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Fullerene molecules

Fullerenes are spherically shaped
molecules built entirely from
carbon atoms.

Each carbon atom has bonds to
exactly three other carbon atoms.

The carbon atoms form rings of
either five atoms (pentagons) or
six atoms (hexagons).

Osawa predicted the existence of
fullerene molecules in 1970.

First fullerene molecule (Cgg)
produced in small quantities by
Curl, Kroto and Smalley in 1985.
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Named after Buckminster Fuller (1895-1983)
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Fullerenes were known to Leonardo and Diirer
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Fullerene graphs and their duals

A fullerene graph is:
» plane
» cubic
» bridgeless
» all faces have size 5 or 6.
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Fullerene graphs and their duals

A fullerene graph is:
» plane
» cubic
» bridgeless
» all faces have size 5 or 6.
Its dual is:
» plane
» triangulation
» no loops or multiple edges
» all vertices have degree 5 or 6.
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Why study of fullerene graphs?

Central question

Do the mathematical properties of the graph predict the chemical
properties of the molecule?

» Fullerene graphs corresponding to chemically stable fullerene
molecules seem to satisfy certain properties.

» For instance, the pentagonal faces do not touch (‘isolated pentagon
rule’).
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0Odd cycle transversals of fullerenes

» Stable fullerenes also seem to be ‘far from bipartite’.
» Let Toqq(G) be the minimum number of edges whose removal results
in a bipartite graph.
Theorem (Dosli¢ and Vukiceviéc 2007)

If G is a fullerene graph on n = 60k2 vertices with the full icosahedral
automorphism group, then t,q4(G) = 12k = /12n/5.

Conjecture (Dosli¢c and Vukicevic 2007)
If G is a fullerene graph on n vertices, then t,44(G) < /12n/5.
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0Odd cycle transversals in fullerenes

Theorem (Faria, Klein and MS 2012)

If G is a fullerene graph on n vertices, then t,44(G) < \/12n/5. Equality
holds iff n = 60k? and G has the full icosahedral automorphism group.

» Extended to 3-connected cubic plane graph with all faces of size at

most 6 (Nicodemos and MS 2018).

» These graphs (and their dual triangulations) correspond to surfaces
of genus O of non-negative curvature.

> Toqq can be linear in n if we allow faces of size 7 (negative curvature).
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Even-faced graphs and quadrangulations

» An even-faced graph in a
surface S: embedding of a
graph in S such that every face
is bounded by an even number
of edges.

» A quadrangulation of a surface
S: embedding of a graph in S
such that every face is bounded
by 4 edges.
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Parity of cycles in even-faced graphs

» Consider a graph G embedded
in a surface S.

» Two cycles are homologous if
their symmetric difference is the
boundary of a set of faces.

Observation

The length of homologous cycles in
an even-faced graph has the same
parity.
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Even-faced graphs in the projective plane

Lemma - S
Projective plane RP? has two N
homology classes: / "

» contractible cycles; , \

» non-contractible cycles. |

Corollary : /
An even-faced graph in RP? is . ,
non-bipartite if and only it has a o -

non-contractible odd cycle.
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Graphs with pairwise intersecting odd cycles

Lemma
Two non-contractible simple closed curves
in RP? intersect an odd number of times.

Corollary

The odd cycles in an even-faced graph in
RP? are pairwise intersecting. -

Theorem (Lovasz) \
The odd cycles in an internally 4-connected
graph G are pairwise intersecting iff G has \
an even-faced embedding in RP? or G \ /
belongs to a few exceptional classes. < 7
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Graph colouring and the chromatic number

» Colouring of G: assignment of colours
to the vertices of G such that adjacent
vertices receive different colours.

» Smallest number of colours: chromatic
number x(G).

» If x(G) < 2, we say G is bipartite.

» Equivalent to G having no odd cycles.

» If x(G—e) < x(G) for any edge e, G is
critical.

» If x(G —v) < x(G) for any vertex v, G is
vertex-critical.
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Colouring quadrangulations

Theorem (Hutchinson 1995)

If G is an even-faced graph in an orientable
surface and all non-contractible cycles are
sufficiently long, then x(G) < 3.

Theorem (Youngs 1996)

If G is a quadrangulation of RP?, then x(G) = 2 or
x(G) = 4.

Question (Youngs 1996)

Can Youngs’s theorem be extended to higher
dimension?
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A (very) useful tool from algebraic topology

Borsuk-Ulam Theorem (Borsuk
1933)

For every continuous mapping
f:S™ — R" there exists a point

x € S" with f(x) =f(—x).

Equivalent formulation

There is no continuous map
f: 8™ — S*! that is equivariant,
i.e., f(—x) = —f(x) for all x € S™.
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A discrete version of Borsuk-Ulam

-1 Tucker’s lemma (Tucker 1946)

» Let K be a centrally symmetric

-1 2 triangulation of S™.
» Let A\: V(K) —»{£1,...,£n}bea
labelling such that
) A(—v) = —A(v) for all v € V(K).

» Then there exists an edge {u, v}
s.t. A(u) +A(v) =0.
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Equivalence of Tucker and Borsuk-Ulam

» Tucker follows from Borsuk-Ulam by considering A as a simplicial
map from K to the boundary complex of the n-dimensional
cross-polytope, and extending it to a continuous map.

-1 2

» Borsuk-Ulam follows from Tucker by taking sufficiently fine
triangulations of S™ and using compactness.
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Another discrete version of Borsuk-Ulam

(A corollary of) Fan’s lemma

» Let K be a centrally symmetric triangulation of S™.

» Let A: V(K) —»{£1,...,£(n+ 1)} be a labelling such that
A(—v) = —A(v) for all v € V(K), and every n-simplex has vertices of
both signs.

» Then there exists an edge {u, v} € K s.t. A(u) + A(v) =0.

-1 2
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An application of Fan’s lemma

v

Let K be a centrally symmetric triangulation of S™.

v

Consider the graph consisting of the vertices and edges of K.
Label the vertices + or — so that

B antipodal vertices receive opposite labels;
® every facet is incident to at least one + and at least one —.

v

v

Delete all edges between vertices of the same sign.

v

Identify all pairs of antipodal vertices.

v

The resulting graph is a (non-bipartite) quadrangulation of RP".

Theorem (Kaiser and MS 2015)

Every quadrangulation of RP" is at least (n + 2)-chromatic, unless it is
bipartite.
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Generalised Mycielski and projective quadrangulations

» The Mycielski construction: one
of the earliest constructions of
triangle-free graphs of
arbitrarily high chromatic
number
» Generalised in 1985 by Stiebitz.
» Generalised Mycielski graphs

are non-bipartite projective

quadrangulations.
» Their chromatic number can be

deduced from the generalisation

of Youngs’s theorem.
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A question of Erdos

» Graphs without short odd cycles are ‘locally bipartite’.
» How long can the shortest odd cycle be in a k-chromatic graph?

Question (Erdés 1974)
Does every 4-chromatic n-vertex graph G have an odd cycle of length
Oo(v/n)?

» YES (Kierstead, Szemerédi and Trotter 1984)

» Generalised Mycielski graphs provide examples of 4-chromatic
n-vertex graphs whose shortest odd cycles have length

2(1+v8n—7).

A ' @
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A refinement of Erdos’s question

Conjecture (Esperet, MS 2018)

Every 4-chromatic n-vertex graph has an odd cycle of length at most
i1+v8n-7).

Theorem (Esperet, MS 2018)

The conjecture holds if all odd cycles are pairwise intersecting.

» The proof combines Lovasz’s characterisation of graphs with
pairwise intersecting odd cycles and the following theorem.

Theorem (Lins 1981)
The minimum length of a non-contractible >
cycle in an even-faced graph in RP? equals
the maximum size of a packing of \/. J

non-contractible co-cycles.
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Kneser graph KG(n, k
grap (n ,i_k%

n>2k
Definition {1, 3}

» Vertices: all k-subsets of

» Edges between disjoint subsets {2, 5) (2,4}

Conjecture (Kneser 1955) '.‘
x(KG(n, k) =n—2k+2
» Proved by Lovasz in 1977 using
the Borsuk-Ulam theorem (1,4} (3,5}

» Schrijver sharpened the result KG(5,2)
in 1978
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Kneser graph KG(n, k
graph KG(n.k)

n>2k
Definition

» Vertices: all k-subsets of

» Edges between disjoint subsets

Conjecture (Kneser 1955)
x(KG(n, k) =n—2k+2
» Proved by Lovasz in 1977 using
the Borsuk-Ulam theorem

» Schrijver sharpened the result
in 1978

{1

, 4}; g{2, 4} {3, 4}\

{1, 5}.4{2, 5}~{3, 5} \{4, 5}
& v e ~

KG(5,2)
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Schrijver graph SG(n, k)
{1,3}

» Subgraph of KG(n, k) induced
by k-subsets of {1, ..., nj (2, 5) (2,4}
without consecutive elements
modulo n

Theorem (Schrijver 1978)

x(SG(n, k)) = n—2k+ 2 and

SG(n, k) is vertex-critical . ¢
{1,4} {3, 5}

SG(5,2)
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Schrijver graphs and quadrangulations

Theorem (Kaiser and MS 2015)
There is a quadrangulation of RP"~ 2% homomorphic to SG(n, k).

Theorem (Kaiser and MS 2017)

SG(n, k) contains a spanning subgraph that is a quadrangulation of
RPniZk.

Theorem (Simonyi and Tardos 2019)

SG(2k + 2, k) contains a spanning subgraph that is a quadrangulation of
the Klein bottle.
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SG(n, k) is not edge-critical in general

{3,5,7{4,6} ({1,

{114} {2 5} {3

l6) 11'{:1., 3) ::"{2,7
SG(6,2)

6}

Problem

Give a simple definition of an

(n — 2k + 2)-chromatic edge-critical
subgraph of SG(n, k).

WORK IN
PROGRESS

» Case k = 2 done (Kaiser and MS
2020).

» The graph is a non-bipartite
quadrangulation of RP" %,
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A connection between graph theory and commutative algebra

Graph G + Square-free unrpixed height 2 monomial ideal,
called the cover ideal of G

X1

X9 X5
I= <X1, X2> N <X2,X3> N <X3’ X4> N <X4,X5> N <X5’ X1>

X3 X = (X1X2X4, X1X3X4, X1 X3X5, X2 X3X5, X2 X4 X5)
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Monomial ideals

» Let R= klx,...,Xxs] be a polynomial ring over a field k.
» An ideal in R is monomial if it is generated by a set of monomials.

» A monomial ideal is square-free if it has a generating set of
monomials where the exponent of each variable is at most 1.

» Given an ideal I of R, a prime ideal P is associated to I if there exists
an element m€ Rsuchthat P=1:(m) ={re€ R|r(m) C I}.

» The set of associated primes is denoted by Ass(I).

Example
If I is the cover ideal of the 5-cycle, then

Ass(I) ={(x1, x2), (X2, X3), (X3, Xa), (X4, X5), (X5, X1)}.
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The persistence conjecture

» Brodmann (1979) showed that Ass(I®) = Ass(IS*!) for all sufficiently
large s.

» An ideal I has the persistence property if Ass(I%) C Ass(IS*!) for all
s> 1.

Example

If I is the cover ideal of the 5-cycle, then Ass(I?) = I U{(x1, X2, X3, X4, X5)},
and Ass(I%) = Ass(IS*!) for all s > 2. So I has the persistence property.

Persistence conjecture
All square-free monomial ideals have the persistence property.
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A conjecture on critical graphs

» To replicate a vertex w € V(G), add a
copy w’ of w and make it adjacent to w
and all its neighbours.
» Let GV be the graph obtained from G
by replicating the vertices in W (order
is irrelevant).
Conjecture (Francisco, Ha and Van Tuyl 2010)

For any positive integer k and any k-critical graph G, there is a set
W C V(G) such that GY is (k + 1)-critical.

» Implies the persistence conjecture.
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A counterexample

T
» For n > 3, let H, be the 3 x n grid 1 i
embedded in the Klein bottle. ! !
» X(H,) = 4 and H,, is critical for all n > 4 DRSS
(Gallai 1963).
Hy

Theorem (Kaiser, MS and Skrekovski 2014)
For any n > 4 and any W C V(H,), the graph H is not 5-critical.

Theorem (Kaiser, MS and Skrekovski 2014)
The cover ideal of Hy does not satisfy the persistence property.

» The cover ideal of H; also gives a negative answer to a question of
Herzog and Hibi (2005) about the depth function of square-free
monomial ideals.
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