Journée-séminaire de combinatoire

(équipe CALIN du LIPN, université Paris-Nord, Villetaneuse)

Le 16 janvier 2018 à 14h00 en B107, Pierre Rousselin nous parlera de : Chute de dimension pour les marches aléatoires sur les arbres aléatoires

Résumé : Nous nous intéressons à différents modèles d'arbres aléatoires et aux marches aléatoires sur les sommets de tels arbres. Dans le cas où la marche aléatoire est transiente, la marche part presque sûrement vers l'infini en empruntant un rayon aléatoire. La loi de ce rayon est appelée la mesure harmonique sur le bord de l'arbre. Un phénomène de chute de dimension se produit : cette mesure harmonique est presque sûrement concentrée sur une partie petite (au sens de la dimension de Hausdorff) du bord de l'arbre. Autrement dit, les trajectoires de la marche aléatoires sont presque sûrement comprises dans un sous-arbre beaucoup plus fin que l'arbre original. Cette théorie a été initiée par Russel Lyons, Robin Pemantle et Yuval Peres dans les années 1990. Plus récemment, Nicolas Curien, Jean-François Le Gall, puis Shen Lin ont étudié ce phénomène sur un autre modèle d'arbres aléatoires. Nous rappellerons leurs résultats et discuteront des généralisations sur lesquelles nous avons travaillé.

[slides.pdf] [file1]


Dernière modification : mardi 23 janvier 2018 Valid HTML 4.01! Valid CSS! Contact : Cyril.Banderier at lipn.univ-paris13.fr