PSyHCoS
Parameter Synthesis for Hierarchical Concurrent Real-Time Systems

Étienne André, Yang Liu, Jun Sun, Jin Song Dong, Shang-Wei Lin
Temasek Laboratories
National University of Singapore
Motivation

• Timed systems are characterized by a set of timing constants
 • “The packet transmission lasts for 50 ms”
 • “The sensor reads the value every 10 s”
 • etc.

• Verification for one set of constants does not guarantee the correctness for other values

• Challenges
 • Numerous verifications: is the system correct for any value within [40; 60]?
 • Optimization: until what value can we increase 10?
 • Robustness: What happens if 50 is implemented with 49.99?
Motivation

- Timed systems are characterized by a set of timing constants
 - “The packet transmission lasts for 50 ms”
 - “The sensor reads the value every 10 s”
 - etc.

- Verification for one set of constants does not guarantee the correctness for other values

- Challenges
 - Numerous verifications: is the system correct for any value within [40; 60]?
 - Optimization: until what value can we increase 10?
 - Robustness: What happens if 50 is implemented with 49.99?

- Parameter synthesis
 - Consider that timing constants are unknown constants (parameters)
 - Find good values for the parameters
Parametric Stateful Timed CSP

- An intuitive formal modeling language
 - English-like description
 - Formal semantics allowing verification
 - Standard constructions of CSP [Hoare, 1978]
 - User-defined data structures (C#-like code)
Parametric Stateful Timed CSP

- An intuitive formal modeling language
 - English-like description
 - Formal semantics allowing verification
 - Standard constructions of CSP [Hoare, 1978]
 - User-defined data structures (C#-like code)

- Parameterized timed constructs [André et al., 2012, Sun et al., 2013]
 - `Wait[u]`: waits exactly u time units
 - P `timeout[u] Q`: the first observable event of P shall occur before u time units; otherwise, behaves like Q
 - P `interrupt[u] Q`: behaves like P until u time units; then, like Q
 - P `within[u]`: the first observable event of P shall occur before u time units
 - P `deadline[u]`: P shall terminate before u time units
Algorithms Implemented

- Implementation in PSyHCoS
 - Parameter Synthesis for Hierarchical Concurrent Systems

- Computation of the reachability graph
 - 😊 Interesting for small examples
 - 😞 Often leads to an infinite state space
 - ~ Does not terminate (no synthesis possible)

- Synthesis using the inverse method [André and Soulat, 2013]
 - 😊 Partial exploration of the state space only
 - 😊 Outputs a constraint on the parameters: avoiding numerous verification, allowing optimization and robustness analysis
 - 😊 Often terminate in practice

- And also: classical model checking algorithms
 - 😊 LTL / deadlock-checking, etc.
Architecture of PSyHCoS

- Implemented in C# (Microsoft .NET framework)
- Each syntactic construct (with its semantics) implemented in a different class
- Algorithms implemented in a modular way
 ➔ Easy reusability and addition of new features
Experiments

| Case study | | reachAll | | reachAll+ | | IM | | IM+ |
|------------|---|----------------|----------------|----------------|---|---|---|
| Bridge | 4 | - - - M.O. | - - - M.O. | 2.8k 2 253 | 2.8k 2 455 |
| Fischer4 | 2 | - - - M.O. | - - - M.O. | 11k 4 41.9 | 2k 4 8.65 |
| Fischer5 | 2 | - - - M.O. | - - - M.O. | 133k 5 1176 | 13k 5 84.5 |
| Fischer6 | 2 | - - - M.O. | - - - M.O. | 86k 6 1144 | |
| Jobshop | 8 | 14k 20k 2 | 12k 17k 2 | 1112 2 17.1 | 877 2 22.8 |
| RCS5 | 4 | 5.6k 7.2k 4 | 5.6k 7.2k 4 | 5.6k 4 7.83 | 5.6k 4 16.7 |
| RCS6 | 4 | 34k 43k 4 | 34k 43k 4 | 34k 4 60.4 | 34k 4 91.3 |
| TrAHV | 6 | 7.2k 13k 6 | 7.2k 13k 6 | 227 6 0.555 | 227 6 0.655 |

- **reachAll**: computation of the reachability graph
- **IM**: inverse method
- **reachAll+** (resp. **IM+**): version with optimized encoding
Perspectives

- Integration of further state space reduction techniques
 [André et al., 2013]

- Improvement of the internal representation of constraints relying on the Parma Polyhedra Library [Bagnara et al., 2008]

- Parameterized refinement checking

- Extension to the multi-core setting [Laarman et al., 2013]
Try it!

Available under the GNU-GPL license

Try it!

Available under the GNU-GPL license

Demo today at 5pm
FM 2014

19th International Symposium on Formal Methods (FM 2014)

- 12-16, May, 2014
- Singapore
Bibliography
References I

Configuration encoding
Configuration encoding

- Encoding
 - Process (ID)
 - Value for variables
 - List of clocks
 - Constraint: definition of a normal form

- Example
 - \((\text{Wait}\[u_3\]_{x_3}||\text{Wait}\[u_5\]_{x_3}||\text{Wait}\[u_5\]_{x_2}, x_3 \leq x_2)\)
 - Encoding:
 - Process: \(\text{Wait}\[u_3\]||\text{Wait}\[u_5\]||\text{Wait}\[u_5\]}
 - List of clocks: \(\{x_3, x_3, x_2\}\)
 - Constraint: \(x_3 \leq x_2\)

- Justification for the list of clocks
 - Distinguishes between \((\text{Wait}\[u_3\]_{x_3}||\text{Wait}\[u_5\]_{x_3}||\text{Wait}\[u_5\]_{x_2}, x_3 \leq x_2)\)
 and \((\text{Wait}\[u_3\]_{x_2}||\text{Wait}\[u_5\]_{x_3}||\text{Wait}\[u_5\]_{x_2}, x_3 \leq x_2)\)
Configuration encoding: optimization

- Actual equivalence between
 \((\text{Wait}[u_3]_{x_1} || \text{Wait}[u_5]_{x_2}, x_1 \leq x_2)\) and
 \((\text{Wait}[u_3]_{x_2} || \text{Wait}[u_5]_{x_1}, x_2 \leq x_1)\)
Configuration encoding: optimization

- Actual equivalence between
 \[(\text{Wait}[u_3]_{x_1} | | \text{Wait}[u_5]_{x_2}, x_1 \leq x_2) \text{ and } (\text{Wait}[u_3]_{x_2} | | \text{Wait}[u_5]_{x_1}, x_2 \leq x_1)\]

- Idea \(\sim\) rename clocks

 - Example: \((\text{Wait}[u_3]_{x_3} | | \text{Wait}[u_5]_{x_3} | | \text{Wait}[u_5]_{x_2}, x_3 \leq x_2)\)

 New encoding:
 - Process: \(\text{Wait}[u_3] | | \text{Wait}[u_5] | | \text{Wait}[u_5]\)
 - List of clocks: \(\{x_1, x_1, x_2\}\)
 - Constraint: \(x_1 \leq x_2\)

- This method is time consuming
 - Numerous string and list sorts
 - But often leads to efficient state space reduction
Licensing
Source of the pictures used

Title: Smiley green alien big eyes (aaah)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain

Title: Smiley green alien big eyes (cry)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain

Title: Psi uc lc
Author: Dcoetzee, Flanker
Source: https://commons.wikimedia.org/wiki/File:Psi_uc_lc.svg
License: public domain
License of this document

This presentation can be published, reused and modified under the terms of the license Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)

Author: Étienne André

https://creativecommons.org/licenses/by-sa/3.0/