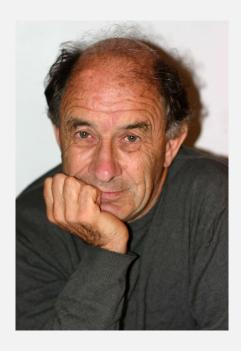


Quelques têtes connues

Avril 2020 - Aujourd'hui

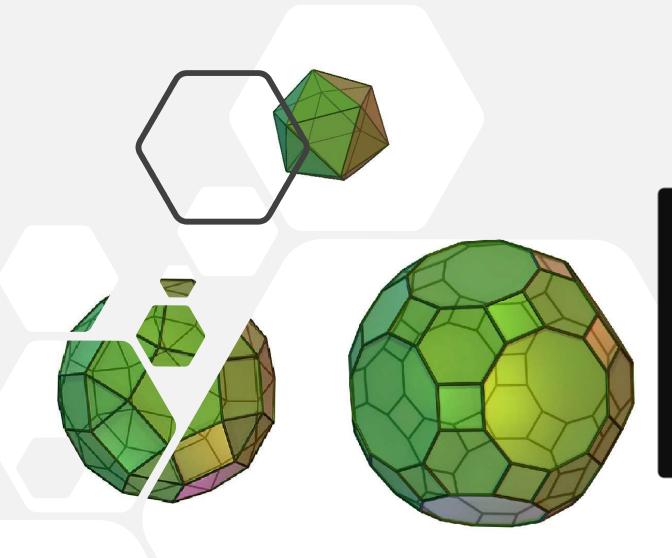
Entourage : Olivier Bodini, maître de stage

L. Pournin, P. Marchal (LAGA)



Vladimir Arnold : quel est le nombre de polytopes en nombre entier, quelle forme ont les grand ?

Imre Bàràny : l'équivalent logarithmique des polytopes



Généralités et dimension

2

Combinatoire, Analyse complexe, Géométrie...

Enoncé du problème

Enumérer puis chercher des propriétés asymptotiques des zonotopes en nombre entier.

Combinatoire analytique

Associer une fonction génératrice à une classe combinatoire (méthode symbolique)

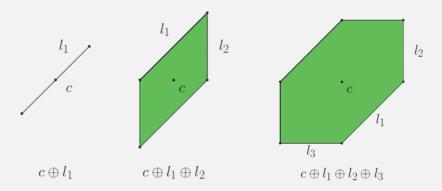
- $\mathbf{F}(z) = \sum_{0 \le k} a_k z^k$
- Injection dans la Fonction dans l'équation de construction algébrique

Transfert les propriétés combinatoires en calcul analytique

Les Zonotopes

Somme de Minkowski d'un ensemble de segment (les générateurs).

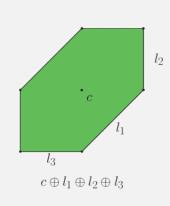
Simplification naturelle des polytopes en algorithmie



Construction des zonogones

On veut compter les zonotopes de largeur p et hauteur q

- 1. Un zonotope est équivalent à la liste de ses générateurs
- 2. Les générateurs sont des vecteurs sans direction.
 - On prend les segments [0,(x,y)] avec x≥0
- 3. Leur ordre n'est pas important
 - Multiset
- 4. Unicité de la construction
 - [0,(4,4)] ou 4 fois [0,(1,1)]
 - On prend les segments [0,(p,q)] avec p≥0
 et p ∧ q =1



$$Z(x,y) = \frac{1}{(1-x)(1-y)} \prod_{p \wedge q=1} \frac{1}{(1-x^p y^q)^2}$$

La Transformée de Mellin, pour simplifier les sommes et produits

Sous les hypothèses de régularité,

$$f^*(s) = \int_0^\infty f(t)t^{s-1}dt$$

Propriété harmonique

•
$$g(t) = \sum_{k=0}^{\infty} \lambda_k f(\mu_k t) \to g^*(s) = \left(\sum_{k=0}^{\infty} \lambda_k \mu_k^{-s}\right) f^*(s)$$

Pôle de la transformée

Si α est un pôle de f^* de partie réelle positive :

Comportement asymptotique

Alors au voisinage de 0,

$$f^*(s) = \frac{a}{(s-\alpha)^k}$$

$$f(t) \sim \frac{(-1)^{k-1} a}{(k-1)!} t^{-\alpha} \ln^{k-1}(t)$$

La Méthode du point col pour calculer les intégrales

But : estimer $\int_C e^{f(z)} dz$ avec f qui dépend d'un paramètre n.

 ${\cal C}$ est un chemin qui passe par ζ point col, ${\cal C}'$ est un bout du chemin qui comprend ζ

1. Négliger les queues

$$\int_{C \setminus C'} e^{f(z)} dz = o\left(\int_C e^{f(z)} dz\right)$$

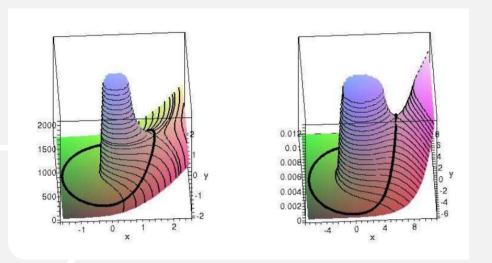
2. Approximer le centre

sur
$$C'$$
 on a $f(z) = f(\zeta) + \frac{f''(z)}{2}(z - \zeta)^2 + o(1)$

3. Rajouter les queues

$$\int_{C'} e^{\frac{f''(z)}{2}(z-\zeta)^2} dz \sim \int_0^\infty e^{\frac{f''(z)}{2}(z-\zeta)^2} dz$$

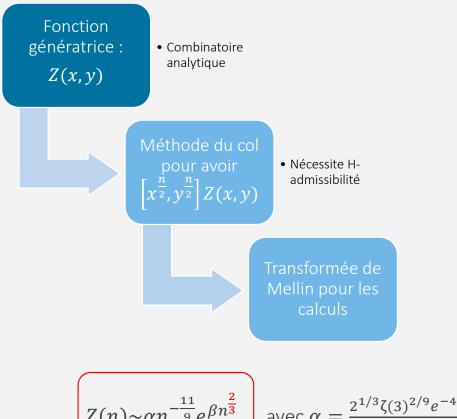
Alors on a :
$$\frac{1}{2i\pi} \int_C e^{f(z)} dz \sim \frac{e^{f(\zeta)}}{\sqrt{2\pi} f''(\zeta)}$$



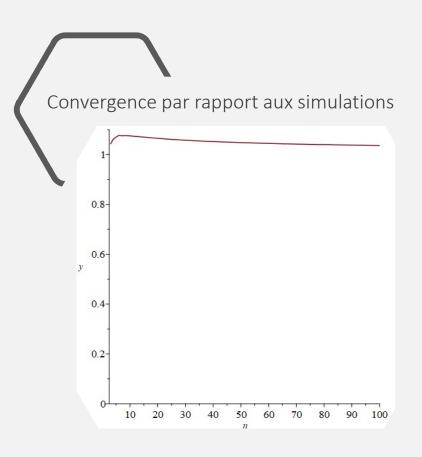
Utilisation principale:

Formule de Cauchy pour avoir l'équivalent des coefficients d'une série

Nombre asymptotique dans un carré de côté $\frac{n}{2}$



$$Z(n) \sim \alpha n^{-\frac{11}{9}} e^{\beta n^{\frac{2}{3}}}$$
 avec $\alpha = \frac{2^{1/3} \zeta(3)^{2/9} e^{-4\zeta'(-1)}}{3^{5/18} \pi^{16/9}}$ et $\beta = \frac{3^{4/3} \zeta(3)^{1/3}}{\pi^{2/3}}$



Beaucoup de propriétés asymptotiques découlent de cette méthode

Une propriété paramétrique sur les zonotopes = ajout de variables de comptage sur la fonction génératrice

Forme limite des zonotopes : $f(x) = \sqrt{2x} - x$

Nombre moyen de côté:

$$S(z) = (1-z)^{-2} \prod_{n>1} (1-z^n)^{-2\phi(n)}$$

$$F(u,z) = \prod_{n\geq 1} \left(1 + \sum_{k\geq 1} uz^{nk}\right)^{2\phi(n)}$$

$$\frac{[z^n] \frac{\partial}{\partial u} F(u,z)|_{u=1}}{[z^n] F(1,z)} = \left(\frac{\sqrt{3}n}{\zeta(3)\pi}\right)^{\frac{2}{3}}$$

Plus généralement, tout paramètre algébriquement constructible (diamètre, longueur du plus grand côté, nombre de zonotopes avec un nombre de côté paire...)

Une nouvelle correspondance pour nous aider

Pour calculer Z(x,y) et ses dérivées, il y a des sommes telles $\sum_{p \wedge q=n} p^i q^j$

•
$$\sum_{p \wedge q=n} p = \frac{\phi(n)n}{2}$$
 pour $i=1$ et $j=0$

• Dès $\sum_{p \wedge q = n} pq$, il n'y a plus de calcul exact

$$S_{N} = \sum_{\substack{p_{1} \land p_{2} \land \dots \land p_{n} = 1 \\ p_{1} + \dots + p_{n} = N}} p_{1}^{i_{1}} p_{2}^{i_{2}} \dots p_{n}^{i_{n}}$$

$$G(z) = \sum_{n} s_{N} z^{N}$$

$$\sum_{n} k^{i_{1} + \dots + i_{n}} G(z^{k}) = \frac{\prod_{k=1}^{n} A_{i_{k}}}{(1 - z)^{j+n}}$$

Transformation compatible avec la transformée de Mellin : $G^*(s) = \frac{1}{\zeta(s-i_1-\cdots-i_n)} \left(\frac{\prod_{k=1}^n A_{i_k}}{(1-z)^{j+n}}\right)^{\frac{1}{2}}$

Dimensions supérieures

• Dimension 3

$$Z(x, y, z)$$
= $(1 - x)^{-1}(1 - y)^{-1}(1$
- $z)^{-1} \prod_{\substack{p \land q = 1 \\ -x^p y^q z^r)^{-4}}} (1 - x^p y^q)^{-2}(1 - x^p z^q)^{-2}(1 - z^p y^q)^{-2} \prod_{\substack{p \land q \land r = 1}}} (1$

Nombre de zonotopes dans un cube de côté $\frac{n}{3}$:

$$Z\left(\frac{n}{3}\right) = \alpha \ n^{13/8} e^{\beta \ n^{3/4}}$$

Cas général

La formule explicite et les calculs sont très lourds

Stratégie actuelle :

Démontrer l'existence de l'asymptotique, ainsi que de la forme limite

