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OEIS

OEIS now has over 300,000 sequences!

Our policy has been to include all interesting sequences, no matter

how obscure the reference. [N.J.A. Sloane and S. Plouffe, EIS, 1995]

[The EIS contains] the unrelenting cascade of numbers, [..]

lists Hard, Disallowed and Silly sequences. [Richard Guy, 1997]

Question 1: What makes an integer sequence combinatorial?

Question 2: What makes a combinatorial sequence nice?



Traditional Answers:

(1) A sequence is combinatorial if it counts combinatorial objects.

(2) Combinatorial sequence is nice if it is given by a nice formula.

(2′) The nicer the formula the nicer the sequence.

(2′′) Nice formulas can be efficiently computed.

Our Answers:

(1) A sequence is combinatorial if it counts combinatorial objects.

(1′) Objects are combinatorial if they can be verified by an algorithm.

(2) Combinatorial sequence is nice if the corresponding algorithm is efficient.

(2′) The algorithm efficient if it requires Const memory space.



More Precisely:

(3) A sequence {an} is combinatorial and nice if there exists a finite

set T of Wang tiles, so that an = # tilings of an n-rectangle.

Note: Here nice = algorithmically efficient.

Efficient means restrictions on the model of computation.

Motivation: Think of this as a special combinatorial interpretation.

When such an interpretation is found, it in itself can lead to better

understanding AND new algorithmic solutions.



Counting with Wang tiles

Fibonacci numbers:

12112

More generally: Wang tilings of a rectangle

n

T

Let an(T ) = the number of tilings of [1× n] with T .

Transfer matrix method:

A(t) =
∞
∑

n=0

ant
n =

P (t)

Q(t)



N-Rational Functions R1

Definition: Let R1 be the smallest set of functions F (x) which satisfies

(1) 0, x ∈ R1 ,

(2) F,G ∈ R1 =⇒ F +G, F ·G ∈ Rk ,

(3) F ∈ R1, F (0) = 0 =⇒ 1/(1− F ) ∈ R1 .

Note that all F ∈ R1 satisfy: F ∈ N[[x]], and F = P/Q, for some P,Q ∈ Z[x].

For example,
1

1− x− x2
and

x3

(1− x)4
∈ R1 .

Theorem [Schützenberger + folklore]

For every finite set T of Wang tiles, we have AT (x) ∈ R1.

Conversely, for every F (x) ∈ R1 there is a rational T , s.t. F (x) = AT (x).



N-rational functions of one variable:

Word of caution: R1 is already quite complicated, see [Gessel, 2003].

For example, take the following F,G ∈ N[[t]] :

F (t) =
t + 5t2

1 + t− 5t2 − 125t3
, G(t) =

1 + t

1 + t− 2t2 − 3t3
.

Then F /∈ R1 and G ∈ R1; neither of these are obvious.

The proof follows from results in [Berstel, 1971] and [Soittola, 1976], who completely

characterized class R1, see also [Katayama–Okamoto–Enomoto, 1978].



Wang tilings of a square

Let an(T ) = the number of tilings of [n× n] with T .

Theorem [Mennen–P., 2018+]

Number of tilings an(T ) is #EXP-complete.

In other words, essentially any function can be the number of tilings.



Catalan numbers

a

An example Catalan number matrix, and the corresponding lattice path.

Note: Can be implemented with (at most) 169 Wang tiles.

Note: Permutations and alternating permutations can be implemented

with at most 405 and 146410 Wang tiles, respectively.



Theorem (Garrabrant, P.)

The following functions count Wang Tilings of a square:

(1) The number of integer partitions of n,
(2) The number of set partitions of an n element set (ordered Bell numbers),
(3) The Catalan number Cn,
(4) The Motzkin number Mn.
(5) The number of Gessel walks of length n,
(6) n!,
(7) The number of alternating permutations Alt(n) of length n,
(8) The number of permutations of length n whose assents and descents

follow a given periodic sequence,
(9) The number D(n) of derangements of length n,
(10) The ménage numbers An,
(11) The Menger number L(k, n) of n by k Latin squares for any fixed k,
(12) The number Patk(n) of permutations of length n with no increasing

subsequence of length k,
(13) The number B(n) of Baxter permutations of length n,
(14) The number Alt(n) of alternating sign matrices of size n,
(15) The number G(n) of labeled connected graphs on n vertices.



Integer Partitions:

a

The matrix corresponding to the partition 42211.



Irrational Tilings of [1× n] rectangles

Fix ε ≥ 0 and a finite set T = {τ1, . . . , τk} of irrational tiles of height 1.

Let an = an(T, ε) the number of tilings of [1× (n + ε)] with T .

Observe: we can get algebraic g.f.’s AT (t).

[1× n]

α /∈ Q

ε = 0

1

2
− α 1

2
+ α

Here an =
(

2n
n

)

, A(t) = 1√
1−4t

.

Question: What else can we get?



Diagonals of Rational Functions

Let G ∈ Z[[x1, . . . , xk]]. A diagonal is a g.f. B(t) = ∑

n bnt
n, where

bn =
[

xn
1
· · · xnk

]

G(x1, . . . , xk).

Theorem: Every AT (t) ∈ F is a diagonal of a rational function P/Q,

for some polynomials P,Q ∈ Z[x1, . . . , xk].

For example,
(

2n

n

)

= [xnyn]
1

1− x− y
.

Proof idea: Say, τi = [1× αi], αi ∈ R. Let V = Q〈α1, . . . , αk〉, d = dim(V ).

We have natural maps ε 7→ (c1, . . . , cd), αi 7→ vi ∈ Zd ⊂ V .

Interpret irrational tilings as walks O → (n + c1, . . . , n + cd) with steps {v1, . . . , vk}.



Properties of Diagonals of Rational Functions

(1) must be D-finite, see [Stanley, 1980], [Gessel, 1981].

(2) when k = 2, must be algebraic, and

(2′) every algebraic B(t) is a diagonal of P (x, y)/Q(x, y), see [Furstenberg, 1967].

No surprise now that Catalan g.f. C(t), tC(t)2 − C(t) + 1 = 0, is a diagonal:

Cn = [xnyn]
y(1− 2xy − 2xy2)

1− x− 2xy − xy2
, Cn = [xnyn]

1− x/y

1− x− y
.

For the first formula, see [Rowland–Yassawi, 2014].



N-Rational Functions in many variables

Definition: Let Rk be the smallest set of functions F (x1, . . . , xk) which satisfies

(1) 0, x1, . . . , xk ∈ Rk ,

(2) F,G ∈ Rk =⇒ F +G, F ·G ∈ Rk ,

(3) F ∈ Rk, F (0) = 0 =⇒ 1/(1− F ) ∈ Rk .

Note that all F ∈ Rk satisfy: F ∈ N[[x1, . . . , xk]], and F = P/Q,

for some P,Q ∈ Z[x1, . . . , xk].

Let N be a class of diagonals of F ∈ Rk, for some k ≥ 1. For example,

∑

n

(

2n

n

)

tn ∈ N because
1

1− x− y
∈ R2 .



Main Theorem: F = N [Garrabrant, P., 2014]

Here F denote the class of g.f. AT (t) enumerating irrational tilings.

In other words, every tile counting function AT ∈ F is a diagonal

of an N-rational function F ∈ Rk, k ≥ 1, and vice versa.

Key Lemma:

Both F and N coincide with a class B of g.f. F (t) =
∑

n f(n)t
n,

where f : N → N is given as finite sums f =
∑

gj, and each gj is of the form

gj(m) =















∑

v∈Zdj

rj
∏

i=1

(

αij(v, n)

βij(v, n)

)

if m = pjn + kj ,

0 otherwise,

for some αij = aijv + a′ijn + a′′ij, βij = bijv + b′ijn + b′′ij, and pj, kj, rj, dj ∈ N.



Asymptotic applications

Corollary: There exist
∑

n fn,
∑

n gn ∈ F , s.t.

fn ∼
√
π

Γ
(

5

8

)

Γ
(

7

8

) 128n, gn ∼ Γ
(

3

4

)3

3
√
2π5/2

n−3/2 384n

Proof idea: Take

fn :=
n

∑

k=0

128n−k

(

4k

k

)(

3k

k

)

.

Note: We have bn ∼ Knβγn, where β ∈ N, and K, γ ∈ Q, for all
∑

n bnt
n = P/Q.

Conjecture: For every
∑

n fn ∈ F , we have fn ∼ Knβγn, where β ∈ Z/2, γ ∈ Q,

and K is a generalized period, see. [Kontsevich–Zagier, 2001].



Curious Conjecture on Catalan numbers:

We have:

C(t) /∈ F , where C(t) =
1−

√
1− 4t

2t
.

In other words, there is no set T of irrational tiles and ε ≥ 0, s.t.

an(T, ε) = Cn for all n ≥ 1, where Cn =
1

n + 1

(

2n

n

)

.



More on Catalan numbers

Recall

Cn ∼ 1√
π
n−3/2 4n.

Corollary: (from Main theorem) There exists

∑

n

fnt
n ∈ F such that fn ∼ 3

√
3

π
Cn.

Furthermore, ∀ǫ > 0, there exists
∑

n

fnt
n ∈ F such that fn ∼ λCn

for some λ ∈ [1− ǫ, 1 + ǫ].

Moral: Curious Conjecture cannot be proved via rough asymptotics.

Conjecture: There is no
∑

n fnt
n ∈ F , s.t. fn ∼ Cn.

Warning: This conjecture probably involves deep number theory.



More applications

Proposition: For every m ≥ 2, there is
∑

n fnt
n ∈ F , s.t.

fn = Cn mod m, for all n ≥ 1.

Proposition For every prime p ≥ 2, there is
∑

n gnt
n ∈ F , s.t.

ordp(gn) = ordp(Cn), for all n ≥ 1,

where ordp(N) is the largest power of p which divides N .

Moral: Elementary number theory does not help to prove the Curious Conjecture.

Note: For ordp(Cn), see [Kummer, 1852], [Deutsch–Sagan, 2006].

Proof idea: Take

fn =

(

2n

n

)

+ (m− 1)

(

2n

n− 1

)

.



Schützenberger’s principle

There is a general metamathematical principle that goes back to M.-P. Schützenberger and that

states the following: whenever a rational series in one variable counts a class of objects, then the

series is N-rational. This phenomenon has been observed on a large number of examples: gen-

erating series and zeta functions in combinatorics, Hilbert series of graded or filtered algebras,

growth series of monoids or of groups.

[Berstel, Reutenauer; 2008]

Open Problem: Suppose F ∈ F is rational. Does this imply that F ∈ R1?

If NO, this implies that Schützenberger’s principle is FALSE, i.e. there is a set of irrational tiles
which gives a combinatorial interpretation to a non-negative rational functions, which nonetheless is
not N-rational.



Thank you!


