

Combinatorial aspects of fullerenes and quadrangulations of surfaces

Matěj Stehlík

Fullerene molecules



- ► Fullerenes are spherically shaped molecules built entirely from carbon atoms.
- ► Each carbon atom has bonds to exactly three other carbon atoms.
- ► The carbon atoms form rings of either five atoms (pentagons) or six atoms (hexagons).
- ▶ Osawa predicted the existence of fullerene molecules in 1970.
- ► First fullerene molecule (C₆₀) produced in small quantities by Curl, Kroto and Smalley in 1985.

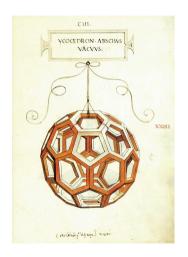
Fullerene molecules

- ► Fullerenes are spherically shaped molecules built entirely from carbon atoms.
- ► Each carbon atom has bonds to exactly three other carbon atoms.
- ► The carbon atoms form rings of either five atoms (pentagons) or six atoms (hexagons).
- ▶ Osawa predicted the existence of fullerene molecules in 1970.
- ► First fullerene molecule (C₆₀) produced in small quantities by Curl, Kroto and Smalley in 1985.

Named after Buckminster Fuller (1895–1983)

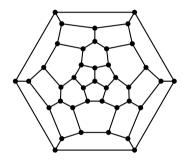


Fullerenes were known to Leonardo and Dürer





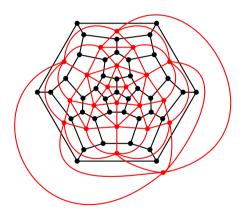
Fullerene graphs and their duals



A fullerene graph is:

- ▶ plane
- ► cubic
- ▶ bridgeless
- ▶ all faces have size 5 or 6.

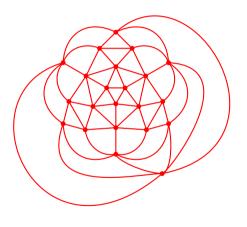
Fullerene graphs and their duals



A fullerene graph is:

- ▶ plane
- ► cubic
- ► bridgeless
- ▶ all faces have size 5 or 6.

Fullerene graphs and their duals



A fullerene graph is:

- ▶ plane
- ► cubic
- bridgeless
- ▶ all faces have size 5 or 6.

Its dual is:

- ▶ plane
- ▶ triangulation
- ▶ no loops or multiple edges
- ▶ all vertices have degree 5 or 6.

Why study of fullerene graphs?

Central question

Do the mathematical properties of the graph predict the chemical properties of the molecule?

- ► Fullerene graphs corresponding to chemically stable fullerene molecules seem to satisfy certain properties.
- ► For instance, the pentagonal faces do not touch ('isolated pentagon rule').

Odd cycle transversals of fullerenes

- ▶ Stable fullerenes also seem to be 'far from bipartite'.
- ▶ Let $\tau_{odd}(G)$ be the minimum number of edges whose removal results in a bipartite graph.

Theorem (Došlić and Vukičević 2007)

If *G* is a fullerene graph on $n = 60k^2$ vertices with the full icosahedral automorphism group, then $\tau_{\rm odd}(G) = 12k = \sqrt{12n/5}$.

Conjecture (Došlić and Vukičević 2007)

If *G* is a fullerene graph on *n* vertices, then $\tau_{\text{odd}}(G) \leqslant \sqrt{12n/5}$.

Odd cycle transversals in fullerenes

Theorem (Faria, Klein and MS 2012)

If *G* is a fullerene graph on *n* vertices, then $\tau_{\text{odd}}(G) \leq \sqrt{12n/5}$. Equality holds iff $n = 60k^2$ and *G* has the full icosahedral automorphism group.

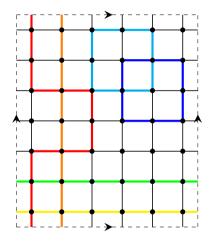
- ► Extended to 3-connected cubic plane graph with all faces of size at most 6 (Nicodemos and MS 2018).
- ► These graphs (and their dual triangulations) correspond to surfaces of genus 0 of non-negative curvature.
- ightharpoonup au_{odd} can be linear in n if we allow faces of size 7 (negative curvature).

Even-faced graphs and quadrangulations

- ▶ An even-faced graph in a surface *S*: embedding of a graph in *S* such that every face is bounded by an even number of edges.
- ► A quadrangulation of a surface S: embedding of a graph in S such that every face is bounded by 4 edges.

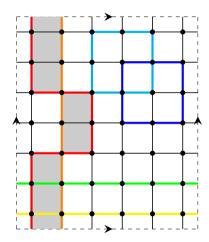
- ► Consider a graph *G* embedded in a surface *S*.
- ► Two cycles are homologous if their symmetric difference is the boundary of a set of faces.

Observation



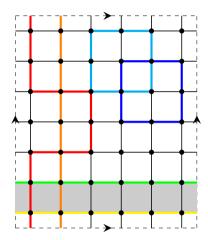
- ► Consider a graph *G* embedded in a surface *S*.
- ► Two cycles are homologous if their symmetric difference is the boundary of a set of faces.

Observation



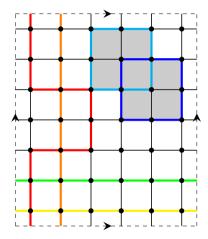
- ► Consider a graph *G* embedded in a surface *S*.
- ► Two cycles are homologous if their symmetric difference is the boundary of a set of faces.

Observation



- ► Consider a graph *G* embedded in a surface *S*.
- ► Two cycles are homologous if their symmetric difference is the boundary of a set of faces.

Observation



Even-faced graphs in the projective plane

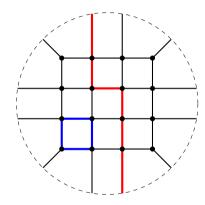
Lemma

Projective plane $\mathbb{R}P^2$ has two homology classes:

- ► contractible cycles;
- ► non-contractible cycles.

Corollary

An even-faced graph in $\mathbb{R}P^2$ is non-bipartite if and only it has a non-contractible odd cycle.



Graphs with pairwise intersecting odd cycles

Lemma

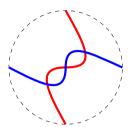
Two non-contractible simple closed curves in $\mathbb{R}P^2$ intersect an odd number of times.

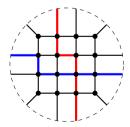
Corollary

The odd cycles in an even-faced graph in $\mathbb{R}P^2$ are pairwise intersecting.

Theorem (Lovász)

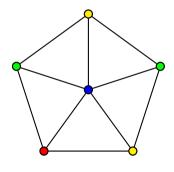
The odd cycles in an internally 4-connected graph G are pairwise intersecting iff G has an even-faced embedding in $\mathbb{R}P^2$ or G belongs to a few exceptional classes.





Graph colouring and the chromatic number

- ► Colouring of *G*: assignment of colours to the vertices of *G* such that adjacent vertices receive different colours.
- ► Smallest number of colours: chromatic number $\chi(G)$.
- ▶ If $\chi(G) \leq 2$, we say *G* is bipartite.
- ▶ Equivalent to *G* having no odd cycles.
- ▶ If $\chi(G e) < \chi(G)$ for any edge e, G is critical.
- ▶ If $\chi(G v) < \chi(G)$ for any vertex v, G is vertex-critical.



Colouring quadrangulations

Theorem (Hutchinson 1995)

If G is an even-faced graph in an orientable surface and all non-contractible cycles are sufficiently long, then $\chi(G) \leq 3$.

If G is a quadrangulation of $\mathbb{R}P^2$, then $\chi(G) = 2$ or $\chi(G) = 4$.

Question (Youngs 1996)

Can Youngs's theorem be extended to higher dimension?

A (very) useful tool from algebraic topology

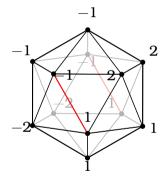
Borsuk–Ulam Theorem (Borsuk 1933)

For every continuous mapping $f: S^n \to \mathbb{R}^n$ there exists a point $x \in S^n$ with f(x) = f(-x).

Equivalent formulation

There is no continuous map $f: S^n \to S^{n-1}$ that is equivariant, i.e., f(-x) = -f(x) for all $x \in S^n$.

A discrete version of Borsuk-Ulam

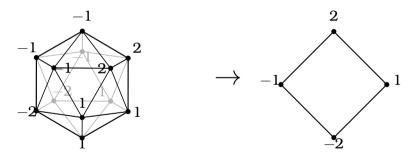


Tucker's lemma (Tucker 1946)

- ▶ Let K be a centrally symmetric triangulation of S^n .
- ▶ Let $\lambda: V(K) \to \{\pm 1, \dots, \pm n\}$ be a labelling such that $\lambda(-v) = -\lambda(v)$ for all $v \in V(K)$.
- ► Then there exists an edge $\{u, v\}$ s.t. $\lambda(u) + \lambda(v) = 0$.

Equivalence of Tucker and Borsuk-Ulam

▶ Tucker follows from Borsuk–Ulam by considering λ as a simplicial map from K to the boundary complex of the n-dimensional cross-polytope, and extending it to a continuous map.

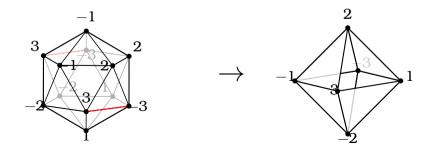


▶ Borsuk–Ulam follows from Tucker by taking sufficiently fine triangulations of S^n and using compactness.

Another discrete version of Borsuk-Ulam

(A corollary of) Fan's lemma

- ▶ Let K be a centrally symmetric triangulation of S^n .
- ▶ Let $\lambda: V(K) \to \{\pm 1, \dots, \pm (n+1)\}$ be a labelling such that $\lambda(-v) = -\lambda(v)$ for all $v \in V(K)$, and every n-simplex has vertices of both signs.
- ▶ Then there exists an edge $\{u, v\} \in K$ s.t. $\lambda(u) + \lambda(v) = 0$.



18/31

An application of Fan's lemma

- ▶ Let K be a centrally symmetric triangulation of S^n .
- ► Consider the graph consisting of the vertices and edges of *K*.
- \blacktriangleright Label the vertices + or so that
 - antipodal vertices receive opposite labels;
 - every facet is incident to at least one + and at least one -.
- ▶ Delete all edges between vertices of the same sign.
- ► Identify all pairs of antipodal vertices.
- ▶ The resulting graph is a (non-bipartite) quadrangulation of $\mathbb{R}P^n$.

Theorem (Kaiser and MS 2015)

Every quadrangulation of $\mathbb{R}P^n$ is at least (n+2)-chromatic, unless it is bipartite.

Generalised Mycielski and projective quadrangulations

- ► The Mycielski construction: one of the earliest constructions of triangle-free graphs of arbitrarily high chromatic number
- ► Generalised in 1985 by Stiebitz.
- ► Generalised Mycielski graphs are non-bipartite projective quadrangulations.
- ► Their chromatic number can be deduced from the generalisation of Youngs's theorem.

A question of Erdős

- ► Graphs without short odd cycles are 'locally bipartite'.
- \blacktriangleright How long can the shortest odd cycle be in a k-chromatic graph?

Question (Erdős 1974)

Does every 4-chromatic *n*-vertex graph G have an odd cycle of length $O(\sqrt{n})$?

- ▶ YES (Kierstead, Szemerédi and Trotter 1984)
- ▶ Generalised Mycielski graphs provide examples of 4-chromatic n-vertex graphs whose shortest odd cycles have length $\frac{1}{2}(1+\sqrt{8n-7})$.

A refinement of Erdős's question

Conjecture (Esperet, MS 2018)

Every 4-chromatic *n*-vertex graph has an odd cycle of length at most $\frac{1}{2}(1+\sqrt{8n-7})$.

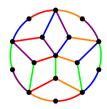
Theorem (Esperet, MS 2018)

The conjecture holds if all odd cycles are pairwise intersecting.

► The proof combines Lovász's characterisation of graphs with pairwise intersecting odd cycles and the following theorem.

Theorem (Lins 1981)

The minimum length of a non-contractible cycle in an even-faced graph in $\mathbb{R}P^2$ equals the maximum size of a packing of non-contractible co-cycles.



Kneser graph
$$KG(n, k)$$

$$\uparrow \qquad k \ge 1$$
 $n \ge 2k$

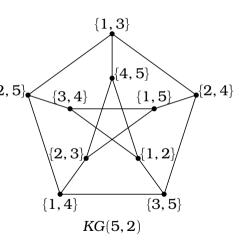
Definition

- ▶ Vertices: all k-subsets of $\{1, \ldots, n\}$
- ► Edges between disjoint subsets

Conjecture (Kneser 1955)

$$\chi(KG(n,k)) = n - 2k + 2$$

- ► Proved by Lovász in 1977 using the Borsuk–Ulam theorem
- ► Schrijver sharpened the result in 1978



Kneser graph
$$KG(n, k)$$
 $n \ge 2k$
 $k \ge 1$

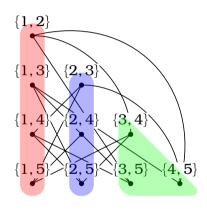
Definition

- ▶ Vertices: all k-subsets of $\{1, \ldots, n\}$
- ► Edges between disjoint subsets

Conjecture (Kneser 1955)

$$\chi(KG(n,k)) = n - 2k + 2$$

- ► Proved by Lovász in 1977 using the Borsuk–Ulam theorem
- ► Schrijver sharpened the result in 1978



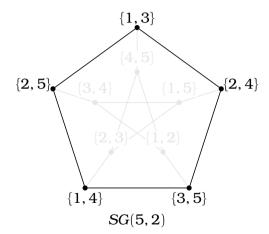
KG(5, 2)

Schrijver graph SG(n, k)

▶ Subgraph of KG(n, k) induced by k-subsets of $\{1, \ldots, n\}$ without consecutive elements modulo n

Theorem (Schrijver 1978)

 $\chi(SG(n, k)) = n - 2k + 2$ and SG(n, k) is vertex-critical



Schrijver graphs and quadrangulations

Theorem (Kaiser and MS 2015)

There is a quadrangulation of $\mathbb{R}P^{n-2k}$ homomorphic to SG(n, k).

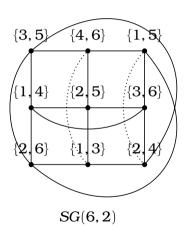
Theorem (Kaiser and MS 2017)

SG(n,k) contains a spanning subgraph that is a quadrangulation of $\mathbb{R}P^{n-2k}$.

Theorem (Simonyi and Tardos 2019)

SG(2k+2,k) contains a spanning subgraph that is a quadrangulation of the Klein bottle.

SG(n, k) is not edge-critical in general



Problem

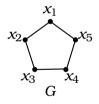
Give a simple definition of an (n-2k+2)-chromatic edge-critical subgraph of SG(n,k).

- ► Case k = 2 done (Kaiser and MS 2020).
- ▶ The graph is a non-bipartite quadrangulation of $\mathbb{R}P^{n-4}$.

A connection between graph theory and commutative algebra

Graph G

 \leftrightarrow Square-free unmixed height 2 monomial ideal, called the cover ideal of G



$$I = \langle x_1, x_2 \rangle \cap \langle x_2, x_3 \rangle \cap \langle x_3, x_4 \rangle \cap \langle x_4, x_5 \rangle \cap \langle x_5, x_1 \rangle$$

= $\langle x_1 x_2 x_4, x_1 x_3 x_4, x_1 x_3 x_5, x_2 x_3 x_5, x_2 x_4 x_5 \rangle$

Monomial ideals

- ▶ Let $R = k[x_1, ..., x_n]$ be a polynomial ring over a field k.
- \blacktriangleright An ideal in *R* is monomial if it is generated by a set of monomials.
- ▶ A monomial ideal is square-free if it has a generating set of monomials where the exponent of each variable is at most 1.
- ▶ Given an ideal I of R, a prime ideal P is associated to I if there exists an element $m \in R$ such that $P = I : \langle m \rangle = \{r \in R \mid r \langle m \rangle \subseteq I\}$.
- ▶ The set of associated primes is denoted by Ass(I).

Example

If *I* is the cover ideal of the 5-cycle, then

$$Ass(I) = \{\langle x_1, x_2 \rangle, \langle x_2, x_3 \rangle, \langle x_3, x_4 \rangle, \langle x_4, x_5 \rangle, \langle x_5, x_1 \rangle\}.$$

The persistence conjecture

- ▶ Brodmann (1979) showed that $Ass(I^s) = Ass(I^{s+1})$ for all sufficiently large s.
- ▶ An ideal *I* has the persistence property if $Ass(I^s) \subseteq Ass(I^{s+1})$ for all $s \ge 1$.

Example

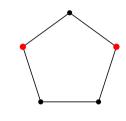
If I is the cover ideal of the 5-cycle, then $\mathrm{Ass}(I^2) = I \cup \{\langle x_1, x_2, x_3, x_4, x_5 \rangle\}$, and $\mathrm{Ass}(I^s) = \mathrm{Ass}(I^{s+1})$ for all $s \geq 2$. So I has the persistence property.

Persistence conjecture

All square-free monomial ideals have the persistence property.

A conjecture on critical graphs

- ▶ To replicate a vertex $w \in V(G)$, add a copy w' of w and make it adjacent to w and all its neighbours.
- ▶ Let G^W be the graph obtained from G by replicating the vertices in W (order is irrelevant).



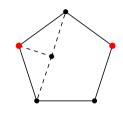
Conjecture (Francisco, Hà and Van Tuyl 2010)

For any positive integer k and any k-critical graph G, there is a set $W \subseteq V(G)$ such that G^W is (k+1)-critical.

► Implies the persistence conjecture.

A conjecture on critical graphs

- ▶ To replicate a vertex $w \in V(G)$, add a copy w' of w and make it adjacent to w and all its neighbours.
- ▶ Let G^W be the graph obtained from G by replicating the vertices in W (order is irrelevant).



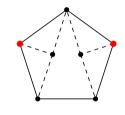
Conjecture (Francisco, Hà and Van Tuyl 2010)

For any positive integer k and any k-critical graph G, there is a set $W \subseteq V(G)$ such that G^W is (k+1)-critical.

► Implies the persistence conjecture.

A conjecture on critical graphs

- ▶ To replicate a vertex $w \in V(G)$, add a copy w' of w and make it adjacent to w and all its neighbours.
- ▶ Let G^W be the graph obtained from G by replicating the vertices in W (order is irrelevant).



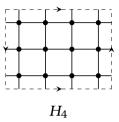
Conjecture (Francisco, Hà and Van Tuyl 2010)

For any positive integer k and any k-critical graph G, there is a set $W \subseteq V(G)$ such that G^W is (k+1)-critical.

► Implies the persistence conjecture.

A counterexample

- ▶ For $n \ge 3$, let H_n be the $3 \times n$ grid embedded in the Klein bottle.
- ▶ $\chi(H_n) = 4$ and H_n is critical for all $n \ge 4$ (Gallai 1963).



Theorem (Kaiser, MS and Škrekovski 2014)

For any $n \ge 4$ and any $W \subseteq V(H_n)$, the graph H_n^W is not 5-critical.

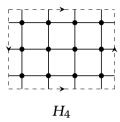
Theorem (Kaiser, MS and Škrekovski 2014)

The cover ideal of H_4 does not satisfy the persistence property.

▶ The cover ideal of H_4 also gives a negative answer to a question of Herzog and Hibi (2005) about the depth function of square-free monomial ideals.

A counterexample

- ▶ For $n \ge 3$, let H_n be the $3 \times n$ grid embedded in the Klein bottle.
- ▶ $\chi(H_n) = 4$ and H_n is critical for all $n \ge 4$ (Gallai 1963).



Theorem (Kaiser, MS and Škrekovski 2014)

For any $n \ge 4$ and any $W \subseteq V(H_n)$, the graph H_n^W is not 5-critical.

Theorem (Kaiser, MS and Škrekovski 2014)

The cover ideal of H_4 does not satisfy the persistence property.

The cover ideal of H_4 also gives a negative answer to a question of Herzog and Hibi (2005) about the depth function of square-free monomial ideals.