Journée-séminaire de combinatoire

(équipe CALIN du LIPN, université Paris-Nord, Villetaneuse)

Le 01 mars 2011 à 10h30 en B311, Pierre-Loïc Méliot nous parlera de : Partitions aléatoires choisies suivant les poids des traces de Markov des algèbres d'Hecke

Résumé : Étant donnée une trace définie sur l'algèbre d'Hecke du groupe symétrique Sn, la décomposition de t sur la base des caractères irréductibles fournit une mesure de probabilité sur l'ensemble Pn des partitions de taille n. Lorsque t est la trace régulière de Hq(Sn), ou plus généralement une trace de Markov, la mesure correspondante vérifie une loi des grands nombres et un théorème central limite pour la taille des lignes et des colonnes des partitions. Via l'algorithme RSK et la théorie des fonctions quasisymétriques, ces résultats peuvent être interprétés en termes de longueur des plus longs sous-mots croissants et décroissants de modèles de permutations aléatoires.

 [Slides.pdf]


Dernière modification : mercredi 06 juillet 2011 Valid HTML 4.01! Valid CSS! Contact : Cyril.Banderier at lipn.univ-paris13.fr