
christophe.cerin@univ-paris13.fr
(adapted from a Lecture of Heithem Abbess)

From Java programming to JEE

Back to Java programming
 2

Class, inheritance, interface
 3

Software objects are often used to model the real-
world objects that you find in everyday life.
A class is prototype from which objects are created.
A class models the state (internal variables,
constants) and behavior (methods) of a real-world
object.
Classes inherit state and behavior from their
superclasses, and we may derive one class from
another using the simple syntax provided by the
Java programming language.

Class, inheritance, interface
 4

An interface is a contract between a class and the
outside world. When a class implements an
interface, it promises to provide the behavior
published by that interface.
An interface is a specification, not an
implementation. A class is an implementation. An
interface defines the name, the parameter types, the
type of the result of a method. That’s all folks!

Some advantages for OOP
 5

Bundling code into individual software objects provides a number of benefits,
including:

Modularity: The source code for an object can be written and maintained
independently of the source code for other objects. Once created, an object can
be easily passed around inside the system.
Information-hiding: By interacting only with an object's methods, the details of its
internal implementation remain hidden from the outside world.
Code re-use: If an object already exists (perhaps written by another software
developer), you can use that object in your program. This allows specialists to
implement/test/debug complex, task-specific objects, which you can then trust to
run in your own code.
Pluggability and debugging ease: If a particular object turns out to be
problematic, you can simply remove it from your application and plug in a
different object as its replacement. This is analogous to fixing mechanical
problems in the real world. If a bolt breaks, you replace it, not the entire machine.

We want to implement a weather station that stores, for a town and a week, the
day, the temperature and the precipitation

Weather Station in Java Swing 6

Cell A=‘Monday + 11°C + 6mm’
Cell B=‘Tuesday + 10°C + 5mm’
etc, etc

private String lieu;// Town
private String numSemaine;// number of the week

} Weather
station
object

ValMeteoJour class (implements one cell)
 7

public class ValMeteoJour {
 private String jour;
 private float temp;
 private float prec;
 public ValMeteoJour(){

 }
 public ValMeteoJour(String jour, float temp, float prec) {
 this.jour = jour;
 this.temp = temp;
 this.prec = prec;
 }
 public String getJour() {
 return jour;
 }
 public void setJour(String jour) {
 this.jour = jour;
 }
…
 @Override
 public String toString() {
 return "[jour=" + jour + ", prec=" + prec + ", temp=" + temp + "]\n";
 }
}

First Implementation
 8

public class EnsValMeteo extends java.util.ArrayList < ValMeteoJour > {

 private String lieu;
 private String numSemaine;

 public EnsValMeteo() {

 }
…
…
…
 public static void main(String[] args) {
 EnsValMeteo evmm = new EnsValMeteo();
 evmm.charge("testEnsValMeteo.txt");
 evmm.afficheValeurs();
 EnsValMeteo evm = new EnsValMeteo();
 evm.LireClavier();
 evm.afficheValeurs();
 }

}

Second implementation
 9

public class EnsValMeteoYanis extends JFrame{

 private String lieu;
 private String numSemaine;
 private ArrayList<ValMeteoJour> MyList;

 public EnsValMeteoYanis(){
 super("Station Meteo");
 this.lieu = "";
 this.numSemaine = "";
 this.MyList = new ArrayList<ValMeteoJour>();
 …
 }
…
…
 public static void main(String[] args){

 EnsValMeteoYanis evmm = new EnsValMeteoYanis();
 evmm.charge("testEnsValMeteo.txt");
 evmm.afficheValeur();
 evmm.lireClavier();
 evmm.afficheValeur();

 }
}

What are the differences and the consequences?
 10

The access of the internal states may be different;
i.e sharing of information may change (visibility?);

public void afficheValeur(){
 String chaine = "";
 chaine += this.lieu + "\n";
 chaine += this.numSemaine;
 // Iterator
 for (ValMeteoJour val : this.MyList){
 chaine += "\n" + val.toString();
 }
 System.out.println(chaine);
 }

public void afficheValeur() {
 System.out.println("Lieu : " + this.getLieu() + " ; Semaine : " + this.getSemaine());
 // Iterator
 for (ValMeteoJour n: this)
 System.out.println(n.getJour() + "\t" + n.getTemp() + "\t" + n.getPrec());
}

What are the differences and the consequences?
 11

while (line != null) {
 StringTokenizer st = new StringTokenizer(line, "\t");
 ValMeteoJour aVal = new ValMeteoJour();
 aVal.setJour(st.nextToken());
 aVal.setTemp(Float.parseFloat(st.nextToken()));
 aVal.setPrec(Float.parseFloat(st.nextToken()));
 this.add(aVal);
 line = br.readLine();
}

while(line != null){
 StringTokenizer st = new StringTokenizer(line, "\t");
 ValMeteoJour aVal = new ValMeteoJour();
 aVal.setJour(st.nextToken());
 aVal.setTemp(Float.parseFloat(st.nextToken()));
 aVal.setPrec(Float.parseFloat(st.nextToken()));
 this.MyList.add(aVal);
 line = br.readLine();
}

Back to inheritance in Java
 12

In the Java programming language, each class
is allowed to have one direct superclass, and
each superclass has the potential for an
unlimited number of subclasses.
The diamond problem: the compiler is
confused as to which method to use.
When we instantiate an object of class D,
any calls to method definitions in class A
will be ambiguous – because it’s not sure
whether to call the version of the method
derived from class B or class C.
Java has no diamond problem;
No multiple inheritance in Java

In Java, multiple inheritance is not allowed for
classes, only for interfaces

 13

Given the declarations

 interface A {
 default void m() { System.out.println("hello from A"); }
 }
 interface B extends A {
 default void m() { System.out.println("hello from B"); }
 }
 interface C extends A {}
 class D implements B, C {}

the code

 C c = new D();
 c.m();

will print hello from B. The static type of c is unimportant; what counts is that it is
an instance of D, whose most specific version of m is inherited from B.

Other writing (with abstract method instead of
default method)

 14

public interface A {

 void m();
}

public class ImplementationOfA implements A {

 void m() {
 System.out.println("hello from A");
 }
}

Introduction to JEE
 15

Introduction

Java
! JSE : Java Standard Edition (PCs)
! JME: Java Micro Edition (mobile phones)
! JEE: Java Enterprise Edition (servers)
Objectives of JEE
! Facilitating the development of new component-based

applications
! Support for critical applications of the company:

■ Availability, fault tolerance, pic of activities / overloading,
security ...

 16

Java EE

Previous name: J2EE (Java2 Enterprise Edition)
Based on an old project, proposed by SUN aiming
at the definition of a standard for developing
community-driven enterprise software, and based on
components.

http://www.oracle.com/technetwork/java/javaee/overview/index.html

 17

JEE: download and installation
 18

JEE: download and installation
 19

You also need Apache Maven and Glassfish:
Maven is a software project management and comprehension tool. Based on
the concept of a project object model (POM), Maven can manage a
project's build, reporting and documentation from a central piece of
information
Glassfish is an open source application server (GlassFish is the Open Source
Java EE Reference Implementation)

The sample applications coming with Glassfish
depend on the following software:

Java SE Development Kit (JDK) version 1.8.0_144.
Apache Maven version 3.3+.
The Java DB database included in the Java EE SDK

JEE application servers

Commercial offers:
! BEA WebLogic (haut de

gamme)
! IBM Websphere (no 1)
! Sun Java System App Server
! Borland Enterprise Server
! Oracle Application Server
! Macromedia jRun
! SAP Web application server
! Iona Orbix E2A
! …

Open source offers:
! JBoss ()
! OW2 JOnAS
! Sun Glassfish (Platform edition

de l’offre Sun Java System
App Server)

! Apache Geronimo
(Community edition de IBM
Websphere)

! openEjb
! …

 20

Java EE - Architecture
 21

Clients
! Thin (Web, browser) and heavy (Java Application, Applet…)
Application Server
! Container EJB + container web + business logic
! non functional services (JEE services)
EIS (Entreprise Information System) or Database

JEE Services

JDBC (Java DataBase Connectivity) is an API to access relational
databases
JNDI (Java Naming and Directory Interface) is an API to access
name-services and directory-services such as DNS, NIS, LDAP
JTA/JTS (Java Transaction API/Java Transaction Services) is an
API which defines standard interfaces for the management of
transactions;
JPA (Java Persistance API) is an API for the mapping between
the Object model and the Relational model (ORM, Object-
Relational Mapping).
JCA (JEE Connector Architecture) is an API to connect to the
company’s information system, such as to the ERP (Entreprise
Resource Planning).

 22

Services JEE

JMX (Java Management Extension) provides with extensions
allowing the development of web applications for the supervision
of applications;
JAAS (Java Authentication and Authorization Service) is an API
for the management of authentification and access rights;
JavaMail is an API which allows the management of emails;
JMS (Java Message Service) provides with asynchronous
communication (called MOM for Middleware Object Message)
between applications;
RMI-IIOP is an API that allows communication between distant
objects;

 23

EJB components
 24

« A server-side component that encapsulates the
business logic of an application »
Server side / client side (Web) programming;
See an example of client side web programming with
Brython on https://lipn.univ-paris13.fr/~cerin/CIG-
S1/multiens.html In this code:

Load the Python interpret written in Javascript +
standard library also written in Python;
Define the Model (a Python Class)
Define the View (buttons and layouts…)
Define the Controller (map events to buttons)

EJB Components

We put now a focus on the application and business logics:
! The developer only takes into account the business logic of

the EJB.
! The system services are provided by the container

■ Persistence
■ Transactions
■ Security (authentication, confidentiality, etc.)
■ Pool of objects, load balancing

Vocabulary: Bean = EJB = component
Lot of versions: EJB 3.2 (JEE 8)

 25

EJB components

EJB does not provide with GUI
! GUI (Graphical User Interface) = client side

■ Classical applications
■ Java Beans
■ Servlets, JSP

 26

EJB container
! environment within the server in which EJBS live
! provide with necessary services to manage EJBs
! In General, the container and application server are

confused.

Execution schema for EJBs

Containers isolate beans from clients and from a specific
server implementation

 27

beans provide with a set of services
by realizing some dedicated
treatments on one application
(“business logic”).
clients call services.
The container intercepts the calls to
beans and it realizes diverses
communs functions (persistence,
transactions, security).

Access to EJB components

Every EJB provides with 1remote access
interface
! services (methods) exposed to clients
The EJB client can be: servlet, applet,
classical application, other EJB

 28

+ possibly 1 local access interface
! services exposed by the bean to local

clients
! the same (or others) as those offered

remotely

Types of EJB

3 types of beans:
! Session Beans
■ Represents a treatment (services provided to a client)

! Entity Beans
■ Represents a business object which exists in the permanent

storage system (ex: client account)
! Message-Driven Bean
■ ensures the treatment of assynchronous messages

asynchrones

 29

Session Bean

Modeling of treatment (or session)
! business process: services provided to clients

■ Example: bank account management, product catalog display, Bank data
checker..

■ Life time = the session
! The time a customer remains connected to the bean
Lifecycle
! The container creates an instance when a client logs on to the bean

session.
! It can destroy it when the client disconnects.
Session Beans do not tolerate the fault/crash of the serveur
! Some objects are in memory, non persistent
! Unlike Entity Beans

 30

Types de Session Beans

Each bean session maintains a conversation with a
client.
! Conversation = call methods list.
There exists two type of Beans session

! Stateful Session Beans
! Stateless Session Beans

Each model a particular type of conversation

 31

Stateless Session Beans

Stateless: does not keep any information between two
successive calls
Some conversations can be summarized as a method call,
without needing to know the current state of the bean
The client passes all the data necessary for processing during the
method callUn tel EJB est partageable consécutivement par de
multiples clients
Examples

bank account number validation, a currency converter…

One instance of a Stateless Session Bean is not dedicated to
only one user, it can be shared

 32

Stateful Session Beans

Some conversations take place in the form of successive
requests.
From one request to another, there must be a way to
maintain a State
Example: a client is navigating on an e-commerce site, selects
some goods, fills his basket…
A Stateful Session Bean maintains the state during the « life » of
the client
During calls of successive methods. If a method call changes the State
of the bean, during another method call the State will be available.
Such EJB is dedicated to a client during all the life of the Session

 We have one instance of Stateful Session Bean per client

 33

Session Bean - Development

1 interface (possibly 2 : Local + Remote) + 1 classe
! Interface
■ annotations @javax.ejb.Local or @javax.ejb.Remote

 34

Session Bean - Development

! Class
■ annotations @Stateless ou @Stateful

Possibility to name the beans : @Stateless(name="foobar")
By default, the name of the class

 35

Session Bean - Development

Local Client
Typically a servlet or a JSP
! co-located on the same server as the bean
Mechanism by « dependency injection »
! annotation: @EJB

■ possibly @EJB(name="foobar")

 36

Session Bean - Development

Remote Client
1. Search of the bean in directory JNDI
2. Retrieving the directory reference JNDI
3. Call the bean methods

 37

Entity Bean (EB)

Representation of a data, manipulated by the application, typically
stored in a DBMS
The state of an Entity Bean is persistent.
Persistence means that the status of the entity bean exists (persists) even
after the duration of the application's operation (session)

 38

Session Bean Entity Bean
Gestion de compte Compte bancaire

Vérificateur de CB Carte de crédit

Système d'entrée gestion de commandes Commande, ligne de commande

Gestion de catalogue Produits

Gestionnaire d'enchères Enchère, Produit

Gestion d'achats Commande, Produit, ligne de commande

Entity Bean (EB)

Mapping Object/Relational
! Attributes of an object are saved on a persistent media
! Avantage: manipulating Java objects rather than SQL queries
! Annotations Java 5 (@)
! API JPA (Java Persistence API) starting from EJB 3.0
! Persistence frameworks (Hibernate, TopLink, EclipseLink…)
Main interest of JPA: allows to be independent of the
framework managing the persistence

 39

Mapping objet/BD relational
 40

Properties of Entity Beans

Multiple clients can use EB that "point" to the same data
An EB instance contains a copy of the storage system
data
When many clients share one EB, they
! receive their own instances of EB
! share the underlying data
! do not have to manage the synchronization on data

Persistence of an Entity Bean

There exists two type of persistence for the Entity Beans:
! Bean-Managed Persistence (BMP): the entity bean code

contains the calls that access the database
! Container-Managed Persistence (CMP): the EJB container

automatically generates access calls to the database, using
the bean deployment descriptor (XML file or annotations)
■ Avantage: redeploying the same entity bean to different JEE

servers using different databases will not require any changes
to the bean.

In both cases the container is responsible for the consistency
between the State of the bean and the State of the DB

 42

Entity Bean - Development

annotation @Entity :
! declare a class corresponding to an Entity Bean
each class of EB is mapped to a table
! by default, table name = name of the classa
! except if annotation @Table(name="...")

annotation @Id: define a primary key
annotation @Column: define a column

 43

Entity Bean - Development
 44

Entity Bean – Entity Manager

Entity Manager
! provides correspondence between Java objects and

relational tables
! main entry point in persistence service
! allows you to add records
! allows you to execute queries
! accessible via a dependency injection
■ attribut of type javax.persistence.EntityManager
■ annotation with @PersistenceContext or @PersistenceUnit

 45

Entity Bean – Entity Manager

Example
! creation of 3 records in the book table

in a similar way em.remove(b2) removes the record from the table

 46

Entity Bean – Entity Manager

Search by primary key
find method from the entity manager

 Book myBook = em.find(Book.class,12);

! return null if the key does not exist in the table
! IllegalArgumentException
■ if 1st parameter is not an EB class
■ if 2nd parameter does not correspond to the type of the

primary key

 47

Entity Bean – Entity Manager

Search by query
! SELECT query with EJB-QL syntax
! OBJECT keyword to designate a result to return in the form of an

object
! named parameters (prefixed by:) to configure the query

 • getSingleResult() method to get a unique results
 • NonUniqueResultException in case of non-uniqueness

 48

Entity Bean – Entity Manager

Search by pre-compiled queries
! creation of a named query attached to EB

 49

