Decision Problems for Parametric Timed Automata

Étienne André1,2, Didier Lime2, Olivier H. Roux2

1 LIPN, Université Paris 13, Sorbonne Paris Cité, CNRS, France
2 École Centrale de Nantes, IRCCyN, CNRS, UMR 6597, France
Context: timed model checking

- Timed model checking

\[y = \text{delay} \]
\[x := 0 \]
\[x < \text{period} \]

red box is unreachable

A model of the system
A property to be satisfied
Context:

- Timed model checking

\[y = \text{delay} \]
\[x := 0 \]
\[x < \text{period} \]

A model of the system

A property to be satisfied

Question: does the model of the system satisfy the property?
Context:

- Timed model checking

- **Timed model checking**

 \[
 \begin{align*}
 y & = \text{delay} \\
 x & := 0 \\
 x & < \text{period}
 \end{align*}
 \]

- A model of the system

- A property to be satisfied

- **Question**: does the model of the system satisfy the property?

- **Yes**

- **No**

- **Counterexample**
Context: parametric timed model checking

- Timed model checking

\[y = \text{delay} \]
\[x := 0 \]
\[x < \text{period} \]

A model of the system

A property to be satisfied

Question: for what values of the parameters does the model of the system satisfy the property?

Yes if...

\[2\text{delay} > \text{period} \]
\[\land \text{period} < 20.46 \]
Outline

1. Parametric timed automata
2. Decision problems
3. EF-emptiness
4. Integer-points PTAs
5. EF-universality and AF-emptiness
6. Conclusion and perspectives
Outline

1. Parametric timed automata
2. Decision problems
3. EF-emptiness
4. Integer-points PTAs
5. EF-universality and AF-emptiness
6. Conclusion and perspectives
Timed automaton (TA)

- Finite state automaton (sets of locations)
Timed automaton (TA)

- Finite state automaton (sets of locations and actions)

![Diagram of a timed automaton](image)

- **Location**: constrain to be verified to stay at a location
- **Transition guard**: constrain to be verified to enable a transition
- **Clock reset**: some of the clocks can be set to 0 at each transition

```plaintext
x := 0
y := 0
```

```
x ≥ 1
```

Features

```plaintext
y = 5
```
Timed automaton (TA)

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks [Alur and Dill, 1994, Henzinger et al., 1994]
- Real-valued variables evolving linearly at the same rate
Timed automaton (TA)

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks [Alur and Dill, 1994, Henzinger et al., 1994]
 - Real-valued variables evolving linearly at the same rate

- Features
 - Location invariant: constraint to be verified to stay at a location

\[
\begin{align*}
\text{press?} & \quad y \leq 5 \\
\text{cup!} & \quad y \leq 8
\end{align*}
\]
Timed automaton (TA)

- Finite state automaton (sets of locations and actions) augmented with a set \(X \) of clocks \([\text{Alur and Dill, 1994, Henzinger et al., 1994}]\)
 - Real-valued variables evolving linearly at the same rate

- Features
 - Location invariant: constraint to be verified to stay at a location
 - Transition guard: constraint to be verified to enable a transition

\[
\begin{align*}
x &\geq 1 \\
y &\leq 5 \\
y &\leq 8
\end{align*}
\]
Timed automaton (TA)

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks [Alur and Dill, 1994, Henzinger et al., 1994]
 - Real-valued variables evolving linearly at the same rate

Features

- **Location invariant**: constraint to be verified to stay at a location
- **Transition guard**: constraint to be verified to enable a transition
- **Clock reset**: some of the clocks can be set to 0 at each transition

$$\begin{align*}
 y &= 8 \\
 \text{coffee!}
\end{align*}$$

- $$\begin{align*}
 &x \geq 1 \\
 &y = 5 \\
 &\text{cup!}
\end{align*}$$

- $$\begin{align*}
 &x := 0 \\
 &y := 0
\end{align*}$$
Concrete semantics of timed automata

- **Concrete state** of a TA: pair \((l, w) \), where
 - \(l \) is a location,
 - \(w \) is a valuation of each clock

- **Concrete run**: alternating sequence of concrete states and actions or time elapse
Examples of concrete runs

- Possible concrete runs for the coffee machine
Examples of concrete runs

- Possible concrete runs for the coffee machine
 - Coffee with no sugar
Examples of concrete runs

- Possible concrete runs for the coffee machine
 - Coffee with no sugar

\[
\begin{array}{c|c}
\text{x} & 0 & 15.4 \\
\hline
\text{y} & 0 & 15.4 \\
\end{array}
\]
Examples of concrete runs

Possible concrete runs for the coffee machine

- Coffee with no sugar

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>15.4</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>15.4</td>
</tr>
</tbody>
</table>
Examples of concrete runs

- Possible concrete runs for the coffee machine
 - Coffee with no sugar

| x | 0 | 15.4 | 0 | 5 |
| y | 0 | 15.4 | 0 | 5 |
Examples of concrete runs

- Possible concrete runs for the coffee machine

 - Coffee with no sugar

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>15.4</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>15.4</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

- y ≤ 5
- y = 5
- x ≥ 1
- x := 0
- press?
- x := 0
- y := 0
- press?
- y = 8
- coffee!
- y ≤ 8
- cup!
Examples of concrete runs

Possible concrete runs for the coffee machine
- Coffee with no sugar

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>15.4</td>
<td>0</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>15.4</td>
<td>0</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>
Examples of concrete runs

- Possible concrete runs for the coffee machine
 - Coffee with no sugar

<table>
<thead>
<tr>
<th>(\text{x})</th>
<th>0</th>
<th>15.4</th>
<th>0</th>
<th>5</th>
<th>5</th>
<th>3</th>
<th>8</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{y})</td>
<td>0</td>
<td>15.4</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Examples of concrete runs

- Possible concrete runs for the coffee machine
 - Coffee with no sugar
 - Initial state:
 - $x = 0$
 - $y = 0$
 - Transition:
 - Press the button:
 - $x := 0$
 - $y := 0$
 - Intermediate states:
 - $x = 15.4$
 - $y = 15.4$
 - Final state:
 - $x = 5$
 - $y = 5$
 - $x = 8$
 - $y = 8$

 - Coffee with 2 doses of sugar
 - Initial state:
 - $x = 0$
 - $y = 0$
 - Transition:
 - Press the button:
 - $x := 0$
 - Intermediate state:
 - $x = 15.4$
 - $y = 15.4$
 - Final state:
 - $x = 3$
 - $y = 8$
 - $x = 8$
 - $y = 8$

Decision Problems for PTAs

É. André et al. (Nantes & Paris 13)
Examples of concrete runs

- Possible concrete runs for the coffee machine
 - Coffee with no sugar
    ```
    x  | 0  | 15.4 | 0  | 5  | 5  | 8  | 8  
    y  | 0  | 15.4 | 0  | 5  | 5  | 8  | 8  
    ```
 - Coffee with 2 doses of sugar
    ```
    x  | 0  | 0   |
    y  | 0  | 0   |
    ```
Examples of concrete runs

Possible concrete runs for the coffee machine

- Coffee with no sugar

- Coffee with 2 doses of sugar
Examples of concrete runs

Possible concrete runs for the coffee machine

- Coffee with no sugar

- Coffee with 2 doses of sugar
Examples of concrete runs

Possible concrete runs for the coffee machine

<table>
<thead>
<tr>
<th>Coffee with no sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>x: 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coffee with 2 doses of sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>x: 0</td>
</tr>
</tbody>
</table>
Examples of concrete runs

Possible concrete runs for the coffee machine

- Coffee with no sugar

- Coffee with 2 doses of sugar
Examples of concrete runs

Possible concrete runs for the coffee machine
- Coffee with no sugar
- Coffee with 2 doses of sugar
Examples of concrete runs

Possible concrete runs for the coffee machine

- Coffee with no sugar

- Coffee with 2 doses of sugar
Examples of concrete runs

Possible concrete runs for the coffee machine

- Coffee with no sugar

- Coffee with 2 doses of sugar
Examples of concrete runs

Possible concrete runs for the coffee machine

- Coffee with no sugar
 - \(x = 0 \)
 - \(y = 0 \)
 - \(\text{press?} \quad \text{press?} \quad \text{cup!} \quad \text{coffee!} \)

- Coffee with 2 doses of sugar
 - \(x = 0 \)
 - \(y = 0 \)
 - \(\text{press?} \quad \text{press?} \quad \text{press?} \quad \text{cup!} \quad \text{coffee!} \)
Parametric timed automaton (PTA)

- Timed automaton (sets of locations, actions and clocks)
Parametric timed automata (PTA)

- Timed automaton (sets of *locations, actions and clocks*) augmented with a set P of *parameters* [Alur et al., 1993]
- **Unknown constants** used in guards and invariants

\[
y = p_3 \\
\text{coffee!}
\]

\[
y \leq p_2 \\
x \geq p_1 \\
\text{cup!}
\]

\[
y = 0 \\
x := 0 \\
\text{press?}
\]

\[
y \leq 8
\]
L/U-PTAs

Definition

A lower/upper bound PTA (L/U-PTA) is a PTA in which each parameter p is always compared with clocks as an upper bound or always as a lower bound. [Hune et al., 2002, Bozzelli and La Torre, 2009]
L/U-PTAs

Definition

A lower/upper bound PTA (L/U-PTA) is a PTA in which each parameter p is always compared with clocks as an upper bound or always as a lower bound.

[Hune et al., 2002, Bozzelli and La Torre, 2009]

![Diagram of L/U-PTA](image)

Lower-bound parameters: p_1, p_3

Upped-bound parameters: p_1, p_3
L/U-PTAs

Definition

A lower/upper bound PTA (L/U-PTA) is a PTA in which each parameter p is always compared with clocks as an upper bound or always as a lower bound. [Hune et al., 2002, Bozzelli and La Torre, 2009]

Lower-bound parameters: p_1, p_3

Uppped-bound parameters: p_2, p_4
Symbolic semantics of PTAs

- Symbolic state $s = (l, Z)$: location + convex polyhedron constraining both clocks and parameters

 [Hune et al., 2002, André et al., 2009, Jovanović et al., 2015]

- Convex polyhedra obtained have a special form called parametric zone

 [Hune et al., 2002]

\[
Z_0 = \begin{cases}
 x = y \\
 0 \leq y \leq p_1 \\
 p_1, p_2 \geq 0
\end{cases}
\]

\[
Z_1 = \begin{cases}
 p_2 \leq x - y \leq p_1 \\
 (p_2 \leq p_1) \\
 x, y, p_1, p_2 \geq 0
\end{cases}
\]
Symbolic semantics of PTAs

- Symbolic state \(s = (l, Z) \): location + convex polyhedron constraining both clocks and parameters

 \[\text{[Hune et al., 2002, André et al., 2009, Jovanović et al., 2015]} \]

- Convex polyhedra obtained have a special form called \textit{parametric zone}

 \[\text{[Hune et al., 2002]} \]

\[
Z_0 = \begin{cases}
 x = y \\
 0 \leq y \leq p_1 \\
 p_1, p_2 \geq 0
\end{cases}
\]

\[
Z_1 = \begin{cases}
 p_2 \leq x - y \leq p_1 \\
 (p_2 \leq p_1) \\
 x, y, p_1, p_2 \geq 0
\end{cases}
\]

Note: there is a potentially infinite number of symbolic states
Valuation of a PTA

Given a PTA A and a parameter valuation ν, we denote by $\nu(A)$ the (non-parametric) timed automaton where all parameters are valuated by ν.
Valuation of a PTA

Given a PTA \mathcal{A} and a parameter valuation ν, we denote by $\nu(\mathcal{A})$ the (non-parametric) timed automaton where all parameters are valuated by ν

\[
\nu = \begin{cases}
 y_1 \leq p_2 \\
 y_2 \leq p_3 \\
 y_3 \leq 8
\end{cases}
\]

\[
\nu = \begin{cases}
 y_1 \leq 5 \\
 y_2 \leq 8 \\
 y_3 \leq 8
\end{cases}
\]

with $\nu : \begin{cases}
 p_1 \rightarrow 1 \\
 p_2 \rightarrow 5 \\
 p_3 \rightarrow 8
\end{cases}$
Outline

1. Parametric timed automata
2. Decision problems
3. EF-emptiness
4. Integer-points PTAs
5. EF-universality and AF-emptiness
6. Conclusion and perspectives
Decision problems (1/3)

Definition (reachability emptiness (EF-emptiness))

Input: a PTA A and a set of locations G

Problem: Is the set of parameter valuations v such that there exists a run of $v(A)$ reaching a location $l \in G$ empty?
Decision problems (2/3)

Definition (reachability universality (EF-universality))

Input: a PTA \mathcal{A} and a set of locations G
Problem: Are all parameter valuations ν such that there exists a run of $\nu(\mathcal{A})$ reaching a location $l \in G$?
Decision problems (3/3)

Definition (unavoidability emptiness (AF-emptiness))

Input: a PTA A and a set of locations G
Problem: Is the set of parameter valuations ν such that all runs of $\nu(A)$ eventually reach a location $l \in G$ empty?
Outline

1. Parametric timed automata
2. Decision problems
3. EF-emptiness
4. Integer-points PTAs
5. EF-universality and AF-emptiness
6. Conclusion and perspectives
EF-emptiness in the literature

Reachability emptiness ("is the set of parameter valuations reaching a given location empty?") is undecidable for PTAs [Alur et al., 1993]

- even with a single parametric clock [Miller, 2000]
- even with a single real-valued parameter [Miller, 2000]
- even with only strict constraints [Doyen, 2007]
- even with a single integer-valued parameter [Beneš et al., 2015]
EF-emptiness in the literature

EF-emptiness

Reachability emptiness (“is the set of parameter valuations reaching a given location empty?”) is **undecidable** for PTAs [Alur et al., 1993]

- even with a single parametric clock [Miller, 2000]
- even with a single real-valued parameter [Miller, 2000]
- even with only strict constraints [Doyen, 2007]
- even with a single integer-valued parameter [Beneš et al., 2015]

Proof.

By reduction from the halting problem of a 2-counter machine, which is **undecidable** [Minsky, 1967]

See [André, 2015] for an exhaustive survey
A new construction to prove the undecidability

Reduction from the halting problem of a 2-counter machine

Not a new theoretical result

Will be used for all subsequent undecidability proofs

Our new encoding of the 2-counter machine:

- Uses a single rational-valued parameter and three (parametric) clocks
- Matches the smallest known numbers of clocks and parameters for integer-valued parameters [Beneš et al., 2015] and rational-valued parameters [Miller, 2000]
2-counter machine

Finite program reading and modifying 2 non-negative integer counters C_1 and C_2

3 instructions

- when in state s_i, increment C_k and go to s_j;
- when in state s_i, decrement C_k and go to s_j;
- when in state s_i, if $C_k = 0$ then go to s_j, otherwise block.

Halting is undecidable [Minsky, 1967]
Encoding

Encoding the counters C_1 and C_2

- Three clocks x, y and z and one parameter a
- Let c_1, c_2 be the values of C_1 and C_2
- In any location s_i, when $x = 0$ we have
 - $y = 1 - ac_1$
 - $z = 1 - ac_2$
Encoding

Encoding the counters C_1 and C_2

- Three clocks x, y and z and one parameter a
- Let c_1, c_2 be the values of C_1 and C_2
- In any location s_i, when $x = 0$ we have
 - $y = 1 - ac_1$
 - $z = 1 - ac_2$

$$x = 1$$
$$x := 0$$

Initializing the clocks
Encoding the instructions: Incrementing C_1

\[\begin{align*}
z &= 1, \\
z &= 0
\end{align*}\]

\[\begin{align*}
y &= a + 1, \\
y &= 0, \\
x &= 1, \\
x &= 0
\end{align*}\]
Encoding the instructions: Incrementing C_1

\[
\begin{align*}
 z &= 1, \\
 z &:= 0 \\
 x &= 0, \\
 y &= a + 1, \\
 y &:= 0 \\
 y' &= a + 1, \\
 y' &:= 0 \\
 z &= 1, \\
 z &:= 0
\end{align*}
\]
Encoding the instructions : Incrementing C_1

\[z = 1, \quad y = a + 1, \]
\[z := 0, \quad y := 0 \]
\[x = 0, \quad x := 0 \]

\[l_{i1} \]
\[x \rightarrow 0 \]
\[y \rightarrow 1 - ac_1 \]
\[z \rightarrow 1 - ac_2 \]
Encoding the instructions: Incrementing C_1

\[z = 1, \quad y = a + 1, \]
\[z := 0, \quad y := 0 \]
\[x = 0, \quad y := 0 \]
\[x := 0, \]
\[y = a + 1, \quad z = 1, \]
\[y := 0, \quad z := 0 \]

<table>
<thead>
<tr>
<th>l_{i1}</th>
<th>l_{i2}</th>
<th>l_{i3}</th>
<th>s_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ</td>
<td>0</td>
<td>ac_2</td>
<td>ac_2</td>
</tr>
<tr>
<td>y</td>
<td>$1 - ac_1$</td>
<td>$1 - ac_1 + ac_2$</td>
<td>$1 - ac_1 + ac_2$</td>
</tr>
<tr>
<td>z</td>
<td>$1 - ac_2$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Encoding the instructions: Incrementing C_1

$z = 1,$ $y = a + 1,$
$z := 0,$ $y := 0$
$x = 1,$ $x := 0$

$y = a + 1,$ $z = 1,$
$y := 0,$ $z := 0$

$\begin{array}{c}
\text{l}_i \leftarrow \text{s}_i \\
\text{x} = 0 \\
y = a + 1 \\
y := 0 \\
z = 1 \\
z := 0
\end{array}$
Encoding the instructions: Incrementing C_1

\[
\begin{align*}
z &= 1, \\
&\quad z := 0 \\
&\quad \text{if } z = 1, \\
&\quad \text{if } z = 0
\end{align*}
\]

\[
\begin{align*}
y &= a + 1, \\
&\quad y := 0 \\
&\quad \text{if } y = a + 1, \\
&\quad \text{if } y = 0
\end{align*}
\]

\[
\begin{align*}
x &= 0, \\
&\quad x := 0 \\
&\quad \text{if } x = 1, \\
&\quad \text{if } x = 0
\end{align*}
\]

\[
\begin{align*}
l_{i1} &\quad \longrightarrow \quad l_{i2} \\
&\quad \text{if } x = 0, \\
&\quad \text{if } x = 1
\end{align*}
\]

\[
\begin{align*}
l_{i1} &\quad \longrightarrow \quad l_{i3} \\
&\quad \text{if } y = a + 1, \\
&\quad \text{if } y = 0
\end{align*}
\]

\[
\begin{align*}
l_{i2} &\quad \longrightarrow \quad l_{i3} \\
&\quad \text{if } z = 1, \\
&\quad \text{if } z = 0
\end{align*}
\]

\[
\begin{align*}
l_{i2} &\quad \longrightarrow \quad s_j \\
&\quad \text{if } y = a + 1, \\
&\quad \text{if } y = 0
\end{align*}
\]

\[
\begin{align*}
l_{i2} &\quad \longrightarrow \quad s_i \\
&\quad \text{if } x = 0, \\
&\quad \text{if } x = 1
\end{align*}
\]

\[
\begin{align*}
l_{i1} &\quad \longrightarrow \quad s_i \\
&\quad \text{if } y = 1 - ac_1 \\
&\quad \text{if } z = 1 - ac_2
\end{align*}
\]

\[
\begin{align*}
l_{i2} &\quad \longrightarrow \quad l_{i3} \\
&\quad \text{if } y = 1 - ac_1 + ac_2 \\
&\quad \text{if } z = 0
\end{align*}
\]

\[
\begin{align*}
l_{i2} &\quad \longrightarrow \quad a(c_1 + 1) \\
&\quad \text{if } y = a + 1 \\
&\quad \text{if } z = a(c_1 + 1) - ac_2
\end{align*}
\]

\[
\begin{align*}
l_{i2} &\quad \longrightarrow \quad l_{i2} \\
&\quad \text{if } y = 1 - ac_1 \\
&\quad \text{if } z = 1 - ac_2
\end{align*}
\]
Encoding the instructions: Incrementing C_1

$$z = 1, \quad z := 0$$

$$y = a + 1, \quad y := 0$$

$$x = 0, \quad x := 0$$

$$y = a + 1, \quad y := 0$$

$$z = 1, \quad z := 0$$

<table>
<thead>
<tr>
<th>State</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>$1 - ac_1$</td>
<td>$1 - ac_2$</td>
</tr>
<tr>
<td>l_{i1}</td>
<td>0</td>
<td>$1 - ac_1$</td>
<td>$1 - ac_2$</td>
</tr>
<tr>
<td>l_{i2}</td>
<td>ac_2</td>
<td>$1 - ac_1 + ac_2$</td>
<td>$a(c_1 + 1) - ac_2$</td>
</tr>
<tr>
<td>l_{i3}</td>
<td>$a(c_1 + 1)$</td>
<td>0</td>
<td>$a(c_1 + 1) - ac_2$</td>
</tr>
<tr>
<td>s_j</td>
<td>ac_2</td>
<td>$a(c_1 + 1)$</td>
<td>0</td>
</tr>
</tbody>
</table>
Encoding the instructions: Incrementing C_1

\begin{align*}
z &= 1, & y &= a + 1, \\
z &:= 0 & y &:= 0 \\
x &= 0 & x &:= 0 \\
\end{align*}

\begin{align*}
\text{l}_{i1} &\xrightarrow{\text{a} \text{c}_2} \text{l}_{i2} & \text{l}_{i2} &\xrightarrow{\text{a} (c_1 + 1) - \text{a} \text{c}_2} \text{l}_{i3} \\
x &= 0 & \text{a} \text{c}_2 &\text{a} \text{c}_2 & \text{a} (c_1 + 1) &\text{0} \\
y &= 1 - \text{a} \text{c}_1 & \text{1 - a} \text{c}_1 + \text{a} \text{c}_2 &\text{a} (c_1 + 1) - \text{a} \text{c}_2 \\
z &= 1 - \text{a} \text{c}_2 &\text{0} &\text{a} (c_1 + 1) - \text{a} \text{c}_2 \\
\text{l}_{i3} &\xrightarrow{1 - a(c_1 + 1)} \text{l}_{i3} \\
x &= 1 & \text{1} &\text{1} & \text{1 - a} (c_1 + 1) \\
y &= 1 - \text{a} (c_1 + 1) & \text{1 - a} (c_1 + 1) &\text{1 - a} \text{c}_2 \\
z &= 1 - \text{a} \text{c}_2 &\text{1 - a} \text{c}_2 \\
\end{align*}
Encoding the instructions: Incrementing C_1

\[
\begin{align*}
z &= 1, \\
z &= 0 \\
x &= 0 \\
x &= 1, \\
y &= a + 1, \\
y &= 0 \\
y &= a + 1, \\
y &= 0 \\
z &= 1, \\
z &= 0
\end{align*}
\]

\[
\begin{align*}
l_{i1} &\xrightarrow{\text{ac}_2} l_{i2} \\
l_{i2} &\xrightarrow{\text{ac}_2} l'_{i2} \\
l'_{i2} &\xrightarrow{\text{ac}_2} l_{i3} \\
l_{i3} &\xrightarrow{\text{ac}(c_1 + 1) - \text{ac}_2} s_j
\end{align*}
\]
Encoding the instructions: Decrementing C_1

Replacing guards $y = a + 1$ with $y = 1$, and guards $x = 1$ and $z = 1$ with $x = a + 1$ and $z = a + 1$, respectively.
Encoding the instructions : Decrementing \(C_1 \)

Replacing guards \(y = a + 1 \) with \(y = 1 \), and guards \(x = 1 \) and \(z = 1 \) with \(x = a + 1 \) and \(z = a + 1 \), respectively.

0-test: Straightforward (when \(x = 0 \), then \(y \) shall be 1)
Outline

1. Parametric timed automata
2. Decision problems
3. EF-emptiness
4. Integer-points PTAs
5. EF-universality and AF-emptiness
6. Conclusion and perspectives
Definition of IP-PTAs

Definition (IP-PTA)

A PTA \mathcal{A} is an integer points PTA (in short IP-PTA) if, in any reachable symbolic state (l, C) of \mathcal{A}, C contains at least one integer point.

C_1:
\[
p + 1 \leq x \\
\land x \leq 2p + 3
\]
contains integer points

C_2:
\[
x > 1 \\
\land p < 5 \\
\land x < p - 3
\]
contains no integer points
EF-emptiness for bounded IP-PTAs

Theorem

EF-emptiness is \textit{decidable} for bounded IP-PTAs.

Proof idea

- There is a parameter valuation ν and a path to l in $\nu(A)$ iff there is \textit{symbolic} path π to some (l, C);
- There is a path π to (l, C) iff $C \neq \emptyset$;
- $C \neq \emptyset$ iff C contains an \textit{integer} point (IP-PTA);
- C contains an integer point iff there is an \textit{integer} parameter valuation ν^* such that $\nu^*(\pi)$ is feasible in $\nu^*(A)$;
- There is a \textit{finite} number of integer parameter valuations (bounded).
Expressiveness of IP-PTAs

- L/U-PTAs incomparable with bounded L/U-PTA [André et al., 2016]
Expressiveness of IP-PTAs

- L/U-PTAs incomparable with bounded L/U-PTA [André et al., 2016]
- IP-PTAs incomparable with L/U-PTAs
Expressiveness of IP-PTAs

- L/U-PTAs incomparable with bounded L/U-PTA [André et al., 2016]
- IP-PTAs incomparable with L/U-PTAs
- IP-PTAs strictly larger than closed L/U-PTAs
Expressiveness of IP-PTAs

- L/U-PTAs incomparable with bounded L/U-PTA [André et al., 2016]
- IP-PTAs incomparable with L/U-PTAs
- IP-PTAs strictly larger than closed L/U-PTAs
- bounded IP-PTAs strictly larger than bounded closed L/U-PTAs
Expressiveness of IP-PTAs

- L/U-PTAs incomparable with bounded L/U-PTA [André et al., 2016]
- IP-PTAs incomparable with L/U-PTAs
- IP-PTAs strictly larger than closed L/U-PTAs
- bounded IP-PTAs strictly larger than bounded closed L/U-PTAs
- bounded IP-PTAs incomparable with bounded L/U-PTAs
Expressiveness of IP-PTAs

- L/U-PTAs incomparable with bounded L/U-PTA [André et al., 2016]
- IP-PTAs incomparable with L/U-PTAs
- IP-PTAs strictly larger than closed L/U-PTAs
- bounded IP-PTAs strictly larger than bounded closed L/U-PTAs
- bounded IP-PTAs incomparable with bounded L/U-PTAs

\(\leadsto \) We strictly extend the class of PTAs for which the EF-emptiness problem is decidable
Proposition

The EF-synthesis for closed bounded L/U-PTAs (and therefore for IP-PTAs) is intractable in practice.

Proof idea

- Assume a closed bounded PTA A.
- Split each parameter p_i into p_i^- and p_i^+.
- Assume complete synthesis is possible, giving constraint K.
- Then if one can test the emptiness of $K \land (\bigwedge_i p_i^- = p_i^+)$ then this contradicts the undecidability of EF-emptiness for PTAs.

(following a reasoning from [Bozzelli and La Torre, 2009, Jovanović et al., 2015])
Undecidability of the membership

Theorem

It is undecidable whether a PTA is an IP-PTA.

Proof idea

From a reduction to the halting problem of a 2-counter machine: the model is IP iff the machine does not halt.
Undecidability of the membership

Theorem

It is undecidable whether a PTA is an IP-PTA.

Proof idea

From a reduction to the halting problem of a 2-counter machine: the model is IP iff the machine does not halt.

Consequence:

- Limited practical interest of IP-PTAs?
- ...unless we can exhibit sufficient syntactic conditions for membership
Reset-PTA

Definition (reset-PTA)

A PTA is a reset-PTA if, whenever a clock is compared to a parameter, all clocks are reset.
Reset-PTA

Definition (reset-PTA)

A PTA is a reset-PTA if, whenever a clock is compared to a parameter, all clocks are reset.

```
y ≤ 5
press? x, y := 0

y = 8
coffee!

y ≥ 5

y = p2
x, y := 0
cup!

x ≥ p1
press? x, y := 0
```

Theorem

A reset-PTA is an IP-PTA.
Reset-PTA

Definition (reset-PTA)

A PTA is a reset-PTA if, whenever a clock is compared to a parameter, all clocks are reset.

Theorem

A reset-PTA is an IP-PTA.

Corollary

The EF-emptiness problem is *decidable* for bounded reset-PTAs.
Outline

1. Parametric timed automata
2. Decision problems
3. EF-emptiness
4. Integer-points PTAs
5. EF-universality and AF-emptiness
6. Conclusion and perspectives
EF-universality and AF-emptiness

Theorem

*EF-universality and AF-emptiness are *undecidable* for bounded IP-PTAs.*

See paper for details
EF-universality and AF-emptiness

Theorem

EF-universality and AF-emptiness are undecidable for bounded IP-PTAs.

See paper for details

Corollary

EF-universality and AF-emptiness are undecidable for unbounded IP-PTAs, for bounded PTAs and for PTAs.
Outline

1 Parametric timed automata

2 Decision problems

3 EF-emptiness

4 Integer-points PTAs

5 EF-universality and AF-emptiness

6 Conclusion and perspectives
Summary

<table>
<thead>
<tr>
<th>Class</th>
<th>bL/U-PTAs</th>
<th>bIP-PTAs</th>
<th>L/U-PTAs</th>
<th>IP-PTAs</th>
<th>bPTAs</th>
<th>PTAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF-empt.</td>
<td>✓</td>
<td>✓</td>
<td>[HRSV02]</td>
<td>×</td>
<td>[Miller00]</td>
<td>[AHV93]</td>
</tr>
<tr>
<td>EF-univ.</td>
<td>✓</td>
<td>×</td>
<td>[BlT09]</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>AF-empt.</td>
<td>×</td>
<td>×</td>
<td>[JLR15]</td>
<td>×</td>
<td>×</td>
<td>[JLR15]</td>
</tr>
</tbody>
</table>

EF-emptiness

- Bounded L/U
- Closed L/U
- IP-PTA
- PTAs

EF-universality

- Bounded L/U
- Closed L/U
- IP-PTA
- PTAs

AF-emptiness

- Bounded L/U
- Closed L/U
- IP-PTA
- PTAs
Conclusion

- PTAs extensively studied

- A new **decidable** subclass: bounded IP-PTAs... but of limited interest
 - Other problems than EF-emptiness are **undecidable**
 - Membership **undecidable**
 - Exact synthesis **intractable**

- A syntactic subclass of IP-PTAs: reset-PTAs
 - Promising decidability results
Perspectives

- **Extend reset-PTAs**
 - Using the same restrictions as in hybrid systems

 [Henzinger et al., 1998]

- **AF-universality**: studied in another paper with a subtle border between decidability and undecidability for L/U-PTAs

 [André and Lime, 2016]

- **Study L-PTAs and U-PTAs**
 - Entirely open classes
Bibliography

References II

On the expressiveness of parametric timed automata.

Language emptiness of continuous-time parametric timed automata.
In ICALP, Part II, volume 9135 of Lecture Notes in Computer Science, pages 69–81. Springer.

Decision problems for lower/upper bound parametric timed automata.

Robust parametric reachability for timed automata.

What’s decidable about hybrid automata?
References III

*Journal of Logic and Algebraic Programming, 52-53:*183–220.

Licensing
Source of the graphics used I

Title: Smiley green alien big eyes (aaah)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain

Title: Smiley green alien big eyes (cry)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain
License of this document

This presentation can be published, reused and modified under the terms of the license Creative Commons Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0)

(LATEX source available on demand)

Author: Étienne André, Didier Lime, Olivier H. Roux

https://creativecommons.org/licenses/by-sa/4.0/