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Combinatorial Physics

Combinatorial Physics

problems in Theoretical Physics successfully tackled using
Combinatorial methods

problems in Combinatorics successfully tackled using
Theoretical Physics methods

(most of) this talk: example of the first case

combinatorial techniques:

analysis of the general term in an asymptotic expansion

analytic analysis of the singularities of the relevant generating
series

physical problem: implementation of the celebrated double scaling
mechanism for various random tensor models
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Quantum Field Theory

Quantum Field Theory (QFT) - quantum description of particles
and their interactions

description compatible with Einstein’s theory of special relativity

QFT formalism applies to:

Standard Model of elementary particle physics

statistical physics (statistical QFT)

condensed matter physics

etc.

great experimental success!
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QFT - built-in combinatorics

(real or complex) fields - Φ : R4 → R or C (4−dimensional QFT)

action of a QFT model (S(φ))
quadratic part (propagation) + non-quadratic part (cubic, quartic,
etc.)

partition function: Z =
∫
DΦ e−S(Φ)

perturbative expansion (Taylor expansion) of the partition function
Z in the coupling constant λ

Feynman graphs associated to the terms of the expansion

example of a Feynman graph of the Φ4 model:
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Feynman graphs → Feynman amplitudes
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Combinatorial QFT

Combinatorial QFT - 0−dimensional QFT
the scalar field φ is not a function of space-time
(there is no space-time)!
real field φ ∈ R (or complex field φ ∈ C)

partition function:

Z =

∫
R
dφ e−

1
2
φ2+ λ

4!
φ4
.

perturbation theory - formal series in λ
→ (abstract) Feynman graphs and Feynman amplitudes
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One (still) needs to evaluate integrals of type

λn

n

∫
dφ e−φ

2/2

(
φ4

4!

)n

.

one can (still) use standard QFT techniques:

∫
dφ e−φ

2/2φ2k =
∂2k

∂J2k

∫
dφ e−φ

2/2+Jφ|J=0 =
∂2k

∂J2k
eJ

2/2|J=0.

J - the source

0−dimensional QFT - interesting ”laboratories” for testing
theoretical physics tools
V. Rivasseau and Z. Wang, J. Math. Phys. (2010), arXiv:1003.1037

I. Klebanov, F. Popov and G. Tarnopolsky, arXiv:1808.09434, TASI Lectures
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From scalars to matrices

Definition
A random matrix is a matrix of given type and size whose entries
consist of random numbers from some specified distribution.

Random matrices & combinatorics:

counting maps theorems (via matrix integral techniques)∫
f (matrix of dim N) =

∑
g

N2−2gAg

Ag - some weighted sum encoding maps of genus g
(this depends on the choice of f - the physical model)

A. Zvonkine, ”Computers & Math. with Applications: Math. & Computer Modelling”, (1997)

J. Bouttier, in ”The Oxford Handbook of Random Matrix Theory”, 2011, arXiv:1104.3003

Ph. Di Francesco et. al., Phys. Rept. (1995), arXiv:hep-th/9306153
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Random matrices in mathematics & physics

mathematics

non-commutative probabilities
D. Voiculescu, et. al. Free random variables CRM Monograph (1992)

the Kontsevich matrix model - the Witten conjecture: rigorous
approach to the moduli space of punctured Riemann surfaces
E. Witten, Nucl. Phys. B (1990),

M. Kontsevich, Commun. Math. Phys. (1992)

etc.

physics: nuclear physics (spectra of heavy atoms), particle
physics (quantum chromodynamics), 2-dimensional quantum
gravity, string theory etc.

Wishart, Biometrika (1928)

Wigner, Annals Math. (1955)

M. L. Mehta, Random Matrices, Elsevier (’04)

G. Anderson, A. Guionnet, O. Zeitouni, An Introduction to Random Matrices, Cambridge Univ. Press (’09)
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Other applications of random matrices

spacing between perched birds (parked cars)

P. Seba, J. Phys. A (2009)
A.Y. Abul-Magd Physica A (2006)

S. Rawal, G.J. Rodgers Physica A (2005)

G. Akermann, J. Baik and Ph. Di Francesco, The Oxford Hadbook of Random Matrix Theory, Oxford (2015)
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More on matrix integral techniques

Ph. Di Francesco et. al., Phys. Rept. (1995), hep-th/9306153,

B. Eynard, ”Counting Surfaces” (Springer) etc.

M - N × N Hermitian matrix

The partition function:

Z :=

∫
dMe

− 1
2
TrM2+ λ√

N
TrM3

.

dM :=
∏

i dMii
∏

i<j d ReMij ImMij (the measure)

QFT perturbative expansion in λ - Feynman ribbon graphs (dual
to 2-dimensional triangulations)

The partition function Z generates random triangulations -
a generating function
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Duality ribbon graphs < − > 2D random triangulations

the triangulation building block: the triangle (the 2D simplex)

dual of a triangle - a ribbon vertex of valence 3
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Asymptotic expansion of matrix models - dominant graphs

Feynman graphs of matrix models are ribbon graphs or (2D) maps

the matrix amplitude can be combinatorially computed - in terms
of number of vertices (V ), edges and faces (F ) of the graph

A = λVN−
1
2
V+F = λVN2−2g

(since E = 3
2V )

The partition function supports a 1/N expansion:

Z = N2Z0(λ) + Z1(λ) + . . . =
∞∑
g=0

N2−2gZg (λ)

Zg gives the contribution from surfaces of genus g

In the N →∞ limit, only planar surfaces survive
- dominant graphs - (triangulations of the sphere S2)
E. Brézin et al., Commun. Math. Phys. (’78),

V. A. Kazakov, Phys. Lett. B (’85), F. David, Nucl. Phys. B (’85)
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The double scaling limit for matrix models

The successive coefficient functions Zg (λ) as well diverge at the
same critical value of the coupling λ = λc
the leading singular piece of Zg :

Zg (λ) ∝ fg (λc − λ)(2−γstr)χ/2 with γstr = −1

2
(pure gravity)

contributions from higher genera (χ < 0) are enhanced as λ→ λc

κ−1 := N(λ− λc)(2−γstr)/2

the partition function expansion:

Z =
∑
g

κ2g−2fg

double scaling limit: N →∞, λ→ λc while holding fixed κ
coherent contribution from all genus surfaces
M. Douglas and S. Shenker, Nucl. Phys. B (’90), E. Brézin and V. Kazakov, Phys. Lett. B, Nucl. Phys. B (’90),

D. Gross and M. Migdal, Phys. Rev. Lett., Nucl. Phys. B (’90)
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Question:
How much of these celebrated 2D results generalize to 3D?
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From matrices to tensors

Tensor models were introduced already in the 90’s - replicate in
dimensions higher than 2 the success of random matrix models:
J. Ambjorn et. al., Mod. Phys. Lett. (’91),

N. Sasakura, Mod. Phys. Lett. (’91), M. Gross Nucl. Phys. Proc. Suppl. (’92)

natural generalization of matrix models

matrix → rank three tensor
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From a tetrahedron to a 4−valent tensor vertex
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tensor graphs - 3D maps

the triangulation building block: the tetrahedron (the 3D simplex)

dual of a tetrahedron - a tensor vertex of valence 4
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4−dimensional models

4D vertex (dual image of a 4−simplex (5−cell)):
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QFT-inspired simplification - the colored tensor model

highly non-trivial combinatorics and topology
→ a QFT simplification of these models - colored tensor models
(R. Gurău, Commun. Math. Phys. (2011), arXiv:0907.2582)

a quadruplet of complex fields
(
φ0, φ1, φ2, φ3

)
;

S [{φi}] = S0[{φi}] + Sint [{φi}]

S0[{φi}] =
1

2

3∑
p=0

N∑
i ,j ,k,=1

φpijkφ
p
ijk (1)

Sint [{φi}] =
λ

4

N∑
i ,j ,k,i ′,j ′,k ′=1

φ0
ijkφ

1
i ′j ′kφ

2
i ′jk ′φ

3
k ′j ′i + c. c.,

the indices 0, . . . , 3 - color indices.

R. Gurau, ”Random Tensors”, Oxford Univ. Press (2016)
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Various results

double-scale limit mechanism

1 combinatorial methods - analysis of the general term of the
large N asymptotic expansion and analytic analysis of the
singularities of the relevant generating series
G. Schaeffer and R. Gurău, arXiv:1307.5279, Annales IHP D Comb. Phys. & Interactions (2016)

2 QFT methods S. Dartois et. al., JHEP (2013), V. Bonzom et. al., JHEP (2014)

Connes-Kreimer Hopf algebraic reformulation of tensor
renormalizability
M. Raasakka and A. Tanasă, Sém. Loth. Comb. (2014)

loop vertex expansion of the perturbative series
T. Krajewski & R. Gurau, Annales IHP D - Combinatorics, Phys. & their Interactions (2015)

etc.
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Another (QFT-inspired) simplification of tensor models

Multi-Orientable (MO) models
A. Tanasă, J. Phys. A (2012) arXiv:1109.0694[math.CO]

edge and (valence 4) vertex of the model:
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(Feynman) MO tensor graphs

Example of an MO tensor graph:
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Combinatorial and topological tools - jacket ribbon
subgraphs

S. Dartois et. al., Annales Henri Poincaré (2014)

three pairs of opposite corner strands

A jacket of an MO graph is the graph made by excluding one
type of strands throughout the graph. The outer jacket c̄ is made
of all outer strands, or equivalently excludes the inner strands (the
green ones); jacket ā excludes all strands of type a (the red ones)
and jacket b̄ excludes all strands of type b (the blue ones).
↪→ such a splitting is always possible
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Example of jacket subgraphs

A MO graph with its three jackets ā, b̄, c̄

one can prove that each jacket of an MO tensor graph is a
ribbon graph (or 2D map)
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Euler characteristic & degree of MO tensor graphs

ribbon graphs - orientable or non-orientable surfaces.

Euler characteristic formula:

χ(J ) = VJ − EJ + FJ = 2− kJ ,

kJ is the non-orientable genus,
VJ is the number of vertices,
EJ the number of edges and
FJ the number of faces.

If the surface is orientable, k is even and equal to twice the
orientable genus g

the degree of an MO tensor graph G:

ω(G) :=
∑
J

kJ
2

= 3 +
3

2
VG − FG ,

the sum over J running over the three jackets of G.
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Large N expansion of the MO tensor model

generalization of the random matrix asymptotic expansion in N

One needs to count the number of faces of the tensor graph

This can be achieved using the graph’s jackets (ribbon subgraphs)

The tensor partition function writes as a formal series in 1/N:

∑
ω∈N/2

C [ω](λ)N3−ω,

C [ω](λ) =
∑

G,ω(G)=ω

1

s(G)
λvG .

the role of the genus is played by the degree
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Dominant graphs of the large N expansion

dominant graphs:

ω = 0.

Theorem
The MO model admits a 1/N expansion whose dominant graphs
are the “melonic” ones.

ADRIAN TANASĂ Asymptotic expansion for random tensor models



More on melonic tensor graphs

they maximize the number of faces for a given number of
vertices.

they correspond to a particular class of triangulations of the
sphere S3.
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Combinatorial analysis of the general term of the expansion

for the colored tensor model
R. Gurău and G. Schaeffer, arXiv:1307.5279[math.CO],

Annales IHP D Comb., Phys. & their Interactions (2016)

for the MO tensor model
E. Fusy and A. Tanasă, arXiv:1408.5725[math.CO], Elec. J. Comb. (2015)

adaptation of the Gurău-Schaeffer combinatorial approach for
the MO case

combinatorial analysis leading to the implementation of the
double scaling mechanism
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(Types of) strands

+

+

-

-

An external strand is called left (L) if it is on the left side of a
positive half-edge or on the right side of a negative half-edge.
An external strand is called right (R) if it is on the right side of a
positive half-edge or on the left side of a negative half-edge.

(L - blue, straight (S) - green, R - red)
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Main issue of a combinatorial analysis

There exists an infinite number of melon-free graphs of a given
degree.

Nevertheless, some configurations can be repeated without
increasing the degree.
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Dipoles

A (two-)dipole is a subgraph formed by a couple of vertices
connected by two parallel edges which has a face of length two,
which, if the graph is rooted, does not pass through the root.

L R S not 2-dipoles
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Chains - ladder diagrams

In a Feynman graph, a chain is as a sequence of dipoles d1 . . . , dp
such that for each 1 ≤ i < p, di and di+1 are connected by two
edges involving two half-edges on the same side of di and two
half-edges on the same side of di+1.
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Some more definitions - (un)broken chains

A chain is called unbroken if all the p dipoles are of the same
type.

A proper chain is a chain of at least two dipoles.

A proper chain is called maximal if it cannot be extended into
a larger proper chain.

ADRIAN TANASĂ Asymptotic expansion for random tensor models



Chains, chain-vertices and their strand configurations

⇒

⇒

⇒

⇒

L

R

So

Se

⇒ B

strand configurations:

⇔L

R

So

Se

B

⇔

⇔

⇔

⇔
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Schemes

Let G be a rooted melon-free MO-graph. The scheme of G is the
graph obtained by simultaneously replacing any maximal proper
chain of G by a chain-vertex.

⇒
L

B

Se

ADRIAN TANASĂ Asymptotic expansion for random tensor models



A reduced scheme is a rooted melon-free MO-graph with
chain-vertices and with no proper chain.

By construction, the scheme of a rooted melon-free MO-graph
(with no chain-vertices) is a reduced scheme.

Every rooted melon-free MO-graph is uniquely obtained as a
reduced scheme where each chain-vertex is consistently substituted
by a chain of at least two dipoles
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Degree conservation

Proposition

Let G be an MO-graph with chain-vertices and let G ′ be an
MO-graph with chain-vertices obtained from G by consistently
substituting a chain-vertex by a chain of dipoles. Then the degrees
of G and G ′ are the same.

Proof. Carefully counting the number of faces, vertices and
connected components and using the formula:

2ω = 6c + 3V − 2F .
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Analysis of the general term of the large N expansion

Finiteness of the set of reduced schemes of a given degree

Theorem
For each ω ∈ 1

2Z+, the set of reduced schemes of degree ω is finite.

Proof.

1 For each reduced scheme of degree ω, the sum N(G ) of the
numbers of dipoles and chain-vertices satisfies N(G ) ≤ 7ω−1.

2 For k ≥ 1 and ω ∈ 1
2Z+, there is a constant nk,ω s. t. any

connected unrooted MO-graph of degree ω with at most k
dipoles has at most nk,ω vertices.
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Proof - dipole and chain-vertex reductions

⇒ ⇒ ⇒⇒

removal of a chain-vertex (of any type)

removal of a dipole of type L, R and S.

2 types of chain-vertices (and dipoles):

1 separating

2 non-separating

(if the number of connected components is conserved or not after
removal)
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Some analytic combinatorics - melonic generating function

the generating function of melonic graphs:

T (z) = 1 + z (T (z))4 .
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Generating functions of our objects

u marks half the number of vertices
(i.e., for p ∈ 1

2Z+, up weight given to a MO Feynman graph with
2p vertices)

generating function for:

unbroken chains of type L (or R)

u2 1

1− u
= u2 + u3 + . . .

even straight chains

u2 1

1− u2
=

u2

1− u2
= u2 + u4 + u6 + . . .

odd straight chains

u3 1

1− u2
=

u3

1− u2
= u3 + u5 + u6 + . . .

etc.
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More generating functions

putting together the generating functions of all contributions

=⇒ G
(ω)
S (u) - the generating function of rooted melon-free

MO-graphs of reduced scheme S of degree ω,

G
(ω)
S (u) = up

u2a

(1− u)a
u2se

(1− u2)se
u3so

(1− u2)so
6bu2b

(1− 3u)b(1− u)b
.

b - the number of broken chain-vertices
a - the number of unbroken chain-vertices of type L or R
se - the number of even straight chain-vertices,
so - the number of odd straight chain-vertices.
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MO generating functions

F
(ω)
S (z) - the generating function of graphs of reduced scheme S

F
(ω)
S (z) = T (z)

6bU(z)p+2c+so

(1− U(z))c−s(1− U(z)2)s(1− 3U(z))b
,

U(z) := zT (z)4 = T (z)− 1

F (ω)(z) - the generating function of rooted MO-graphs of degree ω

F (ω)(z) =
∑
S∈Sω

F
(ω)
S (z).

Sω - the (finite) set of reduced schemes of degree ω.
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Singularity order - dominant schemes

T (z) has its main singularity at

z0 := 33/28,

T (z0) = 4/3, and 1− 3U(z) ∼z→z0 23/23−1/2(1− z/z0)1/2.
R. Gurău and G. Schaeffer, arXiv:1307.5279[math.CO]

=⇒ (1− 3U(z))−b ∼z→z0 (1− z/z0)−b/2

=⇒ the dominant terms are those for which b is maximized.

the larger b, the larger the singularity order

A reduced scheme S of degree ω ∈ 1
2Z+ is called dominant if it

maximizes (over reduced schemes of degree ω) the number b of
broken chain-vertices.
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The double scaling limit of the MO tensor model

R. Gurău, A. Tanasă, D. Youmans, Europhys. Lett. (2015)

The dominant configurations in the double scaling limit are the
dominant schemes

The successive coefficient functions Zg (λ) as well diverge at the
same critical value of the coupling λ = λc
contributions from higher degree are enhanced as λ→ λc

κ−1 := N
1
2 (1− λ/λc)

the partition function expansion:

Z =
∑
ω

N3−ωfω

double scaling limit: N →∞, λ→ λc while holding fixed κ

contribution from all degree tensor graphs

similar behaviour to the matrix model double scaling limit
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The quartic O(N)3-invariant
tensor model
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The quartic O(N)3-tensor model

1 model introduced in
S. Carrozza, A. T., 2015 arXiv:1512.06718 Lett. Math. Phys. (2016)

The tensor φabc is invariant under the action of O(N)3:

φabc → φ′a′b′c′ =
N∑

a,b,c=1

O1
a′aO

2
b′bO

3
c′cφabc O i ∈ O(N)

quartic invariants:

It(φ) =
∑

a,a′,b,b′,c,c′

φabcφab′c′φa′bc′φa′b′c =
3

1
3

2

1

2

Ip,1(φ) =
∑

a,a′,b,b′,c,c′

φabcφa′bc φab′c′φa′b′c′ =
1

2

1

23 3

2 the model above was extended to the 1−dimensional case:
I. Klebanov, G. Tarnopolsky, arXiv:1611.08915 [hep-th], Phys. Rev. D (2017)

I. Klebanov, F. Popov, G. Tarnopolsky, TASI Lectures (2017)
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The action of the model

The action of the quartic O(N)3-invariant tenso model:

SCTKT (φ) = −N2

2
φ2+N5/2λ1

4
It(φ)+N2λ2

4

(
Ip,1(φ)+Ip,2(φ)+Ip,3(φ)

)
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An example of Feynman graph of the model

1

1

1

1

1

1

11

2

2

22
2

2

2 2

3

3

nt = 3

np = 3

F1 = 1

F2 = 3

F3 = 1

⇒ ω =
17

2
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The large N limit expansion

The free energy admits a large N expansion

FN(λ1, λ2) = lnZN(λ1, λ2) =
∑
G∈Ḡ

N3−ω(G)A(G). (2)

where the degree is:

ω(G) = 3 +
3

2
nt(G) + 2np(G)− F (G) (3)

ADRIAN TANASĂ Asymptotic expansion for random tensor models



Two types of LO graphs

ω(G) = 3 +
3

2
nt(G) + 2np(G)− F (G)

Dominant graphs: ω(G) = 0

two types of interaction → two types of melonic graphs:

Type I:
1

2

2

1

2

1

1

2

3 3 Type II:

j

k

k

j

i i

”melon-tadpoles” graphs
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Back to double scaling limit - again on schemes

V. Bonzom, V. Nador and A.T., J. Phys. A (2022)

Recall that a scheme (of degree ω) is a ”blueprint” that tells
us how to obtain graphs of the same degree ω.

Recall the general idea: Identify operations that leave the degree
invariant and use them to repackage all the graphs that differ only
by the applications of these operations

Melonic moves are such graphic operations.
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Dipoles

Definition
A dipole is a 4-point graph obtained by cutting an edge in an
elementary melon.

2

2

i

2

2

3 3

2 23

2 23

i

i

i

i

i

i

i

i

i

2 3 2 3 2 3 2 3

i

i
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Dipoles

Di
=

i

i

i

i
+

i

i
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Chains - ladder diagrams

Definition
Chains are the 4-point functions obtained by connecting an
arbitrary number of dipoles.

Ci = Di
. . . DiΣ

k ≥ 2
︸ ︷︷ ︸

k dipoles
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Schemes

Definition
The scheme S of a 2-point graph G is obtained by

1 Removing all melonic 2-point subgraphs in G
2 Replacing all maximal chains with chain-vertices and all

dipoles with dipole-vertex of the same color.

B

C1

B

1 1

1

1

1

1

1

1

2

2
2

2

2

2

2

2

Figure: An example of scheme
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Finiteness of the number of schemes

Theorem
(Bonzom-Nador-Tanasa (2022))
The set of schemes of a given degree is finite in the quartic
O(N)3-invariant tensor model.
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Generating function of dominant scheme

The generating function associated to a dominant schemes is

Gω
T (t, µ) = (3t

1
2 )2ω(1 + 6t)2ω−1B(t, µ)4ω−1

= (3t
1
2 )2ω(1 + 6t)2ω−1 64ω−1U8ω−2

((1− U)(1− 3U))4ω−1

where B is the generation functions of broken chains and U is th
generation function of dipoles.

Summing over the different trees
(in bijection with the dominant schemes):

Gω
dom(t, µ) = Cat2ω−1 M(t, µ)Gω

T (t, µ)

where M is the generation functions of melonic graphs.
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Double scaling parameter

Near critical point

Gω
dom(t, µ) ∼

t→tc (µ)
N3−ωMc(µ) Cat2ω−1 9ωtωc (1 + 6tc)2ω−1

×

 1(
1− 4

3 tc(µ)µMc(µ)
)
K (µ)

√
1− t

tc (µ)

4ω−1

The double scaling parameter κ(µ) is the quantity to hold
fixed when sending N → +∞, t → tc(µ).

dominant schemes of all degree ω contribute in the double
scaling limit

One has

κ(µ)−1 =
1

3

1

tc (µ)
1
2 (1 + 6tc (µ))

((
1−

4

3
tc (µ)µMc (µ)

)
K(µ)

)2
(

1−
t

tc (µ)

)
N

1
2 (4)
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2−point function in the double scaling limit

GDS
2 (µ) = N−3

∑
ω∈N/2

Gω
dom(µ)

= Mc(µ)

(
1 + N−

1
4

√
3

tc(µ)
1
4

(1 + 6tc(µ))
1
2

1−
√

1− 4κ(µ)

2κ(µ)
1
2

)

convergent for κ(µ) ≤ 1
4 .

tensor double scailing limit is summable
(different behaviour with respect to the celebrated matrix models
case)
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The prismatic tensor model
O(N)3-invariance, 6th order interaction

1

3

1

3

1

3

22

Ta1b1c1 Ta3b3c1

Ta1b2c2

Ta2b1c2 Ta2b3c3

Ta3b2c3

T. Krajewski, T. Muller and A. T. arXiv:2301.02093
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Definition of the model

model introduced in
S. Giombi, I. Klebanov, F. Popov, S. Prakash, G. Tarnopolsky, Phys. Rev. D (2018)

O(N)3 invariance

Ti1i2i3 = O
(1)
i1j1

O
(2)
i1j1

O
(3)
i1j1

Tj1j2j3

The action

S(T ) = −1
2

∑
i ,j ,k TijkTijk

+ tN−3

6

∑
a1,a2,a3,b1,b2,b3,c1,c2,c3

Ta1b1c1Ta1b2c2Ta2b1c2Ta3b3c1Ta3b2c3Ta2b3c3

1

3

1

3

1

3

22

Ta1b1c1 Ta3b3c1

Ta1b2c2

Ta2b1c2 Ta2b3c3

Ta3b2c3

(generalization of SCTKT )
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Intermediate field method

the prismatic interaction term rewrites∫
[dχ]

(2π)N3/2
e−

1
2

∑N
i,j,k=1 χijkχijk+

√
2tN−α

6
Ĩt(T ,χ), (5)

where

Ĩt(T , χ) =
N∑

a1,a2,b1,b2,c1,c2=1

Ta1b1c1Ta1b2c2Ta2b1c2χa2b2c1 . (6)

1

3

1

3

1

3

22

Ta1b1c1 Ta3b3c1

Ta1b2c2

Ta2b1c2 Ta2b3c3

Ta3b2c3

Ta1b1c1

Ta1b2c2

Ta2b1c2

1 3

3 1

2 2χa2b2c1

3

31

1

χa4b4c4

Ta3b3c4

Ta3b4c3

Ta4b3c3

tetrahedric representation (of the prismatic model)
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Melonic insertions in the tetrahedric representation

vacuum elementary melon:
2 types of melonic insertions:

i i

j j i

jj

i

ij

i j

i

j i

j

k k

kk
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Leading order graphs in the tetrahedric representation

elementary melon of the tetrahedric representation
→ elementary triple tadpole

1 3

3 1

2

1

3

3

1

2

1

11

2

3

3 3
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Melonic moves in the prismatic representation

insertion on a T propagator
→ insertion of a 2-point double tadpole

insertion on χ propagator → insertion at the level of a prismatic
vertex(split a vertex into 2vertices)

,

, ,

i

i i

j

j j
k

i i

j

i

jj

i

j

i

j

i

j

i

j

j

i

i

j

k k

same result as in S. Prakash and R. Sinha, Phys. Rev. D (2020)

(where no intermediate field approach was used)
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Examples of LO graphs in the prismatic representation
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Implementation of the double scaling limit mechanism

T. Krajewski, T. Muller and A. T. arXiv:2301.02093[hep-th]

use of the tetrahedric representation

much more teadious then for SCTKT :

5 types of dipoles

a bunch of types of chains

much more involved structure of the schemes

double scaling parameter

κ(t,N) =
I (tc)L(tc)

4NM2
T ,cK

2(1− t
tc

)
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2-point function in the double scaling limit

G2,DS(t,N) = MT ,c +
∑
ω>0

N−ωGω,dom

= MT ,c + MT ,cN
− 1

2

(
L(tc)κ(t,N)

I (tc)

)1/2 ∑
ω∈N∗

Catω−1κ(t,N)ω−1

= MT ,c

(
1 + N−

1
2

(
L(tc)

I (tc)

)1/2 1−
√

1− 4κ(t,N)

2κ(t,N)1/2

)
(7)
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Some final comments

contributions of all degrees, and not just from the vanishing
degree (the higher it is the degree of the graph, the greater it
is the contribution from the respective degree)

in the limit κ→ 0 the large N limit is recovered.

the double scaling limit series is convergent (differnce wrt
matrix models)
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Implementation of this approach for multi-matrix models

double/triple-scaling limit mechanism

U(N)2 × O(D), tetrahedric interation, multi-matrix models
F. Ferrari, arXiv:1701.01171, Annales IHP D Comb., Phys. and their Interactions

D. Benedetti et. al., Annales IHP D Comb., Phys. and their Interactions 2022)

generalized interactions (all invariant quartic interactions) for
multi-matrix models
V. Bonzom, V. Nador, A. T., arXiv:2209.02026J. Phys. A (2023)
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Take away message

purely combinatorial techniques can be used to study
physical mechanisms, such as the double scaling limit for
various tensor and multi-matrix models

ADRIAN TANASĂ Asymptotic expansion for random tensor models



A very good book on all these topics

combinatorics, quantum  

field theory and quantum  

gravity models

a d r i a n  ta n a s a

combinatorial 
physics

2

A. T., ”Combinatorial Physics”, Oxford Univ. Press (2021)
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Je vous remercie pour votre
attention !

Vă mulţumesc pentru atenţie!
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Comparison with the colored case

The dominant schemes differ:

for the colored model, for degree ω ∈ Z+, the dominant schemes
are associated to rooted binary trees with ω + 1 leaves (and ω − 1
inner nodes), where the root-leaf is occupied by a root-melon,
while the ω non-root leaves are occupied by the unique scheme of
degree 1.
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