Integer-Complete Parameter Synthesis
for Bounded Parametric Timed Automata

Étienne André1,2, Didier Lime2, Olivier H. Roux2

1LIPN, Université Paris 13, Sorbonne Paris Cité, CNRS, France
2École Centrale de Nantes, IRCCyN, CNRS, UMR 6597, France
Context: Formal verification of timed systems

- Model checking

A model of the system

A property to be satisfied

\(\text{is unreachable} \)
Context: Formal verification of timed systems

- **Model checking**

![Diagram of a model of a system](image)

A **model** of the system

A **property** to be satisfied

Question: does the model of the system **satisfy** the property?
Context: Formal verification of timed systems

- Model checking

A model of the system

A property to be satisfied

Question: does the model of the system satisfy the property?

Yes

No

Counterexample
Beyond model checking: parameter synthesis

- Timed systems are characterized by a set of timing constants
 - “The packet transmission lasts for 50 ms”
 - “The sensor reads the value every 10 s”

- Verification for one set of constants does not usually guarantee the correctness for other values

- Challenges
 - Numerous verifications: is the system correct for any value within [40; 60]?
 - Optimization: until what value can we increase 10?
 - Robustness [Markey, 2011]: What happens if 50 is implemented with 49.99?
Beyond model checking: parameter synthesis

- Timed systems are characterized by a set of timing constants
 - “The packet transmission lasts for 50 ms”
 - “The sensor reads the value every 10 s”

- Verification for one set of constants does not usually guarantee the correctness for other values

- Challenges
 - Numerous verifications: is the system correct for any value within $[40; 60]$?
 - Optimization: until what value can we increase 10?
 - Robustness [Markey, 2011]: What happens if 50 is implemented with 49.99?

- Parameter synthesis
 - Consider that timing constants are unknown constants (parameters)
 - Find good values for the parameters
Outline

1 Preliminaries

2 Previous Works on Parameter Synthesis

3 Integer-Complete Dense Synthesis

4 Implementation in ROMÉO

5 Conclusion and Perspectives
Outline

1 Preliminaries

2 Previous Works on Parameter Synthesis

3 Integer-Complete Dense Synthesis

4 Implementation in ROMÉO

5 Conclusion and Perspectives
Timed automaton (TA)

- Finite state automaton (sets of locations)
Timed automaton (TA)

- Finite state automaton (sets of locations and actions)
Timed automaton (TA)

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks [Alur and Dill, 1994]
- Real-valued variables evolving linearly at the same rate
Timed automaton (TA)

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks [Alur and Dill, 1994]
- Real-valued variables evolving linearly at the same rate

- Features
 - Location invariant: property to be verified to stay at a location

Diagram

- States:
 - Green state
 - Blue state
 - Red state

- Edges:
 - Directed edges labeled with actions:
 - `press?`
 - `coffee!`
 - `cup!`

- Guards:
 - $y \leq 5$
 - $y \leq 8$

- Initial state:
 - Green state

- Transitions:
 - From Green to Blue: $y \leq 5$
 - From Blue to Red: $y \leq 8$
Timed automaton (TA)

- Finite state automaton (sets of **locations** and **actions**) augmented with a set X of **clocks** [Alur and Dill, 1994]
 - Real-valued variables evolving linearly at the same rate

- **Features**
 - Location **invariant**: property to be verified to stay at a location
 - Transition **guard**: property to be verified to enable a transition

Example:

- $y = 8$
- `coffee!`

Transition:

- Press? $x \geq 1$
- Press? $y \leq 5$
- Cup! $y = 5$
- $y \leq 8$
Timed automaton (TA)

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks [Alur and Dill, 1994]
- Real-valued variables evolving linearly at the same rate

Features

- Location invariant: property to be verified to stay at a location
- Transition guard: property to be verified to enable a transition
- Clock reset: some of the clocks can be set to 0 at each transition

\[
\begin{align*}
 y &= 8 \\
 \text{coffee!}
\end{align*}
\]

\[
\begin{align*}
 x &= 0 \\
 y &= 0
\end{align*}
\]

\[
\begin{align*}
 x &= 1 \\
 y &= 5 \\
 \text{cup!}
\end{align*}
\]

\[
\begin{align*}
 y &\leq 5 \\
 \text{press?}
\end{align*}
\]

\[
\begin{align*}
 x &:= 0 \\
 y &:= 0
\end{align*}
\]
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time
 - Possible concrete runs for the coffee machine
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time
 - Possible concrete runs for the coffee machine
 - Coffee with no sugar

 \[
 \begin{array}{c|c}
 x & 0 \\
 y & 0 \\
 \end{array}
 \]
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

- Possible concrete runs for the coffee machine
 - Coffee with no sugar

\[
\begin{array}{ccc}
 x & 0 & 15.4 \\
 y & 0 & 15.4 \\
\end{array}
\]
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions
 or elapsing of time

- Possible concrete runs for the coffee machine
 - **Coffee with no sugar**

\[
\begin{array}{ccc}
x & 0 & 15.4 & 0 \\
y & 0 & 15.4 & 0 \\
\end{array}
\]
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

 Possible concrete runs for the coffee machine

 - **Coffee with no sugar**

 \[
 \begin{array}{cccccc}
 \text{press?} & \rightarrow & 5 \\
 x & 0 & 15.4 & 0 & 5 \\
 y & 0 & 15.4 & 0 & 5 \\
 \end{array}
 \]
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

 Possible concrete runs for the coffee machine

 - **Coffee with no sugar**

 \[
 \begin{array}{cccccc}
 x & 0 & 15.4 & 0 & 5 & 5 \\
 y & 0 & 15.4 & 0 & 5 & 5 \\
 \end{array}
 \]
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

- Possible concrete runs for the coffee machine

 - **Coffee with no sugar**

 \[
 \begin{array}{ccc}
 x & 0 & 15.4 & 0 & 5 & 5 & 8 \\
 y & 0 & 15.4 & 0 & 5 & 5 & 8 \\
 \end{array}
 \]
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

- Possible concrete runs for the coffee machine

 - Coffee with no sugar

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(y)</th>
<th>(15.4)</th>
<th>press?</th>
<th>5</th>
<th>cup!</th>
<th>3</th>
<th>coffee!</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>15.4</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

- Possible concrete runs for the coffee machine

 - Coffee with no sugar

 \[
 \begin{array}{ccccccc}
 x & 0 & 15.4 & 0 & 5 & 5 & 8 \\
 y & 0 & 15.4 & 0 & 5 & 5 & 8 \\
 \end{array}
 \]

 - Coffee with 2 doses of sugar

 \[
 \begin{array}{ccccccc}
 x & 0 & & & & \text{press?} & \text{cup!} \\
 y & 0 & & & & \text{press?} & \text{cup!} \\
 \end{array}
 \]
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

- Possible concrete runs for the coffee machine

 - Coffee with no sugar

 ![Graph for coffee with no sugar](image)

 - Coffee with 2 doses of sugar

 ![Graph for coffee with 2 doses of sugar](image)
Concrete semantics of timed automata

- **Concrete state** of a TA: pair (l, w), where
 - l is a location,
 - w is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

- Possible concrete runs for the coffee machine
 - **Coffee with no sugar**
 - **Coffee with 2 doses of sugar**
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

- Possible concrete runs for the coffee machine
 - Coffee with no sugar
 - | State | X | Y |
 - | --- | --- | --- |
 - | 15.4 | 0 | 0 |
 - | press? | 5 | 5 |
 - | cup! | 3 | 8 |
 - | coffee! | 8 | 8 |
 - Coffee with 2 doses of sugar
 - | State | X | Y |
 - | --- | --- | --- |
 - | press? | 0 | 0 |
 - | 1.5 | 1.5 | 0 |
 - | press? | 1.5 | 1.5 | 1.5 |
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

- Possible concrete runs for the coffee machine
 - **Coffee with no sugar**
 - \(x\) \(0\) \(15.4\) \(0\) \(5\) \(5\) \(8\) \(8\)
 - \(y\) \(0\) \(15.4\) \(0\) \(5\) \(5\) \(8\) \(8\)
 - **Coffee with 2 doses of sugar**
 - \(x\) \(0\) \(0\) \(1.5\) \(0\) \(2.7\)
 - \(y\) \(0\) \(0\) \(1.5\) \(1.5\) \(4.2\)
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

- Possible concrete runs for the coffee machine
 - Coffee with no sugar
 - \(x\) \(y\)
 - 0 15.4 0 5 5 8 8
 - 0 15.4 0 5 5 8 8

 - Coffee with 2 doses of sugar
 - \(x\) \(y\)
 - 0 0 1.5 0 2.7 0
 - 0 0 1.5 1.5 4.2 4.2
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

- Possible concrete runs for the coffee machine

 - **Coffee with no sugar**

 \[
 \begin{array}{cccccccc}
 x & 0 & 15.4 & 0 & 5 & 5 & 8 & 8 \\
 y & 0 & 15.4 & 0 & 5 & 5 & 8 & 8 \\
 \end{array}
 \]

 - **Coffee with 2 doses of sugar**

 \[
 \begin{array}{cccccccc}
 x & 0 & 0 & 1.5 & 0 & 2.7 & 0 & 0.8 \\
 y & 0 & 0 & 1.5 & 1.5 & 4.2 & 4.2 & 5 \\
 \end{array}
 \]
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

- Possible concrete runs for the coffee machine
 - **Coffee with no sugar**
 - States and actions:
 - Press button 15.4
 - 5 seconds
 - Cup of coffee
 - 3 seconds
 - Coffee
 - Clock values:
 - \(x\): 0, 15.4, 0, 5, 5, 8, 8
 - \(y\): 0, 15.4, 0, 5, 5, 8, 8

 - **Coffee with 2 doses of sugar**
 - States and actions:
 - Press button 1.5
 - 2.7 seconds
 - Press button 0.8
 - Cup of coffee
 - Clock values:
 - \(x\): 0, 0, 1.5, 0, 2.7, 0, 0.8, 0.8
 - \(y\): 0, 0, 1.5, 1.5, 4.2, 4.2, 5, 5
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

- Possible concrete runs for the coffee machine
 - **Coffee with no sugar**
 \[
 \begin{align*}
 x &\quad 0 & 15.4 & 0 & 5 & 5 & 8 & 8 \\
 y &\quad 0 & 15.4 & 0 & 5 & 5 & 8 & 8 \\
 \end{align*}
 \]
 - **Coffee with 2 doses of sugar**
 \[
 \begin{align*}
 x &\quad 0 & 0 & 1.5 & 0 & 2.7 & 0 & 8 & 0.8 & 0.8 & 3.8 \\
 y &\quad 0 & 0 & 1.5 & 1.5 & 4.2 & 4.2 & 5 & 5 & 8 \\
 \end{align*}
 \]
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w)\), where
 - \(l\) is a location,
 - \(w\) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or elapsing of time

- Possible concrete runs for the coffee machine

 - **Coffee with no sugar**
 \[
 \begin{array}{ccccccccc}
 & 15.4 & \text{press?} & 5 & \text{cup!} & 3 & \text{coffee!} \\
 x & 0 & 15.4 & 0 & 5 & 5 & 8 & 8 \\
 y & 0 & 15.4 & 0 & 5 & 5 & 8 & 8 \\
 \end{array}
 \]

 - **Coffee with 2 doses of sugar**
 \[
 \begin{array}{ccccccccc}
 & \text{press?} & 1.5 & \text{press?} & 2.7 & \text{press?} & 0.8 & \text{cup!} & 3 & \text{coffee!} \\
 x & 0 & 0 & 1.5 & 0 & 2.7 & 0 & 0.8 & 3.8 & 3.8 \\
 y & 0 & 0 & 1.5 & 1.5 & 4.2 & 4.2 & 5 & 8 & 8 \\
 \end{array}
 \]
Parametric Timed Automaton (PTA)

- Timed automaton (sets of locations, actions and clocks)
Parametric Timed Automaton (PTA)

- Timed automaton (sets of locations, actions and clocks) augmented with a set P of parameters [Alur et al., 1993]
 - Unknown constants used in guards and invariants

```
$y = p_3$
coffee!
```

```
$x := 0$
y := 0$
press?
```

```
$y \leq p_2$
press?
x := 0
```

```
x \geq p_1$
cup!
y = p_2
```

$y \leq 8$
Symbolic semantics of a PTA

- **Symbolic state** of a PTA: pair \((l, C)\), where
 - \(l\) is a location,
 - \(C\) is a polyhedron (conjunction of inequalities) over \(X\) and \(P\)
Symbolic semantics of a PTA

- **Symbolic state** of a PTA: pair \((l, C)\), where
 - \(l\) is a location,
 - \(C\) is a **polyhedron** (conjunction of inequalities) over \(X\) and \(P\)

- **Symbolic run**: alternating sequence of **symbolic states** and **actions**
Symbolic semantics of a PTA

- **Symbolic state** of a PTA: pair (l, C), where
 - l is a location,
 - C is a polyhedron (conjunction of inequalities) over X and P

- **Symbolic run**: alternating sequence of symbolic states and actions

- **Example**

 $x \leq p_1$
 $y := 0$
 $x \leq p_3$

 Possible symbolic run for this PTA

 $x = y$
 $x \leq p_1$
Symbolic semantics of a PTA

- **Symbolic state** of a PTA: pair \((l, C)\), where
 - \(l\) is a location,
 - \(C\) is a polyhedron (conjunction of inequalities) over \(X\) and \(P\)

- **Symbolic run**: alternating sequence of symbolic states and actions

Example

- \(x \geq p_2\)
- \(a\)
- \(x = y\)
- \(x \leq p_1\)
- \(y := 0\)
- \(x \leq p_3\)
- \(b\)
- \(x := 0\)
- \(y \geq p_4\)
- \(c\)

- Possible symbolic run for this PTA
Symbolic semantics of a PTA

- **Symbolic state** of a PTA: pair \((l, C)\), where
 - \(l\) is a location,
 - \(C\) is a polyhedron (conjunction of inequalities) over \(X\) and \(P\)

- **Symbolic run**: alternating sequence of symbolic states and actions

Example

\[\begin{align*}
x &\geq p_2 \\
x &\leq p_1 \\
y &:= 0 \\
x &\leq p_3 \\
b &
\end{align*}\]

Possible symbolic run for this PTA

\[\begin{align*}
x &= y \\
x &\leq p_1 \\
x - y &\leq p_1 \\
x - y &\geq p_2 \\
x &\leq p_3 \\
p_1 &\geq p_2 \\
y &\geq x \\
y - x &\leq p_3
\end{align*}\]
Valuation of a PTA

Given a PTA \mathcal{A} and a parameter valuation ν, we denote by $\nu(\mathcal{A})$ the (non-parametric) timed automaton where all parameters are valuated by ν.
Objective: Computation problems

Definition (reachability synthesis (EF))

Input: a PTA \mathcal{A} and a set of locations G
Problem: Synthesize all parameter valuations ν such that there exists a run of $\nu(\mathcal{A})$ reaching a location $l \in G$
Objective: Computation problems

Definition (reachability synthesis (EF))

Input: a PTA \mathcal{A} and a set of locations \mathcal{G}
Problem: Synthesize all parameter valuations ν such that there exists a run of $\nu(\mathcal{A})$ reaching a location $l \in \mathcal{G}$

Definition (unavoidability synthesis (AF))

Input: a PTA \mathcal{A} and a set of locations \mathcal{G}
Problem: Synthesize all parameter valuations ν such that all runs of $\nu(\mathcal{A})$ eventually reach a location $l \in \mathcal{G}$
Outline

1 Preliminaries

2 Previous Works on Parameter Synthesis

3 Integer-Complete Dense Synthesis

4 Implementation in ROMÉO

5 Conclusion and Perspectives
Decidability results: reachability

Reachability emptiness

Reachability emptiness (“does there exist at least one parameter valuation reaching a given location \(l \)?”) is \textit{undecidable} for \(\text{PTA} \)

- even with a single parametric clock \[\text{[Miller, 2000]} \]
- even with only strict constraints \[\text{[Doyen, 2007]} \]
- even with a single integer-valued parameter \[\text{[Beneš et al., 2015]} \]
Decidability results: unavoidability

Reachability emptiness

Unavoidability emptiness ("does there exist at least one parameter valuation such that all runs reach a given location l?") is undecidable for PTA, even with a single bounded parameter

[Jovanović et al., 2015]
Synthesis of bounded integers

What if parameters are bounded integers...?
Synthesis of bounded integers

What if parameters are bounded integers...?

Bounded integers

Reachability and unavoidability emptiness are decidable (and PSPACE-complete) for PTA with bounded integers [Jovanović et al., 2015]
Synthesis of bounded integers

What if parameters are bounded integers...?

Bounded integers

Reachability and unavoidability emptiness are decidable (and PSPACE-complete) for PTA with bounded integers [Jovanović et al., 2015]

Two algorithms:

- IEF: reachability synthesis
- IAF: unavoidability synthesis
Synthesis of bounded integers: How?

Naive idea: enumerate all integers, and check the TA (which is PSPACE-complete [Alur and Dill, 1994])

Smarter: symbolic algorithm [Jovanović et al., 2015]

More efficient than exhaustive enumeration with Uppaal

É. André (Paris 13 / Nantes)
Synthesis of bounded integers: How?

Naive idea: enumerate all integers, and check the TA (which is PSPACE-complete [Alur and Dill, 1994])

Smarter: symbolic algorithm [Jovano vić et al., 2015]

More efficient than exhaustive enumeration with Uppaal
Synthesis of bounded integers: How?
Naive idea: enumerate all integers, and check the TA (which is PSPACE-complete [Alur and Dill, 1994])

Smarter: symbolic algorithm [Jovanović et al., 2015]
- More efficient than exhaustive enumeration with UPPAAL
Synthesis of bounded integers: How?

Naive idea: enumerate all integers, and check the TA (which is PSPACE-complete [Alur and Dill, 1994])

![Diagram](image1)

Smarter: *symbolic algorithm* [Jovanović et al., 2015]

- More efficient than exhaustive enumeration with UPPAAL

![Diagram](image2)
Integer hull of a polyhedron

Definition (integer hull)

Let \(C \) be a polyhedron.
The integer hull of \(C \) is

\[
\mathrm{IH}(C) = \text{Conv}(\mathrm{IV}(C))
\]

(\(\text{Conv} \): convex hull; \(\mathrm{IV} \) set of vectors with integer coordinates)
Integer hull of a polyhedron

Definition (integer hull)

Let C be a polyhedron. The integer hull of C is

$$\text{IH}(C) = \text{Conv}(\text{IV}(C))$$

(Conv: convex hull; IV set of vectors with integer coordinates)
Integer hull of a polyhedron

Definition (integer hull)

Let C be a polyhedron.
The integer hull of C is

\[\text{IH}(C) = \text{Conv}(\text{IV}(C)) \]

(Conv: convex hull; IV set of vectors with integer coordinates)
Reachability synthesis

Algorithm \(\text{EF}(A, G) \)

\[K \leftarrow \bot \]

Add the initial state to the waiting list

while the waiting list is not empty

Pick a symbolic state \((l, C)\) from the waiting list

if \(l \in G \) then \(K \leftarrow K \lor C \uparrow_p \)

else if \((l, C) = (l', C')\), for some \((l', C')\) met before

then do not explore further this branch

else store \((l, C)\) and add its successors to the waiting list

return \(K \)
Reachability synthesis of bounded integers using IH

Algorithm $\text{IEF}(\mathcal{A}, G)$ [Jovanović et al., 2015]

$K \leftarrow \bot$

Add the initial state to the waiting list

while the waiting list is not empty

 Pick a symbolic state (l, C) from the waiting list

 if $l \in G$ then $K \leftarrow K \lor \text{IH}(C)_{\downarrow_p}$

 else if $(l, \text{IH}(C)) = (l', \text{IH}(C'))$, for some (l', C') met before

 then do not explore further this branch

 else store $(l, \text{IH}(C))$ and add its successors to the waiting list

return K
Outline

1. Preliminaries
2. Previous Works on Parameter Synthesis
3. Integer-Complete Dense Synthesis
4. Implementation in ROMÉO
5. Conclusion and Perspectives
What about the dense result?

IEF and IAF return **symbolic** sets of **integer** valuations.
What about the dense result?

IEF and IAF return **symbolic** sets of **integer** valuations

Can we interpret the result of IEF and IAF over dense parameter valuations?
What about the dense result?

|EF and |AF return symbolic sets of integer valuations

Can we interpret the result of |EF and |AF over dense parameter valuations?

😊 For |EF: yes! ...but it may not terminate

(example in paper)
What about the dense result?

IEF and IAF return *symbolic* sets of *integer* valuations

Can we interpret the result of IEF and IAF over dense parameter valuations?

- For IEF: yes! … but it *may not terminate*
 (example in paper)

- For IAF: no! May yield *incorrect valuations*
 (counter-example in paper)
A parametric extrapolation for PTA

Definition (M-extrapolation)

Let M be the largest constant in A (including the bounds on the parameters), let x be a clock. The (M, x)-extrapolation is

$$\text{Ext}_x^M(C) = \left(C \cap (x \leq M)\right) \cup \text{Cyl}_x \left(C \cap (x > M)\right) \cap (x > M).$$
A parametric extrapolation for PTA

Definition (M-extrapolation)

Let M be the largest constant in A (including the bounds on the parameters), let x be a clock. The (M,x)-extrapolation is

$$\text{Ext}_x^M(C) = (C \cap (x \leq M)) \cup \text{Cyl}_x(C \cap (x > M)) \cap (x > M).$$

Generalized to (M,X)-extrapolation by applying to all clocks.
Integer reachability synthesis

Algorithm \(\text{IEF}(\mathcal{A}, \mathcal{G}) \)

\[K \leftarrow \perp \]

Add the initial state to the waiting list

while the waiting list is not empty

Pick a symbolic state \((l, C)\) from the waiting list

if \(l \in \mathcal{G} \) then \(K \leftarrow K \lor \left\lfloor \text{IF}(C) \right\rfloor_p \)

else if \((l, \left\lfloor \text{IF}(C) \right\rfloor) = (l', \left\lfloor \text{IF}(C') \right\rfloor), \)

then do not explore further this branch

else store \((l, \left\lfloor \text{IF}(C) \right\rfloor)\) and add its successors to the waiting list

return \(K \)
Integer complete reachability synthesis RIEF

Algorithm $\text{RIEF}(\mathcal{A}, G)$

$K \leftarrow \bot$

Add the initial state to the waiting list

while the waiting list is not empty

Pick a symbolic state (l, C) from the waiting list

if $l \in G$ then $K \leftarrow K \lor C \downarrow_P$

else if $(l, \text{IH}(\text{Ext}^M_X(C))) = (l', \text{IH}(\text{Ext}^M_X(C'))),$

then do not explore further this branch

for some (l', C') met before

else store $(l, \text{IH}(\text{Ext}^M_X(C)))$ and add its successors to the waiting list

return K
Termination of RIEF

Theorem

For any PTA \mathcal{A} with bounded parameters, the computation of $\text{RIEF}(\mathcal{A}, G)$ terminates.

Proof (hint).

From the finiteness of the number of integer hulls of (M, X)-extrapolations of possible states.
Characterization of RIEF

Theorem

Given a PTA A with bounded parameters, $\text{RIEF}(A, G)$ contains

1. no valuation that is not a solution of $\text{EF}(A, G)$

 ![Diagram of RIEF](image)

 [correctness]
Characterization of RIEF

Theorem

Given a PTA A with bounded parameters, $\text{RIEF}(A, G)$ contains

1. no valuation that is not a solution of $\text{EF}(A, G)$ \[\text{correctness}\]
2. all the integer parameter valuations solution of EF \[\text{[integer-completeness]}\]
Characterization of RIEF

Theorem

Given a PTA \(A \) with bounded parameters, \(\text{RIEF}(A, G) \) contains

1. no valuation that is not a solution of \(\text{EF}(A, G) \) \hspace{1cm} [correctness]
2. all the integer parameter valuations solution of \(\text{EF} \) \hspace{1cm} [integer-completeness]
3. all the rational valuations in the parametric zones computed by the symbolic exploration \hspace{1cm} [?]
Unavoidability

Algorithm RIAF computing parameter valuations such that a set of locations is unavoidable

Similar principle and similar results (see paper)
Outline

1 Preliminaries

2 Previous Works on Parameter Synthesis

3 Integer-Complete Dense Synthesis

4 Implementation in ROMÉO

5 Conclusion and Perspectives
Roméo

Model checker for parametric time Petri nets and PTA [Lime et al., 2009]

Uses the Parma Polyhedra Library (PPL) for operations on polyhedra [Bagnara et al., 2008]

Available in the open source CeCILL license

www.ROMEO.xxx
Case study: scheduling example

Three tasks τ_1, τ_2, τ_3 scheduled using static priorities ($\tau_1 > \tau_2 > \tau_3$) in a non-preemptive manner [Jovanović et al., 2015]

Task τ_1: periodic with period a and a non-deterministic duration in $[10, b]$

Task τ_2: minimal activation time of $2a$ and a non-deterministic duration in $[18, 28]$

Task τ_3: periodic with period $3a$ and a non-deterministic duration in $[20, 28]$.

Each task: deadline equal to its period
Case study: scheduling example

Three tasks τ_1, τ_2, τ_3 scheduled using static priorities ($\tau_1 > \tau_2 > \tau_3$) in a non-preemptive manner [Jovanović et al., 2015]

Task τ_1: periodic with period a and a non-deterministic duration in $[10, b]$

Task τ_2: minimal activation time of $2a$ and a non-deterministic duration in $[18, 28]$

Task τ_3: periodic with period $3a$ and a non-deterministic duration in $[20, 28]$

Each task: deadline equal to its period

Goal: synthesize parameter valuations ensuring that the system does not reach a deadline violation.
Experiments

Bounded parameters: \(a \in [0, 50] \) and \(b \in [0, 50] \)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Result</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEF</td>
<td>discrete</td>
<td>7.4 s</td>
</tr>
<tr>
<td>RIEF</td>
<td>dense</td>
<td>12.7 s</td>
</tr>
</tbody>
</table>
Experiments

Bounded parameters: $a \in [0, 50]$ and $b \in [0, 50]$

Result obtained by IEF: $a \geq 34$, $b \geq 10$, $a - b \geq 24$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Result</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEF</td>
<td>discrete</td>
<td>7.4 s</td>
</tr>
<tr>
<td>RIEF</td>
<td>dense</td>
<td>12.7 s</td>
</tr>
</tbody>
</table>
Experiments

Bounded parameters: \(a \in [0, 50] \) and \(b \in [0, 50] \)

Result obtained by IEF: \(a \geq 34, b \geq 10, a - b \geq 24 \)

Result obtained by RIEF: \(a > \frac{562}{17}, b \geq 10, a - b > \frac{392}{17} \)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Result</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEF</td>
<td>discrete</td>
<td>7.4 s</td>
</tr>
<tr>
<td>RIEF</td>
<td>dense</td>
<td>12.7 s</td>
</tr>
</tbody>
</table>
Experiments

Bounded parameters: \(a \in [0, 50] \) and \(b \in [0, 50] \)

Result obtained by IEF: \(a \geq 34, b \geq 10, a - b \geq 24 \)

Result obtained by RIEF: \(a > \frac{562}{17}, b \geq 10, a - b > \frac{392}{17} \)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Result</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEF</td>
<td>discrete</td>
<td>7.4 s</td>
</tr>
<tr>
<td>RIEF</td>
<td>dense</td>
<td>12.7 s</td>
</tr>
</tbody>
</table>

😊 Slightly better result by RIEF
😊 Longer computation time (IH is expensive)
😊 Most important: RIEF is dense
Outline

1 Preliminaries

2 Previous Works on Parameter Synthesis

3 Integer-Complete Dense Synthesis

4 Implementation in ROMÉO

5 Conclusion and Perspectives
Summary

- Two synthesis algorithms for PTA with guaranteed termination and dense result
 - Dense valuations are important for robustness

- First terminating algorithms over dense valuations with guarantee on the results
Perspectives

- Exact characterization of the result of RIEF and RIAF
- What part of the result may be missing?
Perspectives

- Exact characterization of the result of RIEF and RIAF
 - What part of the result may be missing?

- Extension of this principle to further algorithms
 - Inverse method (trace or language preservation) [A., Chatain, Encrenaz, Fribourg, 2009] and implementation in IMITATOR
Perspectives

- Exact characterization of the result of RIEF and RIAF
 - What part of the result may be missing?

- Extension of this principle to further algorithms
 - **Inverse method** (trace or language preservation) [A., Chatain, Encrenaz, Fribourg, 2009] and implementation in IMITATOR

- Use multi-core processors
 - E.g., some cores to compute successor states, and some to check the equality of integer hulls
Bibliography
A theory of timed automata.

Parametric real-time reasoning.
In *STOC*, pages 592–601. ACM.

An inverse method for parametric timed automata.

Language preservation problems in parametric timed automata.

The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems.

Licensing
Source of the graphics used I

Title: Smiley green alien big eyes (aaah)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain

Title: Smiley green alien big eyes (cry)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain
License of this document

This presentation can be published, reused and modified under the terms of the license Creative Commons Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0)

(LATeX source available on demand)

Author: Étienne André

https://creativecommons.org/licenses/by-sa/4.0/