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Fullerene molecules

I Fullerenes are spherically shaped
molecules built entirely from
carbon atoms.

I Each carbon atom has bonds to
exactly three other carbon atoms.

I The carbon atoms form rings of
either five atoms (pentagons) or
six atoms (hexagons).

I Osawa predicted the existence of
fullerene molecules in 1970.

I First fullerene molecule (C60)
produced in small quantities by
Curl, Kroto and Smalley in 1985.
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Named after Buckminster Fuller (1895–1983)

3/31



Fullerenes were known to Leonardo and Dürer
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Fullerene graphs and their duals

A fullerene graph is:
I plane
I cubic
I bridgeless
I all faces have size 5 or 6.

Its dual is:
I plane
I triangulation
I no loops or multiple edges
I all vertices have degree 5 or 6.
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Why study of fullerene graphs?

Central question
Do the mathematical properties of the graph predict the chemical
properties of the molecule?

I Fullerene graphs corresponding to chemically stable fullerene
molecules seem to satisfy certain properties.

I For instance, the pentagonal faces do not touch (‘isolated pentagon
rule’).
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Odd cycle transversals of fullerenes

I Stable fullerenes also seem to be ‘far from bipartite’.
I Let τodd(G) be the minimum number of edges whose removal results

in a bipartite graph.

Theorem (Došlić and Vukičević 2007)
If G is a fullerene graph on n = 60k2 vertices with the full icosahedral
automorphism group, then τodd(G) = 12k =

√
12n/5.

Conjecture (Došlić and Vukičević 2007)
If G is a fullerene graph on n vertices, then τodd(G) 6

√
12n/5.

7/31



Odd cycle transversals in fullerenes

Theorem (Faria, Klein and MS 2012)
If G is a fullerene graph on n vertices, then τodd(G) 6

√
12n/5. Equality

holds iff n = 60k2 and G has the full icosahedral automorphism group.

I Extended to 3-connected cubic plane graph with all faces of size at
most 6 (Nicodemos and MS 2018).

I These graphs (and their dual triangulations) correspond to surfaces
of genus 0 of non-negative curvature.

I τodd can be linear in n if we allow faces of size 7 (negative curvature).
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Even-faced graphs and quadrangulations

I An even-faced graph in a
surface S: embedding of a
graph in S such that every face
is bounded by an even number
of edges.

I A quadrangulation of a surface
S: embedding of a graph in S
such that every face is bounded
by 4 edges.
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Parity of cycles in even-faced graphs

I Consider a graph G embedded
in a surface S.

I Two cycles are homologous if
their symmetric difference is the
boundary of a set of faces.

Observation
The length of homologous cycles in
an even-faced graph has the same
parity.
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Even-faced graphs in the projective plane

Lemma
Projective plane RP2 has two
homology classes:
I contractible cycles;
I non-contractible cycles.

Corollary
An even-faced graph in RP2 is
non-bipartite if and only it has a
non-contractible odd cycle.
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Graphs with pairwise intersecting odd cycles

Lemma
Two non-contractible simple closed curves
in RP2 intersect an odd number of times.

Corollary
The odd cycles in an even-faced graph in
RP2 are pairwise intersecting.

Theorem (Lovász)
The odd cycles in an internally 4-connected
graph G are pairwise intersecting iff G has
an even-faced embedding in RP2 or G
belongs to a few exceptional classes.
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Graph colouring and the chromatic number

I Colouring of G: assignment of colours
to the vertices of G such that adjacent
vertices receive different colours.

I Smallest number of colours: chromatic
number χ(G).

I If χ(G) 6 2, we say G is bipartite.
I Equivalent to G having no odd cycles.
I If χ(G − e) < χ(G) for any edge e, G is

critical.
I If χ(G − v) < χ(G) for any vertex v, G is

vertex-critical.
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Colouring quadrangulations

Theorem (Hutchinson 1995)
If G is an even-faced graph in an orientable
surface and all non-contractible cycles are
sufficiently long, then χ(G) 6 3.

Theorem (Youngs 1996)
If G is a quadrangulation of RP2, then χ(G) = 2 or
χ(G) = 4.

Question (Youngs 1996)
Can Youngs’s theorem be extended to higher
dimension?
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A (very) useful tool from algebraic topology

Borsuk–Ulam Theorem (Borsuk
1933)
For every continuous mapping
f : Sn → Rn there exists a point
x ∈ Sn with f (x) = f (−x).

Equivalent formulation
There is no continuous map
f : Sn → Sn−1 that is equivariant,
i.e., f (−x) = −f (x) for all x ∈ Sn.
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A discrete version of Borsuk–Ulam
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Tucker’s lemma (Tucker 1946)

I Let K be a centrally symmetric
triangulation of Sn.

I Let λ : V (K)→ {±1, . . . ,±n} be a
labelling such that
λ(−v) = −λ(v) for all v ∈ V (K).

I Then there exists an edge {u, v}
s.t. λ(u) + λ(v) = 0.
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Equivalence of Tucker and Borsuk–Ulam

I Tucker follows from Borsuk–Ulam by considering λ as a simplicial
map from K to the boundary complex of the n-dimensional
cross-polytope, and extending it to a continuous map.
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I Borsuk–Ulam follows from Tucker by taking sufficiently fine
triangulations of Sn and using compactness.

17/31



Another discrete version of Borsuk–Ulam

(A corollary of) Fan’s lemma

I Let K be a centrally symmetric triangulation of Sn.
I Let λ : V (K)→ {±1, . . . ,±(n + 1)} be a labelling such that
λ(−v) = −λ(v) for all v ∈ V (K), and every n-simplex has vertices of
both signs.

I Then there exists an edge {u, v} ∈ K s.t. λ(u) + λ(v) = 0.
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An application of Fan’s lemma

I Let K be a centrally symmetric triangulation of Sn.
I Consider the graph consisting of the vertices and edges of K.
I Label the vertices + or − so that

� antipodal vertices receive opposite labels;
� every facet is incident to at least one + and at least one −.

I Delete all edges between vertices of the same sign.
I Identify all pairs of antipodal vertices.
I The resulting graph is a (non-bipartite) quadrangulation of RPn.

Theorem (Kaiser and MS 2015)
Every quadrangulation of RPn is at least (n + 2)-chromatic, unless it is
bipartite.
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Generalised Mycielski and projective quadrangulations

I The Mycielski construction: one
of the earliest constructions of
triangle-free graphs of
arbitrarily high chromatic
number

I Generalised in 1985 by Stiebitz.
I Generalised Mycielski graphs

are non-bipartite projective
quadrangulations.

I Their chromatic number can be
deduced from the generalisation
of Youngs’s theorem.
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A question of Erdős

I Graphs without short odd cycles are ‘locally bipartite’.
I How long can the shortest odd cycle be in a k-chromatic graph?

Question (Erdős 1974)
Does every 4-chromatic n-vertex graph G have an odd cycle of length
O(
√

n)?

I YES (Kierstead, Szemerédi and Trotter 1984)
I Generalised Mycielski graphs provide examples of 4-chromatic

n-vertex graphs whose shortest odd cycles have length
1
2(1 +

√
8n − 7).
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A refinement of Erdős’s question

Conjecture (Esperet, MS 2018)
Every 4-chromatic n-vertex graph has an odd cycle of length at most
1
2(1 +

√
8n − 7).

Theorem (Esperet, MS 2018)
The conjecture holds if all odd cycles are pairwise intersecting.

I The proof combines Lovász’s characterisation of graphs with
pairwise intersecting odd cycles and the following theorem.

Theorem (Lins 1981)
The minimum length of a non-contractible
cycle in an even-faced graph in RP2 equals
the maximum size of a packing of
non-contractible co-cycles.

22/31



Kneser graph KG(n, k)

n > 2k

k > 1

Definition

I Vertices: all k-subsets of
{1, . . . , n}

I Edges between disjoint subsets

Conjecture (Kneser 1955)
χ(KG(n, k)) = n − 2k + 2

I Proved by Lovász in 1977 using
the Borsuk–Ulam theorem

I Schrijver sharpened the result
in 1978

{1, 3}

{2, 5}

{1, 4} {3, 5}

{2, 4}
{4, 5}

{3, 4}

{2, 3} {1, 2}

{1, 5}

KG(5, 2)
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Schrijver graph SG(n, k)

I Subgraph of KG(n, k) induced
by k-subsets of {1, . . . , n}
without consecutive elements
modulo n

Theorem (Schrijver 1978)
χ(SG(n, k)) = n − 2k + 2 and
SG(n, k) is vertex-critical
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{2, 4}

SG(5, 2)
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Schrijver graphs and quadrangulations

Theorem (Kaiser and MS 2015)
There is a quadrangulation of RPn−2k homomorphic to SG(n, k).

Theorem (Kaiser and MS 2017)
SG(n, k) contains a spanning subgraph that is a quadrangulation of
RPn−2k.

Theorem (Simonyi and Tardos 2019)
SG(2k + 2, k) contains a spanning subgraph that is a quadrangulation of
the Klein bottle.
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SG(n, k) is not edge-critical in general

{1, 4} {2, 5} {3, 6}

{3, 5} {4, 6} {1, 5}

{2, 6} {1, 3} {2, 4}

SG(6, 2)

Problem
Give a simple definition of an
(n − 2k + 2)-chromatic edge-critical
subgraph of SG(n, k).

I Case k = 2 done (Kaiser and MS
2020).

I The graph is a non-bipartite
quadrangulation of RPn−4.
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A connection between graph theory and commutative algebra

Graph G ↔ Square-free unmixed height 2 monomial ideal,
called the cover ideal of G

x1

x2

x3 x4

x5

G

I = 〈x1, x2〉 ∩ 〈x2, x3〉 ∩ 〈x3, x4〉 ∩ 〈x4, x5〉 ∩ 〈x5, x1〉
= 〈x1x2x4, x1x3x4, x1x3x5, x2x3x5, x2x4x5〉
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Monomial ideals

I Let R = k[x1, . . . , xn ] be a polynomial ring over a field k.
I An ideal in R is monomial if it is generated by a set of monomials.
I A monomial ideal is square-free if it has a generating set of

monomials where the exponent of each variable is at most 1.
I Given an ideal I of R, a prime ideal P is associated to I if there exists

an element m ∈ R such that P = I : 〈m〉 = {r ∈ R | r〈m〉 ⊆ I}.
I The set of associated primes is denoted by Ass(I).

Example
If I is the cover ideal of the 5-cycle, then

Ass(I) = {〈x1, x2〉, 〈x2, x3〉, 〈x3, x4〉, 〈x4, x5〉, 〈x5, x1〉}.

28/31



The persistence conjecture

I Brodmann (1979) showed that Ass(Is) = Ass(Is+1) for all sufficiently
large s.

I An ideal I has the persistence property if Ass(Is) ⊆ Ass(Is+1) for all
s > 1.

Example
If I is the cover ideal of the 5-cycle, then Ass(I2) = I ∪ {〈x1, x2, x3, x4, x5〉},
and Ass(Is) = Ass(Is+1) for all s > 2. So I has the persistence property.

Persistence conjecture
All square-free monomial ideals have the persistence property.
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A conjecture on critical graphs

I To replicate a vertex w ∈ V (G), add a
copy w ′ of w and make it adjacent to w
and all its neighbours.

I Let GW be the graph obtained from G
by replicating the vertices in W (order
is irrelevant).

Conjecture (Francisco, Hà and Van Tuyl 2010)
For any positive integer k and any k-critical graph G, there is a set
W ⊆ V (G) such that GW is (k + 1)-critical.

I Implies the persistence conjecture.
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A counterexample

I For n > 3, let Hn be the 3× n grid
embedded in the Klein bottle.

I χ(Hn) = 4 and Hn is critical for all n > 4
(Gallai 1963).

H4

Theorem (Kaiser, MS and Škrekovski 2014)
For any n > 4 and any W ⊆ V (Hn), the graph HW

n is not 5-critical.

Theorem (Kaiser, MS and Škrekovski 2014)
The cover ideal of H4 does not satisfy the persistence property.

I The cover ideal of H4 also gives a negative answer to a question of
Herzog and Hibi (2005) about the depth function of square-free
monomial ideals.
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I The cover ideal of H4 also gives a negative answer to a question of
Herzog and Hibi (2005) about the depth function of square-free
monomial ideals. Merci !
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