Combinatorial Depth Measures

Patrick Schnider, ETH Zürich
CALIN, 27.2.2024

- H Hürich

Introduction

Tukey and Tverberg

Tukey depth:
Minimum number of data points in any closed halfspace containing query point q

Centerpoint theorem:

$$
\forall S \exists q: \operatorname{TD}(S, q) \geq \frac{|S|}{d+1}
$$

Tverberg depth:
Max. number of vertex disjoint simplices whose intersection contains q

Tverbergs theorem:
$\forall S \exists q: \operatorname{TvD}(S, q) \geq \frac{|S|}{d+1}$

Combinatorial Depth Measures

$$
\begin{gathered}
\rho: S^{\mathbb{R}^{d}} \times \mathbb{R}^{d} \rightarrow \mathbb{R}_{\geq 0} \\
(S, q) \mapsto \rho(S, q)
\end{gathered}
$$

"combinatorial": depends only on relative position of S and q (order type), not on distances

Standard depth in \mathbb{R}^{1} :

ElHzürich

A "bad" measure

Convex hull peeling depth:

depth 2

no deep query point

Super-additive Depth Measures

ρ is super-additive if
(1) $\forall S, q, p:|\rho(S, q)-\rho(S \cup\{p\}, q)| \leq 1$
(2) $\forall S, q: \rho(S, q)=0$ if $q \notin \operatorname{conv}(S)$
(3) $\forall S, q: \rho(S, q) \geq 1$ if $q \in \operatorname{conv}(S)$
(4) $\forall S_{1} \sqcup S_{2}=S: \rho(S, q) \geq \rho\left(S_{1}, q\right)+\rho\left(S_{2}, q\right)$

Theorem [S', '23]:
Let ρ be a super-additive depth measure. Then $\forall S, q$
$\operatorname{TD}(S, q) \geq \rho(S, q) \geq \operatorname{TvD}(S, q) \geq \frac{1}{d} \operatorname{TD}(S, q)$.

Central Depth Measures

ρ is central if
(1) $\forall S, q, p:|\rho(S, q)-\rho(S \cup\{p\}, q)| \leq 1$
(2) $\forall S, q: \rho(S, q)=0$ if $q \notin \operatorname{conv}(S)$
(3) $\forall S \exists q: \rho(S, q) \geq \frac{|S|}{d+1}$
(4) $\forall S, p, q: \rho(S \cup\{p\}, q) \geq \rho(S, q)$

Theorem [S', '23]:
Let ρ be a central measure. Then $\exists c(d)$ s.t. $\forall S, q$
$\operatorname{TD}(S, q) \geq \rho(S, q) \geq c(d) \cdot \operatorname{TD}(S, q)$.

Enclosing Depth k

Enclosing depth:

$\mathrm{ED}(S, q)=\max k$ s.t. q is k-enclosed

Lemma:
ρ central. Then
$\rho(S, q) \geq \operatorname{ED}(S, q)-(d+1)$.

Lemma:
$\exists c(d)$ s.t.
$\mathrm{ED}(S, q) \geq c(d) \cdot \operatorname{TD}(S, q)$.

ㅋHzürich

The 2D case

GHzürich

The 2D case

칵ürich

The 2D case

ЕНzürich

The 2D case

for every halfline: $b \geq r$

ЕНzürich

The 2D case

$\mathrm{ED}(S, q) \geq \frac{1}{3} \mathrm{TD}(S, q)$.

for every halfline: $b \geq r$

캐Hürich

The general case

Assume points are on sphere around q
Take witness-hyperplane for Tukey depth k
Project to larger side, color red and blue

for each half-space: $b \geq r$

Want:

The Same Type Lemma

Theorem [Bárány, Valtr, '98]:
Let X_{1}, \ldots, X_{m} be point sets in \mathbb{R}^{d}. Then there is a constant $c(d, m)$ and subsets $Y_{i} \subseteq X_{i}$ s.t.

- $\left|Y_{i}\right| \geq c \cdot\left|X_{i}\right|$ and
- each selection $y_{1} \in Y_{1}, \ldots, y_{m} \in Y_{m}$ has the same order type.

Constant Fraction Radon

Theorem [S', '23]:
Let $P=R \cup B$ be a point set in \mathbb{R}^{d} s.t. for every halfspace we have $b \geq r$. Then there is a constant $c(d)$ and subsets $R_{1}, \ldots, R_{a} \subseteq R$ and $B_{1}, \ldots, B_{b} \subseteq B$ s.t.

- $a+b=d+2$,
- $\left|R_{i}\right| \geq c \cdot|R|$ and $\left|B_{j}\right| \geq c \cdot|R|$ and
- for each selection
$r_{1} \in R_{1}, \ldots, r_{a} \in R_{a}, b_{1} \in B_{1}, \ldots, b_{b} \in B_{b}$ we have the sme order type and $\operatorname{conv}\left(r_{1}, \ldots, r_{a}\right) \cap \operatorname{conv}\left(b_{1}, \ldots, b_{b}\right) \neq \emptyset$.

Constant Fraction Radon in $\mathbb{R}^{d} \Rightarrow$ Enclosing Depth in \mathbb{R}^{d+1}

- H zürich

Radon in 2D

$|R| / 3$

캐zürich

Radon in 2D

Radon in 2D

Radon in 2D

Radon in 2D

Kirchberger: if the colors have a common intersection, then some $d+2$ elements do.

- H Hürich

Radon: the general case

$|R| / 3$

EIHzürich

Radon: the general case

EIHzürich

Radon: the general case

$\mathrm{ED} \geq c \cdot \mathrm{TD}$

캐Hürich

Radon: the general case

Conclusion

- Combinatorial depth measures are intimately related to fundamental results in discrete geometry
- Many related algorithmic questions:
- Complexity of finding a Centerpoint/Tverberg point
- Complexity of computing Enclosing depth in general dimension? (Known $O\left(n^{d^{2}}\right)$)
- Many depth measures are an approximation of Tukey depth
- Improve factors?

Thank you!

