paths
are equivalent. A scheduling strategy based on
the critical path of the graph without weights
(the longest path in term of number of traversed
nodes from the source to the sink) leads to
unless work since all the paths are equivalent.

6.2. Experimental testbed and configuration

We implemented the RedisDG protocol in python
2.7. and the experiments were conducted on the national
academic french platform Grid’5000. In the first set of
experiments We used three distant clusters in the plat-
form: Lyon, Sophia and Rennes, and for the second set
of experiments we used different clusters in the Nancy
site.

A site (or cluster), for the first set of experiments,
is composed of 10 machines where, on each machine, a
worker process runs. The coordinator process, the broker
process and the data server were installed in a eleventh
machine in the Lyon site. Consequently, we used 30
machines for workers processes and 1 master machine.
For sake of simplicity we disabled the monitoring and
the task replication mechanism (no monitor and checker
processes). We also considered that a worker was reliable
(no Byzantine failure) and was volunteer for any task.

6.2.1. First set of experiments. We went through
the different scheduling strategies described in the sec-
tion 5, reduced to the following 8 experiments :

• Heuristic 1

• Heuristic 2
• Heuristic 3 and 4., each associated with any strat-

egy for choosing a volunteer : Uniform, Green,
OldestElected (cf. section ??). The average value
of λ (time to wait after task publishing to choose
a volunteer) was set to 5 seconds.

For each strategy, we launch sequentially three times the
same job Montage described in section 6.1 in order to
show the constant behavior of our protocol.

The figure 3 shows performance of the different
scheduling strategies in terms of execution time (figure
3(a)), fairness (figure 3(b)) and energy consumption (fig-
ure 3(c)) (cf. section 4.2 for definitions). For each metric,
we show specific performance of each job and a global
performance for all the jobs. Thus, for the execution time
and energy consumption metrics the global performance
represents the cumulative time to execute the three jobs,
whereas for the fairness metric, the global performance
represents the GlobalFairness function.

We can see on the figure 3 that the heuristic 1 has
the worst value of fairness but has the smallest value
of energy consumption. Actually the consequence of the
heuristic 1 is that tasks are assigned on the closest work-
ers from the coordinator node since it is a pure first come
first serve policy. Thus only machines located in the
Lyon cluster can obtain task to do before the remaining
of the system which consequently works rarely. However
the energy consumption is reduced than other heuristics
since only one cluster is used and since the Lyon cluster
consumes the least, according to its power model.

The heuristic 2 improves considerably the fairness
because the tasks are affected on the first non working
machine concerning eventually all workers of the system.
Thus the parallelism is better, reducing the execution
time. However, this has an negative impact over the
energy consumption because more machines are used.

Let’s analyze the heuristic 3 and its different policies
of choice. As expected, the ”green” policy gains in terms
of energy consumption comparing to the other policies
but it is the less fair because it concentrates task on the
”greenest” cluster. The policies ”Uniform” and ”Oldest-
Elected” are equivalent in terms of fairness but better
than the First Come First Serve strategy (heuristics 1
and 2). However, the execution time is degraded. Indeed,
tasks are affected more uniformly on the workers set
but the direct consequence is that the distant workers,
from the data server, work more, inducing an overhead
in term of data transfers.

Finally the heuristic 4 reduces considerably the exe-
cution time because intermediate data are not uploaded
on the data server but directly to the ’next’ workers.
This shows that data transfers should be included in the
task assignment strategy for better performance. This
data consideration has a consequence over the fairness
criteria because we can see that the fairness is improved
(except for the green policy). Indeed, with heuristic 4,
the time to upload or download data becomes negligible

 0

 1000

 2000

 3000

 4000

 5000

 6000

heuristic1

heuristic2

heuristic3_Uniform

heuristic3_Green

heuristic3_OldestElected

heuristic4_Uniform

heuristic4_Green

heuristic4_OldestElected

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Global
JOB1
JOB2
JOB3

(a) Execution time

 0

 100

 200

 300

 400

 500

 600

 700

 800

heuristic1

heuristic2

heuristic3_Uniform

heuristic3_Green

heuristic3_OldestElected

heuristic4_Uniform

heuristic4_Green

heuristic4_OldestElected

fa
ir

ne
ss

Global
JOB1
JOB2
JOB3

(b) Fairness

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

heuristic1

heuristic2

heuristic3_Uniform

heuristic3_Green

heuristic3_OldestElected

heuristic4_Uniform

heuristic4_Green

heuristic4_OldestElected

en
er

gy
 c

on
su

m
pt

io
n

Global
JOB1
JOB2
JOB3

(c) Energy consumption

Figure 3. Experimental results of scheduling strategies

compared to the computational time of the task. Thus
the time to execute a task becomes independent of its
location which tends to have an equivalent execution
time for any task. The ”OldestElected”policy is the most
fair policy for the heuristic 4 because the number of tasks
per machine tends to be equal.

6.2.2. Second set of experiments. The number of
nodes for executing the ADAPT workflow is 6 in the
Nancy site: one for the coordinator and 5 workers. We
also use 2 clusters of the Grid5000 testbed, both located
in the Nancy site. During the execution, 3 workers have
choosen (randomly) to behave like the first model for
the availability and two workers have chosen to behave
according to the second availability model.

The total execution time is 01h:07m:41s and it is
given by the two measures of Start Time: 2016-12-25
01:17:17,999, and End Time: 2016-12-25 02:24:58,526.
From the logs of the coordinator, we extracted the fol-
lowing trace:
2016-12-25 01:18:56,987 - RedisDG-coordinator - INFO - Coordinator publish task 5_1 to

workers

2016-12-25 01:18:56,989 - RedisDG-coordinator - INFO - worker worker_grimoire-7.nancy.

grid5000.fr_1482624969.4 is Falsevolunteer for 5_1 : state_task = SUBMITTED

2016-12-25 01:18:56,990 - RedisDG-coordinator - INFO - worker worker_graphene-49.nancy.

grid5000.fr_1482624969.46 is Truevolunteer for 5_1 : state_task = SUBMITTED

2016-12-25 01:18:56,990 - RedisDG-coordinator - INFO - worker worker_graphene-52.nancy.

grid5000.fr_1482624969.23 is Truevolunteer for 5_1 : state_task = SUBMITTED

2016-12-25 01:18:56,991 - RedisDG-coordinator - INFO - worker worker_graphite-2.nancy.

grid5000.fr_1482624969.27 is Falsevolunteer for 5_1 : state_task = SUBMITTED

2016-12-25 01:18:56,991 - RedisDG-coordinator - INFO - worker worker_griffon-25.nancy.

grid5000.fr_1482624968.45 is Truevolunteer for 5_1 : state_task = SUBMITTED

2016-12-25 01:19:03,118 - RedisDG-coordinator - INFO - Timeout for task 5_1

2016-12-25 01:19:03,118 - RedisDG-coordinator - INFO - volunteer for task 5_1, should

submit

2016-12-25 01:19:03,118 - RedisDG-coordinator - INFO - Choosing a volunteer for 5_1

2016-12-25 01:19:03,118 - RedisDG-coordinator - INFO - volunteer worker_griffon-25.nancy.

grid5000.fr_1482624968.45 choosed for 5_1

The coordinator publishes task 5.1. Two workers are
unavailable (grimoire-7 and graphite-2). Three workers
are available (graphene-49, graphene-52 and griffon-25).
At time 01:19:03,118 the timer expires, thus a worker is
selected (randomly). griffon-25 is elected as the worker in
charge of task 51. From the logs of the griffon-25 worker
we get:
2016-12-25 01:18:57,787 - RedisDG-worker - INFO - Worker worker_griffon-25.nancy.

grid5000.fr_1482624968.45 is finishing task T32_1

2016-12-25 01:18:57,790 - RedisDG-worker - INFO - I m available? True

2016-12-25 01:19:03,921 - RedisDG-worker - INFO - Task 5_1 has been selected for [’worker

_griffon-25.nancy.grid5000.fr_1482624968.45’] (state task = GIVEN)

2016-12-25 01:19:03,922 - RedisDG-worker - INFO - worker worker_griffon-25.nancy.

grid5000.fr_1482624968.45 selected for 5_1

2016-12-25 01:19:03,922 - RedisDG-worker - INFO - add task 5_1 in tasks_ready_to_run

2016-12-25 01:19:03,922 - RedisDG-worker - INFO - Worker worker_griffon-25.nancy.

grid5000.fr_1482624968.45 is executing task 5_1

2016-12-25 01:19:03,922 - RedisDG-worker - INFO - worker worker_griffon-25.nancy.

grid5000.fr_1482624968.45 : I start the execution of 5_1

This trace shows that at 01:18:57,787 griffon-25 has
terminated the execution of task T321, and it is still
available. At time 01:19:03,921 griffon-25 has been se-
lected for the execution of task 51. Thus griffon-25 starts
to execute this task.

Let us now introduce the logs of an execution of
the ADAPT workflow according to the multicriteria
approach. In this case we use 30 machines (1 for the
coordinatoor and 29 workers) and 5 clusters of grid5000
(grisou, graphene, graphite, griffon, grimoire), all of
them are located in the Nancy site. Note that this
configuration9 forms a very heterogeneous one.

9. https://www.grid5000.fr/mediawiki/index.php/Nancy:Hardware

We consider first the logs of the coordinator. We
found the following trace:

2017-01-03 22:41:24,258 - RedisDG-coordinator - INFO - Choosing a volunteer for T11_1

2017-01-03 22:41:24,258 - RedisDG-coordinator - INFO - Scores of worker_grisou-17.nancy.

grid5000.fr_1483479622.02 is [1.0, 26.588, 4.8]

2017-01-03 22:41:24,259 - RedisDG-coordinator - INFO - Scores of worker_grisou-21.nancy.

grid5000.fr_1483479621.56 is [1.0, 22.772, 1.2]

2017-01-03 22:41:24,259 - RedisDG-coordinator - INFO - Scores of worker_graphene-18.nancy.

grid5000.fr_1483479622.4 is [1.0, 32.736000000000004, 10.6]

2017-01-03 22:41:24,259 - RedisDG-coordinator - INFO - Scores of worker_graphene-2.nancy.

grid5000.fr_1483479622.51 is [1.0, 67.343, 66.7]

2017-01-03 22:41:24,259 - RedisDG-coordinator - INFO - Scores for task T11_1 :

[[1. 26.588 4.8]

[1. 22.772 1.2]

[1. 32.736 10.6]

[1. 67.343 66.7]]

’worker_grisou-17.nancy.grid5000.fr_1483479622.02’: [1.0, 26.588, 4.8],

’worker_grisou-21.nancy.grid5000.fr_1483479621.56’: [1.0, 22.772, 1.2],

’worker_graphene-2.nancy.grid5000.fr_1483479622.51’: [1.0, 67.343, 66.7],

’worker_graphene-18.nancy.grid5000.fr_1483479622.4’: [1.0, 32.736000000000004, 10.6]

2017-01-03 22:41:24,260 - RedisDG-coordinator - INFO - Scores after sort for task T11_1 :

[[1. 26.588 4.8]

[1. 22.772 1.2]

[1. 32.736 10.6]

[1. 67.343 66.7]]

2017-01-03 22:41:24,260 - RedisDG-coordinator - INFO - Pareto-Frontier-Multi Result for

task

T11_1 is : [1. 26.588 4.8]

2017-01-03 22:41:24,260 - RedisDG-coordinator - INFO - volunteer worker_grisou-17.nancy.

grid5000.fr_1483479622.02 choosed for T11_1

2017-01-03 22:41:24,260 - RedisDG-coordinator - INFO - select the volunteer worker

worker_grisou-17.nancy.grid5000.fr_1483479622.02 for task T11_1 : state_task = GIVEN

The task requesting to be executed is task T111 and,
at the time we need to execute it, only 4 workers are
available. We notice that Pareto computation leads to
the selection of grisou-17 as the machine node that
will execute task T111. In fact, two points are located
on the Pareto front: (1., 26.588, 4.8) and (1., 22.772, 1.2).
Our implementation selects the first one in the list.

To conclude this experimental section, we can say
that all these examples illustrate the different situations
in which our new RedisDG system can be faced to. They
also illustrate how our measures and solutions can be
fine. We could even envision a post-mortem analysis tool
to fully exploit the logs.

7. Conclusion and future work

In this paper we have investigated the problem of
orchestrating a scientific workflow in a highly heteroge-
neous and dynamic environment. We believe that this
problem relates to the need for opportunistic strategies.
Basically, in a dynamic and heterogeneous environment,
the user can not make good decisions, even if he uses
interactive scheduling. But if he relaxes the pressure (for
example, he does not choose the number of workers),
we have to find the ’best’ decision in exploiting all
opportunities.

RedisDG, seen as the protocol to manage the inter-
actions between the components of the workflow engine,
can also manage volatile computing nodes. Our system
allows fine observations in this context and also accord-
ing to multi-criteria decisions. Despite the efficiency, this
strategy stagnates in environments with many objec-
tives, i.e., possibly reaching a state where none result is
good enough for all objectives simultaneously. This will

constitute our future work. Moreover, the selection of the
best scenario for the deployment is also a challenge due
the limited evaluation’s strategies, their execution time
and cost. We may point out that deploying a task inside
Google cloud is maybe more or less costly than deploying
inside the Amazon cloud, and this will constitute our
second research direction.

Acknowledgment

Experiments conducted in this work are accom-
plished on the Grid’5000 testbed which is a scientific
instrument supporting experiment-driven research in all
areas of computer science, including high performance
computing, distributed computing, networking and big
data.

References

[1] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” ACM Comput. Surv.,
vol. 35, no. 2, pp. 114–131, 2003.

[2] S. B. J. L. Y. N. Christophe Cerin, Leila Abidi and W. Saad,
“Data management for the redisdg scientific workflow engine,”
in The 6th IEEE International Symposium on Cloud and
Service Computing, Nadi, Fiji, December 7-10, 2016, 2016.

[3] D. Balouek-Thomert, A. K. Bhattacharya, E. Caron,
K. Gadireddy, and L. Lefèvre, “Parallel differential evolution
approach for cloud workflow placements under simultaneous
optimization of multiple objectives,” in IEEE Congress
on Evolutionary Computation, CEC 2016, Vancouver, BC,
Canada, July 24-29, 2016. IEEE, 2016, pp. 822–829.

[4] C. Cerin and G. Fedak, Desktop Grid Computing, 1st ed.
Chapman and Hall-CRC, 2012.

[5] D. P. Anderson,“Boinc: A system for public-resource comput-
ing and storage,” Grid Computing, IEEE/ACM International
Workshop on, vol. 0, pp. 4–10, 2004.

[6] A. R. Butt, R. Zhang, and Y. C. Hu, “A self-organizing flock
of condors,” J. Parallel Distrib. Comput., vol. 66, no. 1, pp.
145–161, 2006.

[7] N. Andrade, W. Cirne, F. V. Brasileiro, and P. Roisenberg,
“Ourgrid: An approach to easily assemble grids with equitable
resource sharing,” Job Scheduling Strategies for Parallel Pro-
cessing, 9th International Workshop, JSSPP 2003, Seattle,
WA, USA, June 24, 2003, Revised Papers, vol. 2862, pp. 61–
86, 2003.

[8] G. Fedak, C. Germain, V. Neri, and F. Cappello,“XtremWeb:
a generic global computing system,” Cluster Computing and
the Grid, 2001. Proceedings. First IEEE/ACM International
Symposium on, pp. 582–587, 2001.

[9] C. Cérin and A. Takoudjou, “BOINC as a service for the
slapos cloud: Tools and methods,”in 2013 IEEE International
Symposium on Parallel & Distributed Processing, Workshops
and Phd Forum, Cambridge, MA, USA, May 20-24, 2013.
IEEE, 2013, pp. 974–983.

[10] L. Abidi, J. Dubacq, C. Cérin, and M. Jemni, “A publication-
subscription interaction schema for desktop grid computing,”
in Proceedings of the 28th Annual ACM Symposium on
Applied Computing, SAC ’13, Coimbra, Portugal, March
18-22, 2013, S. Y. Shin and J. C. Maldonado, Eds. ACM,
2013, pp. 771–778.

[11] L. Abidi, C. Cérin, and M. Jemni, “Desktop grid computing
at the age of the web,” in Grid and Pervasive Computing
- 8th International Conference, GPC 2013 and Colocated
Workshops, Seoul, Korea, May 9-11, 2013. Proceedings, ser.
Lecture Notes in Computer Science, J. J. Park, H. R.
Arabnia, C. Kim, W. Shi, and J. Gil, Eds., vol. 7861.
Springer, 2013, pp. 253–261.

[12] W. Saad, L. Abidi, H. Abbes, C. Cérin, and M. Jemni,
“Wide area bonjourgrid as a data desktop grid: Modeling and
implementation on top of redis,” in 26th IEEE International
Symposium on Computer Architecture and High Performance
Computing, SBAC-PAD 2014, Paris, France, October 22-24,
2014. IEEE Computer Society, 2014, pp. 286–293.

[13] L. Abidi, C. Cérin, and K. Klai, “Design, verification
and prototyping the next generation of desktop grid
middleware,” in Advances in Grid and Pervasive Computing
- 7th International Conference, GPC 2012, Hong Kong,
China, May 11-13, 2012. Proceedings, ser. Lecture Notes in
Computer Science, R. Li, J. Cao, and J. Bourgeois, Eds., vol.
7296. Springer, 2012, pp. 74–88.

[14] C. C. H. A. Leila Abidi, Walid Saad and M. Jemni., “Wide
area bonjourgrid as a data desktop grid: modeling and imple-
mentation on top of redis.” in 26th International Symposium
on Computer Architecture and High Performance Computing,
october 2014.

[15] L. Abidi, C. Cérin, and S. Evangelista, “A petri-net model
for the publish-subscribe paradigm and its application for
the verification of the bonjourgrid middleware,” in IEEE
International Conference on Services Computing, SCC 2011,
Washington, DC, USA, 4-9 July, 2011, H. Jacobsen,
Y. Wang, and P. Hung, Eds. IEEE, 2011, pp. 496–503.

[16] L. A. V. C. Meyer, D. Scheftner, J. Vöckler, M. Mattoso,
M. Wilde, and I. T. Foster, “An opportunistic algorithm
for scheduling workflows on grids,” in High Performance
Computing for Computational Science - VECPAR 2006,
7th International Conference, Rio de Janeiro, Brazil, June
10-13, 2006, Revised Selected and Invited Papers, ser. Lecture
Notes in Computer Science, M. J. Daydé, J. M. L. M. Palma,
A. L. G. A. Coutinho, E. Pacitti, and J. C. Lopes, Eds., vol.
4395. Springer, 2006, pp. 1–12.

[17] F. Dong and S. G. Akl, “Scheduling algorithms for grid com-
puting: State of the art and open problems,” School of Com-
puting, Queen’s University, Kingston, Ontario, Tech. Rep.,
2006.

[18] A. L. Rosenberg, “Scheduling dags opportunistically: The
dream and the reality circa 2016,” in Euro-Par 2016: Parallel
Processing - 22nd International Conference on Parallel and
Distributed Computing, Grenoble, France, August 24-26,
2016, Proceedings, ser. Lecture Notes in Computer Science,
P. Dutot and D. Trystram, Eds., vol. 9833. Springer, 2016,
pp. 22–33.

[19] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, “A survey
of data-intensive scientific workflow management,” J. Grid
Comput., vol. 13, no. 4, pp. 457–493, 2015.

[20] Y. Simmhan, L. Ramakrishnan, G. Antoniu, and C. A. Goble,
“Cloud computing for data-driven science and engineering,”
Concurrency and Computation: Practice and Experience,
vol. 28, no. 4, pp. 947–949, 2016.

[21] J. Yu, R. Buyya, and K. Ramamohanarao, Workflow Schedul-
ing Algorithms for Grid Computing. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 173–214. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-69277-5 7

[22] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-
effective and low-complexity task scheduling for heterogeneou
s computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 13, no. 3, pp. 260–274, Mar 2002.

[23] M. Rahman, S. Venugopal, and R. Buyya,“A dynamic critical
path algorithm for scheduling scientific workflow appl ications
on global grids,” in e-Science and Grid Computing, IEEE
International Conference on, Dec 2007, pp. 35–42.

[24] R. Sakellariou and H. Zhao, “A hybrid heuristic for dag
scheduling on heterogeneous systems,” in Parallel and Dis-
tributed Processing Symposium, 2004. Proceedings. 18t h In-
ternational, April 2004, pp. 111–.

[25] A. Benoit, U. V. Catalyurek, Y. Robert, and E. Saule,
“A Survey of Pipelined Workflow Scheduling: Models and
Algorithms,” ACM Computing Surveys, vol. 45, no. 4, 2013.

[26] G. Aupy, M. Shantharam, A. Benoit, Y. Robert, and
P. Raghavan, “Co-scheduling algorithms for high-throughput
workload execution,” Journal of Scheduling, 2015.

[27] O. Beaumont, A. Legrand, and Y. Robert, “The master-
slave paradigm with heterogeneous processors,” IEEE Trans.
Parallel Distributed Systems, vol. 14, no. 9, pp. 897–908, 2003.

[28] J. Quintin and F. Wagner, “Hierarchical work-stealing,” in
Euro-Par 2010 - Parallel Processing, 16th International
Euro-Par Conference, Ischia, Italy, August 31 - September
3, 2010, Proceedings, Part I, ser. Lecture Notes in Computer
Science, P. D’Ambra, M. R. Guarracino, and D. Talia, Eds.,
vol. 6271. Springer, 2010, pp. 217–229.

[29] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S.
Katz, and I. T. Foster, “Swift: A language for distributed
parallel scripting,” Parallel Computing, vol. 37, no. 9, pp.
633–652, 2011.

[30] J. M. Wozniak, M. Wilde, and D. S. Katz, “JETS: language
and system support for many-parallel-task workflows,” J.
Grid Comput., vol. 11, no. 3, pp. 341–360, 2013.

[31] I. Raicu, I. T. Foster, and Y. Zhao, “Guest editors’
introduction: Special section on many-task computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 6, pp.
897–898, 2011.

[32] Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, I. T. Foster,
and M. Wilde, “Design and evaluation of a collective IO
model for loosely coupled petascale programming,” CoRR,
vol. abs/0901.0134, 2009.

[33] M. Hategan, J. M. Wozniak, and K. Maheshwari, “Coasters:
Uniform resource provisioning and access for clouds and
grids,” in IEEE 4th International Conference on Utility
and Cloud Computing, UCC 2011, Melbourne, Australia,
December 5-8, 2011. IEEE Computer Society, 2011, pp.
114–121.

[34] “Amazon ec2. http://aws.amazon.com/ec2/.”

[35] “enstratus. http://www.enstratus.com.”

[36] “Rightscale. http://rightscale.com.”

[37] “Scalr. https://www.scalr.net.”

[38] Y. C. Lee, H. Han, and A. Y. Zomaya, “On resource
efficiency of workflow schedules,” in Proceedings of the
International Conference on Computational Science, ICCS
2014, Cairns, Queensland, Australia, 10-12 June, 2014, ser.
Procedia Computer Science, D. Abramson, M. Lees, V. V.
Krzhizhanovskaya, J. Dongarra, and P. M. A. Sloot, Eds.,
vol. 29. Elsevier, 2014, pp. 534–545.

[39] M. Mao and M. Humphrey, “Auto-scaling to minimize cost
and meet application deadlines in cloud workflows,” in
Conference on High Performance Computing Networking,
Storage and Analysis, SC 2011, Seattle, WA, USA, November
12-18, 2011, S. Lathrop, J. Costa, and W. Kramer, Eds.
ACM, 2011, pp. 49:1–49:12.

[40] P. Hoenisch, S. Schulte, and S. Dustdar,“Workflow scheduling
and resource allocation for cloud-based execution of elastic
processes,” in 2013 IEEE 6th International Conference on
Service-Oriented Computing and Applications, Koloa, HI,
USA, December 16-18, 2013. IEEE Computer Society, 2013,
pp. 1–8.

[41] S. Esteves and L. Veiga, “WaaS: Workflow-as-a-Service for
the Cloud with Scheduling of Continuous and Data-Intensive
Workflows,” The Computer Journal, vol. 58, 2015.

[42] M. Fr̂ıncu, “Dynamic scheduling algorithm for heterogeneous
environments with regular task input from multiple requests,”
in Advances in Grid and Pervasive Computing, 4th
International Conference, GPC 2009, Geneva, Switzerland,
May 4-8, 2009. Proceedings, ser. Lecture Notes in Computer
Science, N. Abdennadher and D. Petcu, Eds., vol. 5529.
Springer, 2009, pp. 199–210.

[43] M. E. Fr̂ıncu, “Scheduling service oriented workflows inside
clouds using an adaptive agent based approach,” in Handbook
of Cloud Computing., B. Furht and A. Escalante, Eds.
Springer, 2010, pp. 159–182.

[44] A. G. Kumbhare, Y. L. Simmhan, M. Fr̂ıncu, and V. K.
Prasanna, “Reactive resource provisioning heuristics for
dynamic dataflows on cloud infrastructure,” IEEE T. Cloud
Computing, vol. 3, no. 2, pp. 105–118, 2015.

[45] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D.
Rose, and R. Buyya, “Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation
of resource provisioning algorithms,” Softw., Pract. Exper.,
vol. 41, no. 1, pp. 23–50, 2011.

[46] D. Zinn, Q. Hart, T. M. McPhillips, B. Ludäscher,
Y. Simmhan, M. Giakkoupis, and V. K. Prasanna, “Towards
reliable, performant workflows for streaming-applications
on cloud platforms,” in 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGrid
2011, Newport Beach, CA, USA, May 23-26, 2011. IEEE
Computer Society, 2011, pp. 235–244.

[47] J. Mo and J. Walrand, “Fair end-to-end window-based con-
gestion control,” IEEE/ACM Transactions on Networking,
vol. 8, no. 5, pp. 556–567, Oct 2000.

[48] Y. Liu and E. Knightly, “Opportunistic fair scheduling over
multiple wireless channels,” in INFOCOM 2003. Twenty-
Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies, vol. 2, March 2003, pp.
1106–1115 vol.2.

[49] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica, “Dominant resource fairness: Fair
allocation of multiple resource types,” in Proceedings of
the 8th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’11. Berkeley, CA, USA:
USENIX Association, 2011, pp. 323–336.

[50] D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman,
and N. Linial, “No justified complaints: On fair sharing of
multiple resources,” in Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ser. ITCS ’12.
New York, NY, USA: ACM, 2012, pp. 68–75.

[51] H. Wang and P. Varman, “Balancing fairness and efficiency
in tiered storage systems with bottleneck-aware allocation,”
in Proceedings of the 12th USENIX Conference on File and
Storage Technologies, ser. FAST’14. Berkeley, CA, USA:
USENIX Association, 2014, pp. 229–242.

[52] A. Gutman and N. Nisan, “Fair allocation without trade,”
in Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems - Volume 2,
ser. AAMAS ’12. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems, 2012, pp.
719–728.

[53] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multi-resource
allocation: Fairness-efficiency tradeoffs in a unifying frame-
work,” in INFOCOM, 2012 Proceedings IEEE, March 2012,
pp. 1206–1214.

[54] D. C. Parkes, A. D. Procaccia, and N. Shah, “Beyond
dominant resource fairness: Extensions, limitations, and
indivisibilities,” in Proceedings of the 13th ACM Conference
on Electronic Commerce, ser. EC ’12. New York, NY, USA:
ACM, 2012, pp. 808–825.

[55] R. Cole, V. Gkatzelis, and G. Goel, “Mechanism design for
fair division: Allocating divisible items without payments,” in
Proceedings of the Fourteenth ACM Conference on Electronic
Commerce, ser. EC ’13. New York, NY, USA: ACM, 2013,
pp. 251–268.

[56] N. Cesa-Bianchi, “Multi-armed bandit problem,” in
Encyclopedia of Algorithms, 2016, pp. 1356–1359.

[57] A. Andrzejak, D. Kondo, and S. Yi, “Decision model for
cloud computing under SLA constraints,” in MASCOTS
2010, 18th Annual IEEE/ACM International Symposium
on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, Miami, Florida, USA, August
17-19, 2010. IEEE Computer Society, 2010, pp. 257–266.

[58] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C.
Laity, E. Deelman, C. Kesselman, G. Singh, M. Su, T. A.
Prince, and R. Williams, “Montage: a grid portal and
software toolkit for science-grade astronomical image
mosaicking,” Int. J. Comput. Sci. Eng., vol. 4, no. 2, pp.
73–87, Jul. 2009.

[59] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H.
Su, and K. Vahi, “Characterization of scientific workflows,” in
Workflows in Support of Large-Scale Science, 2008. WORKS
2008. Third Workshop on, Nov 2008, pp. 1–10.

[60] G. Juve, A. Chervenak, E. Deelman, S. Bharathi,
G. Mehta, and K. Vahi, “Characterizing and profiling
scientific workflows,” Future Generation Computer Systems,
vol. 29, no. 3, pp. 682–692, 2013, special Section: Recent
Developments in High Performance Computing and Security.

[61] I. Kissami, C. Cérin, F. Benkhaldoun, and G. Scarella,
“Towards parallel CFD computation for the ADAPT
framework,” in Algorithms and Architectures for Parallel
Processing - 16th International Conference, ICA3PP 2016,
Granada, Spain, December 14-16, 2016, Proceedings, ser.
Lecture Notes in Computer Science, J. Carretero, J. G. Blas,
R. K. L. Ko, P. Mueller, and K. Nakano, Eds., vol. 10048.
Springer, 2016, pp. 374–387.

