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NEW CHARACTERIZATIONS OF COMPLETELY MONOTONE FUNCTIONS AND
BERNSTEIN FUNCTIONS, A CONVERSE TO HAUSDORFF’S MOMENT
CHARACTERIZATION THEOREM

RAFIK AGUECH®* AND WISSEM JEDIDI®**

ABSTRACT. We give several new characterizations of completely monotone functions and Bernstein
functions via two approaches: the first one is driven algebraically via elementary preserving mappings
and the second one is developed in terms of the behavior of their restriction on Ny. We give a complete
answer to the following question: Can we affirm that a function f is completely monotone (resp. a
Bernstein function) if we know that the sequence (f(k)), is completely monotone (resp. alternating)?
This approach constitutes a kind of converse to Hausdorff’s moment characterization theorem in the
context of completely monotone sequences.

Keywords: Completely monotone functions, completely monotone sequences, Bernstein functions, completely
alternating functions, completely alternating sequences, Hausdorff moment problem, Hausdorff moment se-
quences, self-decomposability.

[MSC2010 classification]: 30E05, 44A 10, 44A60, 47A57, 60E05, 60E07, 60B10.

1. INTRODUCTION

Traditionally, completely monotone functions (CM) are recognized as Laplace transforms of positive mea-
sures and Bernstein functions (3F) are their positive antiderivatives. The literature devoted to these two classes
of functions is impressive since they have remarkable applications in various branches, for instance, they play
a role in potential theory, probability theory, physics, numerical and asymptotic analysis, and combinatorics.
A detailed collection of the most important properties of completely monotone functions can be found in the
monograph of Widder [20] and for Bernstein functions, the reader is referred to the elegant manuscript of
Schilling, Song and Vondracek [17]. Hausdorff’s moment characterization theorem [10] is explained in details,
and also in the context of measures on commutative semigroup in the Book of Berg, Christensen and Ressel
[3]. The references [3] and [17] were a major support in the elaboration of this paper and constitute for us a
real source of inspiration.

Theorem 2 below, is borrowed from [3] and gives the complete characterization of completely monotone
(respectively alternating) sequences: a sequence (ay ), is interpolated by a function f in CM (respectively BF)
if and only if (a), completely monotone (respectively alternating) sequence and minimal (see Definition 2
for minimality). Completely monotone sequences are also known as the Hausdorff moment sequences. In this
spirit, a natural question prevailed, what about the converse? i.e:

Can we affirm that a function f belongs to CM (respectively BF) if we know that the sequence
(f(k)),, is completely monotone (respectively alternating)? In other terms, could a completely
monotone (respectively alternating) and minimal sequence (ay,),, be interpolated by a regular
enough function f, which is not in CM (respectively BF)?

We prove that under natural regularity assumptions on f, the answer is affirmative for the first question (and
then infirmative for the second) and this constitutes a kind of converse of Hausdorff’s moment characterization
1
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theorem [10]. Mai, Schenk and Scherer [13] adapted a Widder’s result [20] and used a specific technique from
Copula theory in order to state, in their Lemma 3.1 and Theorem 1.1, that:

(i) a continuous function f with f(0) = 1 belongs to CM if and only if the sequence (f(zk)), is completely
monotone for every z € Q N [0, 00);

(ii) a continuous function f with f(0) = 0 belongs to BF and is self-decomposable if and only if the sequence
(f(zk) — f(yk)), is completely alternating for every > y > 0. (See Section 8 below for the definition of
self-decomposable Bernstein functions).

The idea of this paper was born when we wanted to remove the dependence on x in characterizations (i) and
(i1) and to study general non bounded completely monotone functions and general Bernstein functions. Our
answer to the question is given in Theorems 4 and 5 below that says:

(iii) a bounded function f belongs to CM if and only if it has an holomorphic extension on Re(z) > 0 which
remains bounded there and the sequence ( f (wk)) 1> 18 completely monotone and minimal for some (and hence
for all) = > 0. If f is unbounded, then a shifting condition is necessary;

(iv) a bounded function f is a Bernstein function if and only if it has an holomorphic extension on Re(z) > 0,
and the sequence ( f (:ck;)) k>0 1 completely alternating and minimal for some (and hence for all) z > 0. If f is
unbounded, then a boundedness condition on the increments is necessary.

For each of Theorems 4 and 5 we shall give two proofs based on two different approaches, the first one
uses Blaschke’s theorem on the zeros of a function on the open unit disk and the second one is based on a
Greogory-Newton expansion of holomorphic functions (see Section 6 below for the last two concepts). We
emphasize that these two approaches require some boundedness (especially in the completely monotone case).
In Corollary 4.2 of Gnedin and Pitman [9] the necessity part of (iv) above is stated without the holomorphy
and minimality condition, their formulation is equivalent to Theorem 2 below. We discovered the idea of our
second proof (for the Bernstein property context) hidden in the remark right after their corollary. The authors
surmise that the sufficiency part of (iv) could be proved by Gregory-Newton expansion of Bernstein functions
and we will show that their idea works. Since we are studying general, non necessarily bounded functions in
CM and in BF, there was a price to pay in order to avoid these kind of restrictive conditions. For this purpose,
we develop in Section 3 and 4 there several algebraic tools, based on the scale, shift and difference operators,
giving new characterizations for the CM and BF classes. We did our best to remove redundant assumptions
of regularity (such as continuity or differentiability or boundedness or global dependence on parameters) in the
our sufficiency conditions. This kind of redundancy often appears, because the classes CM and BF are very
rich in information. These tools, that we find intrinsically useful, can also be considered as a major contribution
in this work. They were also crucial in the proofs of the results given in Section 5. Throughout this paper, we
give different proofs, whenever it is possible, and when the approaches were clearly distinct.

The paper is organized as follows. Section 2 gives the basic setting and definitions. In Section 3 and 4,
we recall classical characterizations of complete monotonicity and alternation for functions and sequences, we
develop several other characterizations and we discuss the concept of minimal sequences. Section 6 is devoted
to specific pre-requisite for the proofs of the main results. We recall there and adapt some results around
functional iterative equations and asymptotic of differences of functions. We also adapt some results stemming
from complex analysis and from interpolation theory. Section 7 is devoted to the proofs and Section 8§ gives an
alternative characterization for self-decomposable Bernstein functions to point (ii) above, in the spirit of point
(iv) above.
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2. BASIC NOTATIONS AND DEFINITIONS

Throughout this paper, Ny denotes the set of non-negative integers and N = Ny \{0}. A sequence (ak)keNo
is seen as a function a : Ny — R so that a(k) = aj. The symbols A and V denote respectively the min and the
max. All the considered functions are measurable, the measures are positive, Radon with support contained in
[0, 00). For functions f : D C C — C, the scaling, the shift and the difference operators acting on them are
respectively denoted, whenever these are well defined, by

ocf(x) = f(ex), o = o1 = Identity,
f(x) = flxz+c), T =",

Acf(x) = flz+c)— f(z), A=Ay,

Ocf(x) = [flc)=fO)+fl@)=flz+e), 0:=0,

and their iterates are given by 00 f = 70f = AVf = 0°f = f and forevery n € N,
C=Ten TE=Ton ALf=ALALTH), 02f = (1)"(ALf - ALF(0)),

so that for every n € Ny,

g

Al f(x) = ) if (x +ic) (D

<.
I
o

0.f =

M:

”> o+ ic) — f(ic)).

i
o

[

Definition 1 (Berg [3] p. 130). Let D = (0,00) or [0,00) or No. A function f : D — f(D) is called
completely monotone on D, and we denote f € CM(D), if f(D) C [0,00) (respectively completely
alternating if f(D) C R and we denote f € CA(D) ), if for all finite sets {c1,--- ,cn,} C D and x € D,
we have

)

(=1)"A¢, - Ac, f(x) >0 (respectively < 0).

Remark 1. (i) Every function f in CM(D) (respectively CA(D)) is non-increasing (respectively non-decreasing).
We will see later on that f is necessarily decreasing (respectively increasing) when it is not a constant.

(ii) A non-negative function f belongs to CM(D) if and only if —A.f belongs to CM(D) for every ¢ €
D\{0}.

(iii) By [3, Lemma 6.3 p. 131], a function f belongs to CA(D) if and only if for every ¢ € D \{0}, the
function A f belongs to CM(D).

(iv) By linearity of the difference operators, the classes CM (D) and CA(D) are convex cones.

3. CLASSICAL CHARACTERIZATIONS OF COMPLETELY MONOTONE AND ALTERNATING FUNCTIONS AND
ADDITIONAL CHARACTERIZATIONS VIA ALGEBRAIC TRANSFORMATIONS

3.1. Completely monotone functions. Characterization of completely monotone functions is an old story and
is due to the seminal works of Bernstein, Bochner and Schoenberg. A nice presentation could be found in the
monograph of Schilling et al. [17]:

Theorem 1. [17, Proposition 1.2 and Theorem 4.8] The following three assertions are equivalent:

(a) V is completely monotone on (0, 00) (respectively on [0, 00));
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(b) W is represented as the Laplace transform of a unique Radon (respectively finite) measure v on [0, 00):

U(A) = / ef)‘xu(dx), A >0 (respectively A > 0); )
[0,00)

(c) ¥ is infinitely differentiable on (0,00) (respectively continuous on [0,00), infinitely differentiable on
(0, 00)) and satisfies (—1)" U™ > 0 for every n € Ny.

The measure v in (2) will be referred in the sequel as the representative measure of W.

Remark 2. (i) Every function ¥ € CM(0,00) such that ¥(0+) exists, naturally extends to a continuous
bounded function in CM [0, 00), this is the reason why we identify, throughout this paper, such functions U with
their extension on [0, 00).

(ii) By Corollary 1.6 p. 5 in [17], the closure of CM[0,00) (with respect to pointwise convergence) is
CM|0, 00). This insures that ¥ € CM (0, 00) if and only if 7., ¥ € CM]0, o) for some positive sequence c,
tending to zero or equivalently T.¥ € CM (0, 00) for every ¢ > 0. It is also immediate that ¥V € CM(0, o) if
and only if 0.V € CM (0, 00) for some (and hence for all) ¢ > 0.

(iii) It is not clear at all to see that functions in CM (0, 00) are actually infinitely differentiable just using
Definition 1. The latter is clarified by point (b) of Theorem 1. Furthermore, Dubourdieu [0] pointed out that
strict inequality prevails in point (c) of for all non-constant completely monotone functions, for these and their
derivatives are then strictly monotone.

We start with a taste of what we can obtain as algebraic characterization. The following proposition has to
be compared with the Remark 1 (ii):

Proposition 1. (a) A function U : (0, 00) — [0, 00) belongs to CM (0, 00) if and only if for some (and hence for
all) ¢ > 0 the function —AV belongs to CM (0, 00) and the Laplace representative measure in (2) of —A ¥
gives no mass to zero.

(b) In this case, the sequence of functions (—Ay.)¥ converges pointwise, locally uniformly, to a function in
CM(0, 00) that does not depend on ¢, more precisely

V() = wl;n;o U(x) + nlgn;o(—Anc)W(A), A> 0.

The same holds for the successive derivatives of (—Ap.)W.

3.2. Completely alternating functions and Bernstein functions. The well known class BF of Bernstein
functions consists of those functions ® : (0,00) — [0, 00), infinitely differentiable on (0,00) and satisfy
(=1)* 1™ (X) > 0, for every A > 0 and n € N. In other terms, ® is a Bernstein function if it is non-negative,
infinitely differentiable and ® € CM (0, co). It is also known (see Theorem 3.2 p. 21[17] for instance) that any
function ® € BF admits a continuous extension on [0, c0), still denoted ®, and represented by

O(N) =q+dX —|—/ (1—eM)u(dz), A>0, 3)
(0,00)
where ¢, d > 0 and the so-called Lévy measure p satisfies the integrability condition
/ (1 —e *)p(dz) < oo which is equivalent to / (IAz)p(dr) < oo.
(0,00) (0,00)

An integration by parts gives
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sothat g = ®(0), d = limy 00 @ and the relation between ® and the triplet (¢, d, ;1) becomes one-to-one.

The following proposition unveils the link between completely alternating functions and Bernstein functions:

Proposition 2. 1) The class of Bernstein functions coincides with the class of non-negative and completely
alternating functions on [0, 00).

2) The class of completely alternating functions on (0, 00) is given by
CA(0,00) = {f : (0,00) — R, differentiable, s.t. f' € CM(0,0)}.
In particular, if g € CM(0, 00), then —g € CA(0, 00).

It is clear that the subclass BF}, of bounded Bernstein function is given by

BF, = {®e€BF, st. )\lim O(N\) < oo}
—00

= {®PeBF, st.P(\)=q+ /(0 )(1 — e ™M p(dz), with g >0, 1((0,00)) < oo}

and that
O c BF, ifandonlyif ® >0 and ®(c0) — P € CM|0,00). 4)
We denote

BF) = {®c BF, s.t. ®(0) =0}

= {®eBF, st.®(\) = /(0 )(1 — e ) p(dz), with 1((0,00)) < oo}

We also have the following equivalences

®ecBF <= & >0ando.® € BF for some (and hence for all) ¢ > 0 (5)
< A= D®(A+c¢)—P(c) e BF, foreveryc> 0. (6)

Equivalence (5) is immediate and (6) is justified as follows: by differentiation get ®'(. + ¢) € CM|0, o0),
for all ¢ > 0 and closure of the class CM (0, 00) (Corollary 1.6 p.5 [17]) insures that &' € CM(0,00). A
natural question is to ask whether (6) remains true if expressed with a single fixed ¢ > 0. The answer is
negative because for every &g € BF, the function ®(\) = Po(|A — ¢[), A > 0, is not in BF despite that
A= ®(A+c¢) — P(c) € BF. A closed transformation is studied in Corollary 3.8 (vii) p. 28 in [17] which says
that & € BF yields 6.9 € BF for every ¢ > 0. We propose the following improvement:

Proposition 3. (a) A function ® : [0,00) — [0, 00) belongs to BF if and only if for some (and hence for all)
c >0,

A= 0.D()\) = B(c) — D(0) + B(N) — B(\ +¢) € BF}.

(b) In this case, the sequence of functions 0, P converges pointwise, locally uniformly, to a function in BF,
null in zero, that does not depend on c. More precisely

)
O(N\) = P(0) + A lim (7@ + li_}rn Ornc®(N), A >0.

r—00 I

The same holds for the successive derivatives of 0, P.

Remark 3. By (4), point (a) is also equivalent to A — ®(A+c) — ®(\) € CM|[0, c0), for some (and hence for
all) ¢ > 0.
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4. CLASSICAL CHARACTERIZATION OF COMPLETELY MONOTONE AND ALTERNATING SEQUENCES AND
ADDITIONAL RESULTS

A characterization of completely monotone (respectively alternating) sequences, closely related to Hausdorff
moment characterization theorem [10], could be found in the monograph of Berg et al. [3]:

Theorem 2. [3, Propositions 6.11 and 6.12 p. 134] Let a = (ay),~ a positive sequence. Then, the following
conditions are equivalent: ;

(a) the sequence a is completely monotone (respectively alternating);
(b) forall k € Ny, n € Ny (respectively n > 1), we have

(~1)"A"a(k) = 0 (respectively < 0); v

(c) there exists a positive Radon measure v on [0, 1] (respectively g € R, d > 0 and a positive Radon measure
won [0, 1)) such that we have the representation

ap =v([0,1]), ar = / uFr(du), k>1 (8)
(0,1]
(respectively ao=q, ar=q+dk+ / (1 —u®) p(du), k> 1). 9
[0,1)

4.1. Comments on CM(Np) and CA(Ny).

Comment 1: In the completely monotone case, the measure v in (8) is not only Radon but also finite because
of the convention ag = v ([0, 1]). In the completely alternating case, we have that ap = ¢ and the measure
i in (9) is only Radon, satisfying the integrability condition f[o,l)(l — u) p(du) < oo. By the dominated
convergence theorem, we retrieve d = limy_,~ (ax/k) . Furthermore, in both cases, v (respectively (¢, d, 1))
uniquely determine the sequence (ax);,~, Which is justified as follows:

1- In the completely monotone case: use Fubini argument, get that the exponential generating function of
the sequence (a);~ is the Laplace transform of v,

Nk
Zak ( tl) = / e "y(du), t>0,
k:. [071]

k>0
and finally conclude with the injectivity of the Laplace transform. A more sophisticated argument could be

extracted from Lemma 3.2 [7] in order to prove uniqueness of the measure v.

2- In the completely alternating case: making an integration by parts, write

ar —q—dk — p({0}) = k/o ub1 1((0,u)) du, k>1,
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then by a Fubini argument, get that the exponential generating function of the sequence (ay) k>0 leads to a
Bernstein function build with the triplet (¢, d, p):

ik
h(t): = Zakg, t>0
k>0 )

1
= @+ d0e+u(ON =1+t [ (0.0 du

= (g dbet+p({0)) (¢ - 1) + /( L em)

R = qrdtrpOD -+ [ (- ) (10)
(0,1)
where [z is the image of the measure p obtained by the change of variable w = 1 — v, and finally conclude with
the unicity through the Bernstein representation in equality (10).

Comment 2: Completely monotone sequences are always positive, whereas a completely alternating se-
quence is non-negative if and only if the corresponding g-value in (9) is non-negative (see [2]).

4.2. The classes CM*(Ny) and CA*(Nyp) of minimal completely monotone and alternating sequences. A
lot of care is required if one modifies some terms of a completely monotone or alternating sequence. We
clarify, with our own approach, the following fact we have found in [11] and [12], and extend it to completely
alternating sequences: strict inequality prevails throughout (7) for a completely monotone sequence unless
a1 =ag =---=a, = ---,thatis, unless all terms except possibly its first are identical. We can state that

A sequence a = (ay);~ in CM(Ny) (respectively in CA(Ny)) ceases to strictly alternate, in
differences, at a certain rank if and only if the sequence a is constant (respectively if and only
if if the sequence a is affine).

Our argument uses the explicit computation (1) of the quantities (—1)"A"a(k), n € N, k € Ny, which does
not seem to be fully exploited in the literature we encountered:

(1) AT a(k) = p{0}) Ty=o + fgqy u" (1 — w)"v(du) if a € CM(No)
—u({0}) Ix—o — f(o,l) uF(1 —u)"u(du) if a € CA(Np).
Let a = v or u. Based on the fact that f(o 1 uF(1 — u)"a(du) = 0, for some n € N and k € Ny, if and only if
((0,1)) = 0, then an elementary reasoning shows that

\maAn B am = p({1}), Vm >1 if a € CM(Np)
(—D)"A a(k)—OforsomenEN,k€N0<:>{ am = g+ ({0} +dm, Ym>1 ifaecCAN).

As an example, fix ¢ > 0 and consider the completely monotone (respectively alternating) sequence by =
€, by =0, k > 1 (respectively by = 0, b = ¢, k > 1). It satisfies:
(—=1)"A"b(k) = € l—o (respectively — e lp—p), n €N, k € Ny.
By linearity of the operators (—1)" A", we obviously have
(1({0}) = €) Lhmo + fig1y u* (1 — w)"v(du) if a € CM(No)
e — n({0})) Le=o — f(O,l) uF(1 —u)"pu(du)  if a € CA(Np).

Since v is finite (respectively p integrates 1 — ), then the dominated convergence theorem ensures that

(=D)"A"(a = b)(k) = { (

lim (1 —u)"v(du) = lim (1 —u)"u(du) =0,

n—oo (0’1) n—oo (0’1)
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so that the quantities (—1)"A"(a — b)(0) takes the sign of 1 ({0}) — € when n is big enough. The above
discussion clarifies the concept of minimality initially introduced, with a different approach, in the monograph
of Widder [20]:

Definition 2. [20, Widder, p. 163] and [2, Athavale-Ranjekar]: Let a = (ag) k>0 @ completely monotone
(respectively alternating) sequence. a

(i) a is called minimal and we denote a € CM™*(Ny) (respectively a € CA*(Ny)) if the sequence
{ao —€0ay, 0k, } (respeCtively {a07a1 — €A — € })

is not completely monotone (respectively alternating) for any positive e.
(ii) Equivalently, a is minimal if and only if the measure v in (8) (respectively v in (9)) has no point mass at

zero.
Example 1. The sequence a = ((k: + 1)_1) p>o ceases to be completely monotone if ag = 1 is replaced by
ag =1 — ¢, since B
1
-1)"A"a(0) = —— — Np.
(-1)"A%(0) = ——~ — €, neNy

The analogous constatation holds for the completely alternating sequence (1 — (k+ 1)_1) k>0 dccordingly to
Definition 2. a

After the above comments and considerations on minimal sequences, Theorem 2 could be specified as fol-
lows: taking v and g obtained as the image of the measures v and p on (0, 00) in (8) and (9) through the
obvious change of variable u = e~*, we have:

Theorem 3. (a) [20, Theorem 14b, p. 14] and [2, Theorem 1] A positive sequence a = (ay;) >0 18 obtained
by interpolating a member of CM|0, 00) (respectively BF) on Ny if and only if a belongs to CM*(Ny)
(respectively CA*(Np)).

(b) Equivalently, a sequence (ay);~ belongs to CM*(Ny) (respectively belongs to CA*(No) and positive) if
and only if there exist a unique finite measure U on (0, 00) (respectively a unique triplet (q,d, i) where
¢, d > 0 and the measure [i satisfying f(o,oo)(l Au) p(du) < 00), such that:

ai = / e Fup(du) (resp. ap =q+dk —|—/
[0700)

(1— e hu) ;z(du)>, k> 0. (11)
(0.00)

It is clear that the subclass CM*(Np) and the subclass of positive sequences in CA*(Np) are convex cones.

5. LINKING FUNCTIONS AND SEQUENCES OF THE COMPLETELY AND ALTERNATING TYPE

In the spirit of Theorems 2 and 3, a natural question is to ask whether the completely monotone (respectively
Bernstein) character of function f is entirely recognized via its associated sequence (f(k)),. This constitutes a
kind converse of Hausdorff’s moment characterization theorem [ 10] which is formulated in Theorem 2 or 3. A
complete answer is given in the following two subsections.

5.1. Complete monotonicity property of functions is recognized by their restriction on Nj.

Theorem 4. Let ¥ : [0,00) — [0, 00) be a bounded function. Then, V is completely monotone if and only if
the two following conditions hold:

(a) the function ¥ has an holomorphic extension on Re(z) > 0 and remains bounded there;

(b) the sequence (\Il(kz)) >0 IS completely monotone and minimal.

Corollary 1. A function ¥ : (0,00) — [0,00) is completely monotone if and only if the following two
conditions hold: for some (and hence all) positive sequence (e,,) n>0 such that €, — 0,
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(i) the function UV has a holomorphic extension on Re(z) > 0 and remains bounded on Re(z) > €,
(ii) the sequence (Tﬁn\I/(k:))]pO = (V(en + k)) ., completely monotone and minimal.

Corollary 2. Two completely monotone functions on (0,00) coincide on the set of positive integers starting
from a certain rank if and only if they are equal. If one of them extends to [0,00), then so does the other and
they coincide on [0, 00).

5.2. Complete monotonicity property of functions is recognized by their restriction on a lattices of the
form «,,Ng, where ;,, — 0. The following two results characterize complete monotonicity of functions only
in terms of minimal completely monotone sequences, i.e. condition (a) in Theorem 4 and Corollary 1 would be
self contained.

Proposition 4. A function ¥ : [0,00) — [0, 00) belongs to CM|0, 00) if and only if it is continuous and for
some (and hence for all) sequence (o), of positive numbers tending to zero, there corresponds a sequence
(V)50 in CM[0, 0c) such that the following representation holds each for each n € Ny:

U(an k) =W, (k), forall ke Ny (e (T(ank)),s, € CM*(No)).

For non-bounded completely monotone functions on (0, cc) an analogous statement is given, but we require
a minor correction consisting on shifting the function on the right of zero:
Corollary 3. For a function ¥ : (0,00) — [0, 00), the following conditions are equivalent:
(a) ¥ belongs to CM(0, 00);
(b) W is continuous and to every sequence (1y,),~, of positive rational numbers tending to zero, there corre-
sponds a sequence (¥,,), - in CM|0, c0), such that following representation holds for each n € Ny:

U(r,(k+1)) =W,(k), forall ke Ny (ie. (V(rn(k+ 1))>k20 € CM*(No));

(c) 'V is continuous and there exists a sequence (¥y,), - in CM[0, 00), such that the following representation
holds for each n € N:

k“):xpn(k), forall ke Ny (e (\If(kH)) OGCM*(NO)).

n n k>

o

Remark 4. (i) By continuity, it is not difficult to see that assertions in Proposition 4 (respectively Corollary 3)
are also equivalent to the following:

W is continuous, bounded (respectively respectively continuous, non necessarily bounded) and
the sequence (¥(xk)), ., (respectively (\I’ (z(k+ 1))>k>0) belongs to CM*(Ny) for every
x € (0,00) or for every x € QN (0, 00), -

The latter is precisely what is stated in Lemma 3.1 in [13] in case W(0) = 1, the minimality condition was
somehow occulted.

(ii) The reader could notice that Theorem 4 requires a supplementary assumption of holomorphy and of
boundedness compared to Proposition 4 and Corollary 3. The point is that Theorem 4 gives more information
since for every function V satisfying condition (a) therein, we have

VU eCM(0,00) <= 0,V € CM(0,00), for some x € (0,00)
= (V(z(k+1))),5 € CM*(No), for some x € (0, 0). (12)
The same holds for ¥ € CM|[0, o) under the additional condition of finiteness of ¥(0+). The condition of

minimality and holomorphy appear to be the lowest price to pay in order to have the condition (12) expressed
for a single x instead of all x.
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5.3. Bernstein property of functions is recognized by their restriction on Nj,.
Theorem 5. A function ® : [0,00) — [0, 00) is a Bernstein function if and only if it

(a) the function ® has an holomorphic extension on Re(z) > 0 and satisfies there |®(c+ z) — ®(z)| < M for
some ¢, M > 0;
(b) the sequence (@(k)) k>0 US completely alternating and minimal.

Since every Bernstein functions & satisfies A — ®(\)/A € CM(0, 00), we immediately deduce from Corol-
lary 2 the following:

Corollary 4. Two Bernstein functions coincide on the set of non-negative integers starting from a certain rank
if and only if they are equal on [0, 00).

5.4. Bernstein property of functions is recognized by their restriction on lattices of the form «,, Ny, where
a — 0. As for completely monotone functions, the following two results characterize Bernstein property of
functions only in terms of minimal completely alternating sequences, i.e. condition (a) in Theorem 5 would be
self contained.

Proposition 5. A function ® : [0,00) — [0,00) belongs to BFY if and only if it is continuous and for
some (and hence for all) sequence (o, ), of positive numbers tending to zero, there corresponds a sequence
(@) n>0 i BF, Y such that the following representation holds for each n € Ny:

D(apk) = ®,(k), forall ke Ny (ie. (® (O‘”k))kzo € CA*(Np)).

Corollary 5. For a function ® : [0,00) — [0, 00), the following conditions are equivalent:

(a) ® belongs to BF ;
(b) ® is continuous and to every sequence (1) n>0 Of positive rational numbers tending to zero, there corre-
sponds a sequence (®,), ~ in BF, such that the following representation holds for each n € Ny:

O(rp k) = ®,(k), forall keNy (ie. (@(rnk))kzo € CA*(No));

(c) ® is continuous and there exists a sequence (®y,), - in BF, such that the following representation holds
for eachn € N:

O(—) = D,(k), forall keNy (ie. (@(ﬁ)) € CA*(Ny)).

n n’ k>0

Remark 5. As in Remark 4, we can notice the following:

(i) By continuity, assertions in Corollary 5 (respectively Proposition 5) are equivalent to the following as-
sertion:

® is continuous and the sequence (®(zk)) i belongs to € CA*(No) (respectively belongs to
€ CA*(Ny) and is bounded) for every x € (0, 00) or for every x € Q..

(ii) Theorem 5 requires a supplementary assumption of holomorphy and of sub-affinity compared to Proposition
5 and Corollary 5. Theorem 5 gives more information since for every function ® satisfying condition (a) therein,
we have

¢ € BF < 0,9 € BF for some z € (0,00) < (@(mk‘))k>0 belongs to € CA*(Ny)
(respectively belongs to € CA*(Ny) and is bounded) for some x € (0, 00).
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6. SOME PRE-REQUISITE

The following results are crucial in order to conduct our proofs.

6.1. On iterative functional equations and asymptotic of differences. We first present a result of Webster
[19] which will be used in the proofs of Propositions 1 and 2. Given a log-concave function g : [0,00) —
[0, 00), he considered the iterative functional equation

flz+1)=g(x)f(x), x>0, and f(1)=1. (13)

Motivated by the study of generalized gamma functions and their characterization by a Bohr-Mollerup-Artin
type theorem, Webster studied equations of type (13). A combination of Theorems 4.1 and 4.2 [19] gives results
that were stated in [1] under this form:

Theorem 6. [Webster, [19]] Let g : [0,00) — [0, 00) be a log-concave function satisfying g(x +a)/g(x) — 1,

as x — oo for every fixed a > 0. Forn > 1, leta,, = (¢ (n)+¢/.(n))/2g(n) and g = lim,, o (37 a; — log g(n)).
Then, there exists a unique log-convex solution f : [0,00) — [0, 00) to the functional equation (13) satisfying

f(1) = 1 and given by

e 0t 2 g(n)

fz) =

et x> 0. (14)

g(x) = g(n+x)
If furthermore lim,_, oo g(x) = 1, then the representation simplifies to
1 11 9(n)
f(z) = , x>0. (15)
g(x) g g(n+x)

Theorem 1.1.8 p. 5 [5] says that if [ : R — R is additive (i.e. {(x +y) = I(z) + I(y), Vz,y € R), and
measurable, then [(z) = Cx for some C' € R. On the other hand, consider a function [ : [0,00) — [0, 00)
solution of the iterative equation

l(x+1)=1U(z)+1(1), =ze€(0,00).

Take g(x) = ¢!V and f(x) = €!®~!(1) in Theorem 6. Clearly, a,, = 0 and v, = —I(1) and (14) yields that the
unique convex solution is given by [(x) = [(1) z, z > 0. It would be desiderate to have a similar conclusion
without the convexity assumption. Karamata’s characterization theorem for regularly varying functions (The-
orem 1.4.1 p.17 in [5]), says that if lim, o, A(\ + ) — h(z) = I()), then there exists a real number p such
that lim, o (R(A 4+ ) — h(z)) = pA for every A > 0. We propose the following lemma as an improvement
of Karamata’s characterization:

Lemma 1. Suppose two measurable functions h,l : [0,00) — [0, 00) are linked for every X\ > 0 by the limit
h(A+n) —h(n) = I(N\), asn — ocoandn € N.
Then, necessarily [(A) = AN(1) with [(1) > 0 and
h(A+x) — h(z) = I()\), asx — oo, uniformly in each compact \-set in [0, 00) (16)

Proof. The proof goes through the following four steps:
a) For every A > 0, write that
I(A+1) = ILm [A(A+1+n)—h(n)] = lim [A(A+14+n)—h(n+1)]+ lim [A(n+1)—h(n)] = I(A)+1(1)

n—oo n—oo

and retrieve that
IA+m) =1\ +1(m)=1N)+1(1)m, forevery A >0,m € Ny. (17)
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Since h(n + 1) — h(n) converges to [(1), then, so does its Cesaro mean

n—1
[(1) = lim_ % Sl +1) = h(i)] = Tim h(n) _ ho) _ i h(nn)
1=0

and deduce that /(1) > 0.
b) Case where | = 0 (i.e. [(1) = 0): Assume that a function % : [0, c0) — [0, 00) satisfies
lim Nk(/\ +n)—k(n) — 0.

n—o00,ne
Reproduce identically the first proof of Theorem 1.2.1 p. 6 [5] (by taking with their notations x = n € N) in
order to get k(A + n) — k(n) — 0 uniformly in each compact A-set in (0, 00) as n — oo and n € N. Denote
{z} and [z] the fractional and integer part of x. Then, mimicking the end of the second proof of Theorem 1.2.1
p. 6 [5], take an arbitrary compact interval [a, b] in [0, co) and observe that

sup |k(A+2) —k(z)] = sup [k(A+ {z} + [z]) — k({z} + [2])]
A€[a,b] A€[a,b]
< sup |k(u+[2]) = k([2])| + sup [k(u+ [2]) - k([2])]
u€la,b+1] u€0,1]

goes to zero as [x] — oo. Finally, get

k(A +z) — k(x) — 0, asx — oo, uniformly in each compact A-set in [0, 00). (18)

c) Case where [ = 0: Taking k(z) = h(z) — I(z) and using (17), obtain for every A > 0
E(A+n) —k(n) =h(A+n) —l(A+n)—h(n)+1(n) =h(A+n)—h(n) —I(X) = 0.
as n — oo. By step b) deduce that k satisfies (18).

d) Taking h(x) = log f(e*) with f as in Theorem 1.4.1 p. 17 [5], conclude that necessarily the function [ is
linear, i.e. [(\) = [(1)\. O

6.2. On Blaschke’s characterization theorem. The second result, due to Blaschke, allows to identify holo-
morphic functions given their restriction along suitable sequences:

Theorem 7 (Blaschke, Corollary p. 312 in Rudin [15]). If f is holomorphic and bounded on the open unit disc
D, if a1, a2, 3, -+ are the zeros of f in D and if > 5= (1 — |a]) = oo, then f(z) = 0 forall z € D.

Using the is conformal one-to-one mapping of the open unit disc onto the open right half plane

14z
1=z

one can easily rephrase Blaschke’s theorem for function defined on the open right half plane:

0(2)

Corollary 6. Tiwo holomorphic functions on the open right half plane P are identical if their difference is
bounded and they coincide along a sequence z1,z2,z3,- -+ in P, such that the series » (1 — \Z: |) diverge
and in particular for z; = v € N.

Remark 6. Corollary 6 will be used essentially in the proofs of Theorems 4 and 5 for checking the equality
between two functions coinciding along the sequence of positive integers. We are totally aware that Theorems
4 and 5 could be rephrased in a more general setting with different sequences. For clarity’s sake, we preferred
to state our results there under their current form.
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6.3. On Gregory-Newton development. In the alternative proofs of Theorems 4 and 5, we will also need the
concept of Gregory-Newton development that we recall here:

Definition 3. A function f defined on some domain D of the complex plane is said to admit a Gregory-Newton
development if there exists some sequence (ay,) k>0 Such that

k=0

where
ALA=1 and F=z2:-1)-(z—k+1)=1, k>1

Remark 7. (i) Notice that the factorial powers 2™ and the usual powers z*

o kznjo [Z] (" and =Y {Z} 2,

k=0

are related through the relations

where [Z] and {Z} are the Stirling numbers of the first and second kind respectively. These relations allow to
swap between Gregory-Newton and power series developments whenever it is possible. This clarifies why a
Gregory-Newton development for a holomorphic function is unique.

(ii) For functions [ admitting a Gregory-Newton development, Norlund ([14] p. 103), showed that necessar-
ily
ar, = (=DF Ak F(0), k>o0.

(iii) It is worth noting that the transformation

(FD) g = (1" ATFO)),
is the classical binomial transform which is involutive. Since the operators T and A commute, and so do
their iterates, it is immediate that the transformation (f(k + l))lzo,...m = (=)™ Anf(k))n:o,.-m is also
involutive for every fixed k € No. The transformation (f(l))l:(]"__m — (A"f(()))nzo"_.m is called the Euler
transform. It is not an involution but remains one-to-one (see [8]). It is now clear that

the sequence (Akf(())) o0 is one-to-one with the sequence (f(k));- (19)

It is trivial that any function f : D C C — C could be represented by an interpolating polynomial P, of a
degree n > 1, plus a remainder function R,;:

"L AFF(0
f=P,+ R, where P,(z)= Z lf'( ) 2.

k=0
The following result clarifies when the remainder function goes to zero, i.e. when f could be expanded in a
unique way (see point (i) in Remark 7) into a Gregory-Newton series given by

0 k
HOEDY 20O (20)

k!
k=0

Theorem 8 (Norlund, [14] p. 148). In order that a function f admits a Gregory-Newton development (20), it
is necessary and sufficient that f is holomorphic in a certain half-plane Re(z) > a and f is of the exponential

type, i.e.
’f(Z)( < CePlA Q1)

where C and D are fixed positive numbers.
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As an application, we propose the following:
Proposition 6. /) Every bounded completely monotone function V admits an extension which
(i) is bounded, continuous on the half plane Re(z) > 0 and holomorphic on Re(z) > 0;
(ii) is expandable into a Gregory-Newton series on the half plane Re(z) > 0.
2) Every Bernstein function ® admits an extension which
(i) is continuous on the half plane Re(z) > 0 and holomorphic on Re(z) > 0;
(ii) satisfies for some C;, D > 0
|®(2) —®(2")| < C+ Dz — 2| foreveryz, 2’ s.t. Re(z) > Re(Z') > 0;
(ii) is expandable into a Gregory-Newton series on the half plane Re(z) > 0.
Proof. 1) Assertion (i) is due to Corollary 9.12 p. 67 [4]. Boundedness of the extension of U insures that

Norlund’s condition (21) is satisfied and then (ii) is true.

2) Assertion (i) is due to 9.14 p. 68 [4] or to Proposition 3.6 p. 25 [17], so that the representation (3) extends
on Re(z) >0

O(z)=q+dz+ /(0 )(1 —e “u(dr).

For 2)(ii), we reproduce some steps of the Proposition 3.6 p. 25 [17], we observe that for every x > 0 and
z, 2z’ € C such that Re(z) > Re(z') > 0, we have

le* —e ¥ < |1—e G2 <2 (2= 2z| < 2V ]z = )1 AZ) < (24 |2 — 21 Az).
We deduce
[@(2) — ©()]

IA

dlz— 2|+ / le™* — | u(dz)
(0,00)

IA

dz—2+2+]z-2) (1A z)pu(dz)
(0,00)

= C+D|z—7|<(CvD)ePFl.
where C' =2 [, \(1Az)u(dz) and D = d + [ (1A z)p(dz).

2)(iii) is justified as follows: take 2’ = 0, get that |®(z)| < [®(0)| + C + D|z| < (C +|®(0)|) v D) Pl
and deduce ® satisfies Norlund’s condition (21). O

7. THE PROOFS

Proof of Proposition 1. (a) For the necessity part, notice that if ¢ > 0 and V¥ is represented by W(\) =
f(o 00) e ™ pg(dz), A > 0, then

BO) = BO) ~ B0 = [ e (1) ()
(0,00)
since the measure pp(dz) := (1 — e~ ") pg(dz) gives no mass to zero.

For the sufficiency part, take ¢ > 0 and consider the iterative functional equation W(\) — U (A + ¢) = k()
with h € CM(0, 00) represented by

h(X\) = /(0 )e_m pp(dx).
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We would like to show that ¥ € CM (0, o), or equivalently (by Remark 2 (ii)) that . ¥ € CM (0, 0o). This is
the reason why it is sufficient to show that the solution of the iterative functional equation

T(A) — U(A+1) = h()\)

belongs to CM (0, 00), i.e. to check things with ¢ = 1. For this purpose, we apply Theorem 6 with the log-
concave function g(\) = e "M X > 0 satisfying limy_,00 g(A) = 1 and f(A) = Y=Y X > 0. We
obtain the representation:

W) - (1) = AN - S /( e ) = | e = e,
n=1 100

(0,00)

which insures that U is differentiable with —¥’ € CM (0, 00). Because ¥ is non-negative, we conclude that

U € CM(0, 00).

Statement (b) could be extracted from the second proof that follows. ]

Second proof of the sufficiency part of Proposition 1. Fix ¢ > 0 and write for every n € N and A > 0,

n—1 n—1
(—2n)T(N) = T(\) = T(A+ne) =Y (A +ic) = TA+ (i+1)c) = Y (—A)T(A +ic)
i=0 i=0

Obviously, the sequence n +— (—A,.)¥(A) is increasing for every A\, ¢ > 0, then x — W¥(x) is decreasing and
then converging, since non-negative. We denote W(oo) := lim, oo ¥(x). The function A — (—A,.)VU(N)
belongs to CM (0, co) and, by Corollary 1.7 p. 6in [17], the limiting function (—As ¢)¥ = limy, o0 (—Ape) ¥
also belongs to CM (0, o), the convergence holds locally uniformly and also for the derivatives. This limit does
not depend on c because it satisfies:

U(A) = ¥(0) + (A )P(N), A>0.

)

Proof of Proposition 2. 1) If ® € BF is represented by (3), then for every ¢ > 0,

A= A@(N) =P(N+¢) — () =dc +/ e (1 —e ) pu(dz), A>0,
(0,00)

is non-negative and belongs to CM|0, co). By Remark 1 (iii) we deduce that € CA[0, c0).

Conversely, assume ® € CA[0, c0) and non-negative, we will show that ® is differentiable and that &’ in
completely monotone on (0, c0) which is equivalent to ® € BF. Remark 1 (iii) and definiteness of ® in zero
yield to

A= AD(N) = P(A+¢) — P(N) € CM[0,00), Ve > 0.

Inspired by the proof of Proposition 1, we will see, that A® € CM(0, 0o) (i.e. when taking ¢ = 1) is sufficient
for proving that ® is differentiable and that &' € CM (0, 0o). Indeed, assume A® is the Laplace representation

1

AdD(N) = /[0 )e_)‘my(dx).
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Theorem 6 insures that f(\) = e®()=®() is the unique solution of the iterative functional equation f(A+1) =

f(A)g(N) and ®(1) — ®(A) has the following representation for every A > 0:

B(1) — B(N) = i ~AD(n+\)
= l« e T _ (n+>\)x T
/[ p(da) Z /0 . ) u(da)
_ _ o e—)\a: e " T
= u({o) +/(OOO) )= [ 0=
= wop+ [ o o)

Then, for every a > 0, A — ®(A + a) — ®(a) = f(o o)1= e~A%) 2= (dz) is a Bernstein function which
is equivalent, by (6) to & € BF.

2) The proof is conducted identically by dropping the positivity condition on ®. U

Proof of Proposition 3. If ® € BF is represented by (3) and if ¢ > 0, then

A= 0.2(\) =®(c) —2(0) + P(N) — PN+ ¢) = /(0 )(1 — e MY (1 — e ) p(dz).

We deduce that 6.® € BF} since (1 — e~ “®)u(dz) is a measure with finite total mass equal to ®(c) — (®(0) +
d c).

Conversely, assume A — 0.®(\) = [®(c) — ®(0)] — [®(A+c) — ®(\)] € BF}. The latter is equivalent by
@ to X [®(A+¢) — ®()\)] € CM(0, 00) and we conclude as in the proof of Proposition 2.

Statement (b) could be extracted from the second proof that follows. ]

Second proof of the sufficiency part of Proposition 3. Because of the invariance (5), it is enough to prove the
Proportion in case where ¢ = 1. Since #9 belongs to B]—"g, then it is represented with a finite measure ;4 on
(0, 00) by

0.D(\) = / (1—e ) pe(dz), A>0.
(0,00)
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We will see that the latter is sufficient to show that ¢ is differentiable on (0,00) and that ®’ belongs to
CM(0, c0). First notice that for every n € Ny and A > 0,

One®(N) = [®(nc) — D(0)] — [®(A+nc) — D(N)]

i
L

= [@((k + 1)c) — ®(ke)] — [@(A + (k+ 1)) — P(A + kc)]

k=0
n—1
= Y {[2(0) - 2(0)] - [#(A+ (k + 1)) — @A+ ke)] )
k=0
_{ [®(c) — 8(0)] — [®((k + 1)) — @(kc)]}
n—1
= > 0B\ + ke) — 0. (ke)
k=0

n—1
= Y[ -t g
k=0 (%,%¢

. 1 — e~ nex
= /(0 )(1—6 ATy~ io(da).

1l—e
By Corollary 3.9 p. 29 [17], the sequence 0,,.P converges locally uniformly, and all its derivatives to a Bernstein

function 0, ® given by

1—e
(0,00) + €

We have also showed that for every A > 0, ®(nc) — ®(A + nc) = oo (X)) + ©(0) — ®(N), when n — oo.
On the other hand, by (16), we get that for every A > 0

xlgr;o SN+ 1x) — ®(x) =d.N, forsomed, >0
and we deduce that,
D(N) = P(0) + deA + Ooo cP(N), A >0.
Uniqueness of the triplet of characteristics in the representation (3) of Bernstein functions allows to conclude

that both d,. and 0, .® do not depend on c. O

Proof of Theorem 4. For the necessity part, use Proposition 6 for (a) and Theorem 3 for (b). For the sufficiency
part, use Theorem 3 again which asserts that there is a unique finite measure y on [0, co) such that

U(k) = / e~ u(dz), Vk € N.
[0,00)
The finiteness of each term W (k), k& € N allows to define the function
W(N) = / e M p(dz), A>0.
[0,00)

Since ¥ (k) = W(k) for every k € Ny, and since the extensions on Re(z) > 0 of both functions ¥ and ¥ are
holomorphic and bounded, then Blaschke’s argument given in Theorem 6 insures that the extensions of ¥ and
U are equal on Re(z) > 0. We deduce that ¥ and ¥ coincide on (0, c0) and, by continuity in zero, also on
[0, 00). O
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Alternative Proof of Theorem 4. We conclude as in the last proof without the use of Blaschke’s argument. Be-
cause the extensions on Re(z) > 0 of both functions ¥ and ¥ are holomorphic and bounded, they are, by Propo-
sition 6 expandable into Gregory-Newton series as in (20). Since (¥(k));~o = (U(k)) >0 and the sequences

(Ak\II(O))k>O and (¥(k)), entirely determine each other by (19), we conclude that AFT(0) = ART(0) for
all k € Ny. Finally, U and ¥ have the same expansion (20) and then are equal. ]

Proof of Corollary 1. For the necessity part, do as in the proof of Theorem 4. For the sufficiency part, notice
that the sequence of functions 7., W(\) = W(e, + ), A > 0, satisfy the conditions of Theorem 4 and converge
to ¥. One concludes with Remark 2 (ii). O

Proof of Corollary 2. The necessity part is obvious. For the sufficiency part, consider two functions ¥ and ¥,
in CM (0, 00), represented by their measures v and v, and coinciding on {ng, ng + 1, - - - } for some ng € Ny.
By construction, the well defined functions on [0, o), Tno Y1(A) and 7,, Vs, coincide on Ny. Using Remark 7
and imitating the end of the proof of Theorem 4, conclude that 7,,, ¥; and 7,,, W5 are equal, that is

/ e M ey (dg) = / e M e (dz), YA >0
[0,00) [0,00)

By injectivity of Laplace transform, conclude that the measures e~ *v; (dx) and e~ *vy(dx) are equal and
so are v and v2. One can also use the Gregory-Newton expansion argument as in the alternative proof of
Theorem 4. Now, assume W1 (0+) < oo (that is ¥; € CM[0, 00)), then, by continuity, necessarily ¥ (0+) =
U5(0+4) and ¥; = U5 on [0, 00). O

Proof of Proposition 4. The necessity part is obvious by Remark 2 (ii), we tackle the sufficiency part. Using
continuity in zero, it is enough to prove that ¥ is completely monotone on (0, c0). We fix A > 0 and denote
[x] the integer part of the real number z. Notice that an[ﬁ] is smaller than X and tends to A when n goes to
infinity. We claim that

Au

en(A\u) == eonlanln o , uniformly in u > 0, when n — oco. (22)

Indeed, using the inequality

b
ae *<1 and Oge_“e_b:/e_udug(ba)e_a, 0<a<d
a

we have, for every integer n such that a,, < A and u > 0, that

A A —an[=-lu —an[2-]u 1 n
Ogen()\,u)—e_Auganu <— []> e nlan] <apue nloy] << o
an, oy (2] " A—an
Now, by assumption, we have
A A 2
¥ (an[2]) = 0, ([2]) = / BNy, (du) _/ en (A, ) B(do),
( n ) ( Qn ) [0,00) [0,00)

where v, is the representative measure of ¥,, and 7, is the finite measure with total mass v, ( [O, o0)) = ¥(0),
image of v, by the change of variable u = a,,v. Continuity of ¥ yields

T(N) = lim q:(mi]) “dim [ en(A ) n(du)

n—0o0 O[n n—oo [0,00)

and Helly’s selection theorem, insures that there exist a subsequence (an)p>0 and a finite measure v on [0, c0)
such that v, converges vaguely (and also weakly) to v. Taking the limit along the subsequence ny, and thanks
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to the uniformity in (22), we get
U\ = / e u(du).
[0,00)
U
Proof of Corollary 3. Since (a) = (b) is justified by Remark 2 (ii) and (b) = (c) is immediate, we just need

to prove (¢) = (a). In case where ¥(0+) < oo, Proposition 4 directly applies. In case where ¥(0+) = oo,
we claim that for every fixed m € N, the function

1
71 U(\) = U(— 4+ ), A >0,
m m

satisfies the condition of Proposition 4. Indeed, 71 ¥ is continuous and, by assumption, there exists for each

n € N, a function ¥,,, € CM|[0,c0), associated to a measure vy, with finite total mass ynm([O, x0)) =
U(1/m), such that for every [ € Ny,

l l
TL\IJ(*) _ \Il(n—i-m ) :\I’mn(n+ml):/ e-(n-{-ml)ul/nm(du)
mon mn [0,00)
= / e~ v Up,m(dv) = / e Ty (dv) (23)
[0,00) [0,00)
where vy, ,,, is the image of vy, by the change of variable u = % Taking I = 0 in (23), it is immediate that the

measure
— v ~
Upm(dv) := €~ m Uy, (dv)

is also a measure with finite total mass 7y, ,, ([0, 00)) = ¥(L1).

It is now evident, by proposition 4, that for every m, the function 71 ¥ is completely monotone on [0, 00)
for every m € N. Using Remark 2 (ii), we conclude that ¥ € CM (0, c0). O

Proof of Theorem 5. We tackle the proof with the necessity part: the holomorphy condition (i) is in Proposi-
tion 6 and the second condition stems from Theorem 2. Proof of the sufficiency part is based on Blaschke’s
result stated in Corollary 6, used with some care, because Bernstein function are not bounded in general. By
Proposition 3, it is enough to check whether the function

A= 0D(N) = A1P(0) — A1 P(N) = P(1) — P(0) + P(N) —P(A+ 1)
belongs to BF 2 in order to show that ® € BF. We argue as follows:

1- representation (11) gives
®(k) = q+ dk + /(0 )(1 —e kY u(de), ke Ny,
and allows to define the function |
DN =q+dr+ /(0 )(1 — e MY u(dz), X\ €0,00),
and then, by Proposition 3, 6® € BFY;

2- the sequences (6®(k)), ., and (6®(k)), ., are equal;

k>0 k>0

3- boundedness condition in (a) yields boundedness of the function the extension of 6@, boundedness of the
function the extension of 6 stems from Proposition 6;

4- Corollary 6 insures that the extensions of the functions 6 and 0® are equal on (0, 00) and also on since
0D(0) = 6P(0) = 0. Then, 6O € BFY. O
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Alternative proof of Theorem 5. As in the alternative proof of Theorem 4, Gregory-Newton expansion approach
works. Do as in the proof Theorem 5 until point 3- and use Proposition 6 to conclude in a point 4- that both
extensions of #® and 6P share the Gregory-Newton expansion and then are equal. U

Proof of Proposition 5. The necessity part is comes from (5). The sufficiency part is an adaptation of the proof
of Proposition 4. From (22), we have

— _an[i] u —Au . .
l—e,(Nu)=1—e "en’® —1—¢ uniformly in © > 0 when n — oo.

Notice that

A A _[x

@ (@n[2]) = ®aan[ =) = / (1 e [0 pn(au),
On On [0,00)

where (., is the representative measure of ¥,,. By the change variable © = «,,v, the representation

A -
o(anl])= [ (1= enth ) putaw

Qp

holds true where [, being a finite measure with total mass /i, ((0,00)) = limy_,o ®(A) < oo due to the
monotone convergence theorem applied along A — oo. The rest of the proof is continued exactly as in proof of
Proposition 4 through the limit ®(\) = lim,, 00 @ (avn[A/an]) O

Proof of Corollary 5. The implication (a) == (b) is justified by (5) and (b) = (c) being immediate, we just
need to prove (¢) = (a). By In order to show that & € B.F, it is enough, by Proposition 3, to check that for
every fixed m € N, the function

e cp(%) —3(0) + B(N) — @(% ), A0,

belongs to BF 2. By assumption there exists for each n € N, a function ®,,,,, € BF, having triplet of charac-
teristics (Gmmn, mn, imn ), such that the following representation holds true for all £ € Ny:

1 k k mk +n mk
(+)=2() (=) =2 ) (mk +n) (mk)
= dpnn+ / e TR (1 — 7Y pn (du). (24)
(0,00)

Representation (24) shows that the sequence k > @(% + %) — @(%) is positive and decreasing then is con-
verging. Similarly, we have

010(5) = () -a(0)+ (L)~ B+ 1) es)
= o) - b0) + e T

= Opn(n) — Prn(0) + @ (mk) — @pn(km + n)
= [ e e ),
(0,00)

Making the change of variable u = v/m in (26), we retrieve with the image iy, Of (i, that
k n, o
0.1 (%) :/ (1= e ) (1 — e~ 5Y) fipn(du), Vk € No. 26)
(0,00)

m n

Representation (25) and continuity of 61 ® justifies that lim, o, 01 ®(z) = limy_,00 61 @(%) is finite. Then,
the monotone convergence theorem insures applied in (26) gives that

/ (1—e"m") fimn(du) = lim 01 ®(x).
(0,00)

T—00 m
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i.e. the measure (1—e~m ) fiyy (du) is finite with total mass lim, . 6 1 ®(z). We conclude that 0 1 ® satisfies

m m

the condition of Proposition 5 and then belongs to BF 2. U

8. BERNSTEIN SELF-DECOMPOSABILITY PROPERTY OF FUNCTIONS IS ALSO RECOGNIZED BY THEIR
RESTRICTION ON Ny

During the redaction of this paper, we felt it important to clarify the probabilistic notion of infinite divisibility
and self-decomposability of non-negative random variables. The probabilistic point of view is well presented
in the book Steutel and van Harn in [18]. Every Bernstein function ®, null in zero, is the cumulant function
(i.e. Laplace exponent) of an infinitely divisible non-negative random variable Z, i.e.

E[e~*4] := / eMP(Zeds)=e N, x>0
[0,00)

The latter is equivalent to the existence, for every integer n, of non-negative i.i.d random variables Z7, - -- , Z]}
d .
suchthat Z = Z}' 4+ - - - + Z', or also to the fact that the function

t
A (E[e"\z ]) is completely monotone for every ¢ > 0.

In [18], Steutel and van Harn present class of non-negative self-decomposable r.v.’s by those random vari-
ables X, such that for every ¢ € (0, 1), the function

A= U (N) = E[e™ ]/ E[e=M], 27)

belongs to CM [0, o0). The latter is equivalent to the existence, for each ¢ € (0, 1), of a r.v. Y. independent
from X such that the folloowing identity in law holds true

xXLex4y,

Necessarily the r.v. X is infinitely divisible and is called a self-decomposable r.v. Its cumulant function ®(\) =
—log E[e™*¥X], A > 0 (necessarily differentiable) satisfies (27) or equivalently it satisfies 3)(b) in Proposition
7 below, for this reason, ® is called a self-decomposable Bernstein function. Another characterization of ® is a
specification of the form (3) with ¢ = 0 and the Lévy measure of the form v(dz) = = 'k(z)dz, z > 0 with k
a decreasing function (see [16] for more account).

We denote C.F the class of cumulant functions of probability measures, i.e.:
CF :={\— ¢(\) = —logE[e ] = — log/ e M P(Z € dz), Z anon-negative rv.} .
[0,00)
Remark 8. It is clear that
(i) CF is stable by addition (it stems from the addition of independent random variables), is closed under

pointwise limits (this is the convergence in distribution) and also stable by the operators o. and 7. introduced
in Section 2.

(ii) & € BF if and only ift(fb — <I>(0)) € CF foreveryt > 0. ¢ € CF ifand only if 1 — e=® € BFy. The
latter yields ® € BF if and only if 1 — e~ *® € BF,, for everyt > 0.

(iii) Observe that ® € BF if and only if (1 — e=*»®) /e, € BF}, for some positive sequence ¢, tending to
zero. To see the claim, use closure property under pointwise limits of BF (Corollary 3.9 p. 29 in [17]) together
with ® = lim,,_ys (1 - 6_6"‘1’) /€n. One can deduce that ® belongs to BF if and only if €,® belongs to CF
for some positive sequence €, tending to zero.

We have the following useful result related to (5):
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Proposition 7. Let ¢ : [0,00) — [0,00) and p.P(X) := (0 — 0c)P(A) = &(A) — D(cN), c € (0,1).

1) If ® is continuous at the neighborhood of 0 and p.® € CF (respectively BF) for some ¢ € (0,1), then ®
belongs to CF (respectively BF).

2) Assume ® is continuous at the neighborhood of 0, then the following assertions are equivalent:
(a) pc® € BF forevery c € (0,1);
(b) pc® € CF forevery c € (0,1);
(c) ® is differentiable on (0, 00) and X\ — AP’ (\) € BF.

Proof of Proposition 7. 1) If p.® belongs to CF (respectively BF), then for every n € Ny,

n—1 n—1
A pen®(X) = B(A) = B("A) = Y O(FA) = B(FHTN) =D ped(FN)
1=0 1=0

belongs to CF (respectively BF). By closure of CF (respectively BF) and using the fact that ¢ is continuous
at 0, deduce that & — ®(0) = lim,, o0 pen ® € CF (respectively BF).

2) (a) = (b): By Remark 8 (ii), p.® € BF and is null at zero, then p.® € CF.

(b) = (c): Since p.® € CF for all ¢ € (0,1), then by 1), & € CF and then differentiable. Further, by
Remark 8 (ii), p.® € CF forall ¢ € (0,1) implies to (1 — e ”®) /(1 —¢) € BF forall ¢ € (0,1). Letting
¢ — 1—, we get, by closure of BF again, that the A — A®’'(\) = lim_,1_ (1 — e ?®*W) /(1 - ¢) € BF.

(¢) = (a): The function x — ®y(z) = z®'(x) € BF. Write A\ — p.P(\) = fcl ®o(Ax) 4 for every
c € (0,1), observe that differentiability under the integral is well justified and the alternating property of the
function under the last integral allows to conclude that p.® € BF. i

We are then able to state a Corollary to Theorem 5 and Proposition 7:

Corollary 7. Let function @ : [0,00) — [0, 00) admitting a finite limit at 0. Then

1) ® is a Bernstein function if and only if it admits holomorphic extension on the half plane Re(z) > 0 and
(P(k) — @(ck));>q is completely alternating and minimal for some ¢ € (0,1).

2) @ is a self-decomposable Bernstein function if and only if it admits holomorphic extension on the half
plane Re(z) > 0 and one the following holds

(a) the sequence (®(k) — ®(ck));>q is completely alternating and minimal for all ¢ € (0,1);

(b) the sequence (k®'(k)),~ is completely alternating and minimal.

Remark 9. The main contribution in [13] consists in Theorem 1.1 where it was stated in case ®(0) = 0: @ is
a self-decomposable Bernstein function if and only if

(P(zk) — ®(yk));>q is completely alternating for every x >y > 0.

No minimality nor holomorphy conditions were required in [13]. In our work, these conditions appeared to
be the lowest price to pay in order to fix t = 1 or to have the non parametric characterization 2)(b) and this
clarifies the discussion at the end of section I in [13].
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