Journée-séminaire de combinatoire

(équipe CALIN du LIPN, université Paris-Nord, Villetaneuse)

Le 12 novembre 2013 à 14h00 en B107, Jérémie Bouttier nous parlera de : Distances in random planar maps and discrete integrability

Résumé : Metric properties of random maps (graphs embedded in surfaces) have been subject to a lot of recent interest. In this talk, I will review a combinatorial approach to these questions, which exploits bijections between maps and some labeled trees. Thanks to an unexpected phenomenon of ``discrete integrability'', it is possible to enumerate exactly maps with two or three points at prescribed distances, and more. I will then discuss probabilistic applications to the study of the Brownian map (obtained as the scaling limit of random planar maps) and of uniform infinite planar maps (obtained as local limits). If time allows, I will also explain the combinatorial origin of discrete integrability, related to the continued fraction expansion of the so-called resolvent of the one-matrix model. Based on joint works with E. Guitter and P. Di Francesco.

 [Slides.pdf]


Dernière modification : vendredi 13 septembre 2013 Valid HTML 4.01! Valid CSS! Contact : Cyril.Banderier at lipn.univ-paris13.fr