5th Workshop on Reachability Problems Genova

28th September 2011

Synthesis of Timing Parameters Satisfying Safety Properties

Étienne André and Romain Soulat

Laboratoire Spécification et Vérification LSV, ENS de Cachan & CNRS, France

The Good Parameters Problem

- Context: Verification of Timed Systems
- Good parameters problem
 - Synthesize a set of values of the timing parameters guaranteeing that the system behaves well (e.g., avoids any bad state)
- Classical approaches
 - Computation of all the reachable states, and intersection with the set of bad states [Alur et al., 1995]
 - Approach based on CEGAR [Clarke et al., 2000, Frehse et al., 2008]
- Our approach: inverse method

An Example: Flip-Flop Circuit (1/2)

• An asynchronous circuit [Clarisó and Cortadella, 2007]

- Concurrent behavior
 - 4 elements: G₁, G₂, G₃, G₄
 - 2 input signals (D and CK), 1 output signal (Q)

An Example: Flip-Flop Circuit (1/2)

• An asynchronous circuit [Clarisó and Cortadella, 2007]

- Concurrent behavior
 - 4 elements: G₁, G₂, G₃, G₄
 - 2 input signals (D and CK), 1 output signal (Q)
- Timing parameters
 - Traversal delays of the gates: one interval per gate
 - 4 environment parameters: TLO, THI, TSetup and THold

An Example: Flip-Flop Circuit (1/2)

• An asynchronous circuit [Clarisó and Cortadella, 2007]

- Concurrent behavior
 - 4 elements: G₁, G₂, G₃, G₄
 - 2 input signals (D and CK), 1 output signal (Q)
- Timing parameters
 - Traversal delays of the gates: one interval per gate
 - 4 environment parameters: TLO, THI, TSetup and THold
- Question: for which values of the parameters does the rise of Q always occur before the fall of CK?

An Example: Flip-Flop Circuit (2/2)

• We suppose given a valuation π_0 of the parameters (called point)

- This point guarantees a good behavior:
 - Q^{\uparrow} occurs before CK^{\downarrow}
- We are looking for a set of points (containing π_0) for which the system behaves well

- The good parameters problem
 - "Given a bounded parameter domain V_0 , find a set of parameter valuations of good behavior in V_0 "

- The good parameters problem
 - "Given a bounded parameter domain V_0 , find a set of parameter valuations of good behavior in V_0 "

- The good parameters problem
 - "Given a bounded parameter domain V₀, find a set of parameter valuations of good behavior in V₀"

- The inverse problem
 - "Given a reference parameter valuation π_0 , find other valuations around π_0 of same behavior"

- The good parameters problem
 - "Given a bounded parameter domain V₀, find a set of parameter valuations of good behavior in V₀"

- The inverse problem
 - "Given a reference parameter valuation π_0 , find other valuations around π_0 of same behavior"

Outline

- Parametric Timed Automata
- 2 The Inverse Method
- 3 Optimized Algorithms Based on the Inverse Method
- 4 Implementation and Case Studies
- Conclusions and Future Work

Outline

- Parametric Timed Automata
- 2 The Inverse Method
- Optimized Algorithms Based on the Inverse Method
- 4 Implementation and Case Studies
- 5 Conclusions and Future Work

• Finite state automaton (sets of locations)

• Finite state automaton (sets of locations and actions)

- Finite state automaton (sets of locations and actions) augmented with
 - A set X of clocks (i.e., real-valued variables evolving linearly at the same rate [Alur and Dill, 1994])

- Finite state automaton (sets of locations and actions) augmented with
 - A set X of clocks (i.e., real-valued variables evolving linearly at the same rate [Alur and Dill, 1994])

- Features
 - Location invariant: property to be verified to stay at a location

 $x \geq 1$

- Finite state automaton (sets of locations and actions) augmented with
 - A set X of clocks (i.e., real-valued variables evolving linearly at the same rate [Alur and Dill, 1994])

- Features
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition

 $x \geq 1$

- Finite state automaton (sets of locations and actions) augmented with
 - A set X of clocks (i.e., real-valued variables evolving linearly at the same rate [Alur and Dill, 1994])

- Features
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition
 - Clock reset: some of the clocks can be set to 0 at each transition

Parametric Timed Automaton (PTA)

 $x \geq p_2$

- Finite state automaton (sets of locations and actions) augmented with
 - A set X of clocks (i.e., real-valued variables evolving linearly at the same rate [Alur and Dill, 1994])
 - A set P of parameters (i.e., unknown constants), used in guards and invariants [Alur et al., 1993]
- Features
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition
 - Clock reset: some of the clocks can be set to 0 at each transition

- State of a PTA: couple (q, C), where
 - q is a location,
 - C is a constraint (conjunction of inequalities) over X and P

- State of a PTA: couple (q, C), where
 - q is a location,
 - C is a constraint (conjunction of inequalities) over X and P
- Run: alternating sequence of states and actions

- State of a PTA: couple (q, C), where
 - q is a location,
 - C is a constraint (conjunction of inequalities) over X and P
- Run: alternating sequence of states and actions

Possible run for this PTA

- State of a PTA: couple (q, C), where
 - q is a location,
 - C is a constraint (conjunction of inequalities) over X and P
- Run: alternating sequence of states and actions

• Possible run for this PTA

- State of a PTA: couple (q, C), where
 - q is a location,
 - C is a constraint (conjunction of inequalities) over X and P
- Run: alternating sequence of states and actions

• Possible run for this PTA

Good and Bad Traces

- Trace over a PTA: time-abstract run
 - Finite alternating sequence of locations and actions

Good and Bad Traces

- Trace over a PTA: time-abstract run
 - Finite alternating sequence of locations and actions

Good and Bad Traces

- Trace over a PTA: time-abstract run
 - Finite alternating sequence of locations and actions

- A trace is said to be good if it verifies a given property
 - Example of good trace for the flip-flop (Q[↑] occurs before CK[↓])

• Example of bad trace for the flip-flop

Notation

- Given a PTA A and a point π, we denote by A[π] the (non-parametric) timed automaton where all parameters are instantiated by π
- Trace set: set of all traces of a PTA
 - Example: trace set for the flip-flop instantiated with π_0

Outline

- Parametric Timed Automata
- 2 The Inverse Method
- Optimized Algorithms Based on the Inverse Method
- 4 Implementation and Case Studies
- 5 Conclusions and Future Work

The Inverse Problem

- Input
 - A PTA A
 - A reference valuation π_0 of all the parameters of \mathcal{A}

 π_0

The Inverse Problem

- Input
 - A PTA A
 - A reference valuation π_0 of all the parameters of \mathcal{A}
- Output: tile K₀
 - Convex constraint on the parameters such that
 - $\pi_0 \models K_0$
 - For all points $\pi \models K_0$, $A[\pi]$ and $A[\pi_0]$ have the same trace sets

The Inverse Method IM: General Idea

- Our idea [André et al., 2009]
 - CEGAR-like approach
 - Instead of negating bad states, we remove π_0 -incompatible states

The Inverse Method IM: General Idea

- Our idea [André et al., 2009]
 - CEGAR-like approach
 - Instead of negating bad states, we remove π_0 -incompatible states

The Inverse Method IM: Simplified Algorithm

```
Start with K_0 = true
REPEAT
```

- Compute a set S of new reachable states under K_0
- Project the constraints onto the parameters
- **3** Refine K_0 by removing π_0 -incompatible states from S
 - Select a π_0 -incompatible state (q, C) within S (i.e., $\pi_0 \not\models C$)
 - Select a π_0 -incompatible inequality J within C (i.e., $\pi_0 \not\models J$)
 - Add $\neg J$ to K_0
 - UNTIL all states are π_0 -compatible in S

UNTIL all new states computed in S are equal to previous states

RETURN the intersection of the projection onto the parameters of all reachable states

Application to the Flip-Flop Circuit

$$K_0 = \mathtt{true}$$

Application to the Flip-Flop Circuit

$$\begin{array}{lllll} \pi_0: & & & & & \\ \delta_1^- = 7 & & \delta_1^+ = 7 & & T_{HI} = 24 \\ \delta_2^- = 5 & & \delta_2^+ = 6 & & T_{LO} = 15 \\ \delta_3^- = 8 & & \delta_3^+ = 10 & & T_{Setup} = 10 \\ \delta_4^- = 3 & & \delta_4^+ = 7 & & T_{Hold} = 17 \end{array}$$

$$K_0 = \mathtt{true}$$


```
\begin{array}{lll} \pi_0: \\ \delta_1^- = 7 & \delta_1^+ = 7 & T_{HI} = 24 \\ \delta_2^- = 5 & \delta_2^+ = 6 & T_{LO} = 15 \\ \delta_3^- = 8 & \delta_3^+ = 10 & T_{Setup} = 10 \\ \delta_4^- = 3 & \delta_4^+ = 7 & T_{Hold} = 17 \end{array}
```

 $K_0 = \mathtt{true}$


```
\begin{array}{lll} \pi_0: \\ \delta_1^- = 7 & \delta_1^+ = 7 & T_{HI} = 24 \\ \delta_2^- = 5 & \delta_2^+ = 6 & T_{LO} = 15 \\ \delta_3^- = 8 & \delta_3^+ = 10 & T_{Setup} = 10 \\ \delta_4^- = 3 & \delta_4^+ = 7 & T_{Hold} = 17 \end{array}
```

```
K_0 = T_{Setup} > \delta_1^+
```


$$\begin{array}{llll} \pi_0: \\ \delta_1^- = 7 & \delta_1^+ = 7 & T_{HI} = 24 \\ \delta_2^- = 5 & \delta_2^+ = 6 & T_{LO} = 15 \\ \delta_3^- = 8 & \delta_3^+ = 10 & T_{Setup} = 10 \\ \delta_4^- = 3 & \delta_4^+ = 7 & T_{Hold} = 17 \end{array}$$

$$K_0 = T_{Setup} > \delta_1^+$$

$$\begin{array}{llll} \pi_0: \\ \delta_1^- = 7 & \delta_1^+ = 7 & T_{HI} = 24 \\ \delta_2^- = 5 & \delta_2^+ = 6 & T_{LO} = 15 \\ \delta_3^- = 8 & \delta_3^+ = 10 & T_{Setup} = 10 \\ \delta_4^- = 3 & \delta_4^+ = 7 & T_{Hold} = 17 \end{array}$$

$$K_0 = T_{Setup} > \delta_1^+$$


```
\pi_0:
          \begin{array}{lll} \delta_{1}^{-} = 7 & \delta_{1}^{+} = 7 & T_{HI} = 24 \\ \delta_{2}^{-} = 5 & \delta_{2}^{+} = 6 & T_{LO} = 15 \\ \delta_{3}^{-} = 8 & \delta_{3}^{+} = 10 & T_{Setup} = 10 \\ \delta_{4}^{-} = 3 & \delta_{4}^{+} = 7 & T_{Hold} = 17 \end{array}
                                                                                                                                         T_{Setup} > \delta_1^+
                                                                          T_{Hold} = 17
                                                                                                                                                                     T_{Setup} \leq T_{LO}
                                                                                                                                                                \wedge T_{Setup} > \delta_1^+
                                                                                                                                                                       T_{HI} \ge T_{Hold}
                                     T_{Setup} \leq T_{LO}
                                                                                                    T_{Setup} \leq T_{LO}
                                                                                                                                                                              \delta_3^+ \geq T_{Hold}
                               \wedge T_{Setup} > \delta_1^+
                                                                                                \wedge T_{\text{Setup}} > \delta_1^+
     T_{\text{Setup}} \leq T_{\text{LO}}
                                                                     T_{Setup} \leq T_{LO}
                                                                                                                                      T_{Setup} \leq T_{LO}
\wedge T_{Setup} > \delta_1^+
                                                                \wedge T_{Setup} > \delta_1^+
                                                                                                                                \wedge \mathsf{T}_{\mathsf{Setup}} > \delta_1^+
```

```
\pi_0:
          \begin{array}{lll} \delta_{1}^{-} = 7 & \delta_{1}^{+} = 7 \\ \delta_{2}^{-} = 5 & \delta_{2}^{+} = 6 \\ \delta_{3}^{-} = 8 & \delta_{3}^{+} = 10 \\ \delta_{4}^{-} = 3 & \delta_{4}^{+} = 7 \end{array}
                                                                  T_{HI} = 24
                                                                                                                            T_{Setup} > \delta_1^+
                                                                T_{I,O} = 15
                                                                                                                       \wedge T<sub>Hold</sub> > \delta_3^+
                                                                T_{Setup} = 10
                                                                   T_{Hold} = 17
                                                                                                                                                     T_{Setup} \leq T_{LO}
                                                                                                                                                \wedge T_{Setup} > \delta_1^+
                                                                                                                                                      T_{HI} \ge T_{Hold}
                                 T_{Setup} \leq T_{LO}
                                                                                          T_{Setup} \leq T_{LO}
                                                                                                                                                             \delta_3^+ \geq T_{Hold}
                             \wedge T_{\text{Setup}} > \delta_1^+
                                                                                      \wedge T_{Setup} > \delta_1^+
                            \wedge T_{Hold} > \delta_3^+
                                                                                      \wedge T<sub>Hold</sub> > \delta_3^+
     T_{\text{Setup}} \leq T_{\text{LO}}
                                                               T_{Setup} \leq T_{LO}
                                                                                                                        T_{Setup} \leq T_{LO}
\wedge T_{\text{Setup}} > \delta_1^+
                                                         \wedge T_{Setup} > \delta_1^+
                                                                                                                   \wedge \mathsf{T}_{\mathsf{Setup}} > \delta_1^+
                                                         \wedge T<sub>Hold</sub> > \delta_3^+
\wedge T<sub>Hold</sub> > \delta_3^+
                                                                                                                   \wedge T<sub>Hold</sub> > \delta_3^+
```

$$\begin{array}{lll} \pi_0: & & & \\ \delta_1^- = 7 & \delta_1^+ = 7 & T_{HI} = 24 \\ \delta_2^- = 5 & \delta_2^+ = 6 & T_{LO} = 15 \\ \delta_3^- = 8 & \delta_3^+ = 10 & T_{Setup} = 10 \\ \delta_4^- = 3 & \delta_4^+ = 7 & T_{Hold} = 17 \end{array}$$

$$\begin{aligned} K_0 &= \\ T_{Setup} &> \delta_1^+ \\ \wedge & T_{Hold} &> \delta_3^+ \end{aligned}$$

$$\begin{array}{llll} \pi_0: \\ \delta_1^- = 7 & \delta_1^+ = 7 & T_{HI} = 24 \\ \delta_2^- = 5 & \delta_2^+ = 6 & T_{LO} = 15 \\ \delta_3^- = 8 & \delta_3^+ = 10 & T_{setup} = 10 \\ \delta_4^- = 3 & \delta_4^+ = 7 & T_{Hold} = 17 \end{array}$$

$$\begin{array}{l} K_0 = \\ T_{Setup} > \delta_1^+ & \wedge & \delta_3^+ + \delta_4^+ \geq T_{Hold} \\ \wedge & T_{Hold} > \delta_3^+ & \wedge & \delta_3^+ + \delta_4^+ < T_{HI} \\ \wedge & T_{Setup} \leq T_{LO} & \wedge & \delta_3^- + \delta_4^- \leq T_{Hold} \\ \wedge & \delta_1^- > 0 \end{array}$$

Summary of IM (1/2)

- Advantages
 - Useful to optimize timing delays in concurrent systems
 - Guarantees the preservation of LTL properties
 - Gives a criterion of robustness to the system
 - Independent of the property one wants to check
 - Efficient: allows to handle dozens of parameters

Summary of IM (2/2)

Termination

- Parameter synthesis undecidable in general for PTAs
- Sufficient condition for the termination of IM for subclasses of PTA
- Does not terminate in the general case

Remarks

- The constraint K_0 synthesized is not maximal: there are points $\pi \notin K_0$ which give the same trace set as π_0
- There are good points which correspond to a different behavior from π_0
 - For a given property ϕ , there may be different trace sets satisfying ϕ

Outline

- 1 Parametric Timed Automata
- 2 The Inverse Method
- 3 Optimized Algorithms Based on the Inverse Method
- 4 Implementation and Case Studies
- 5 Conclusions and Future Work

- IM guarantees the equality of trace sets
 - Can be seen as too strong in practice
 - One is often interested in the (non-)reachability of certain states only
- Key points of the algorithm
 - Iterative negation of π_0 -incompatible inequalities: prevents behaviors absent from $\mathcal{A}[\pi_0]$
 - State equality in the fixpoint condition: guarantees the same size for all traces
 - Final intersection of the constraints associated to all reachable states: guarantees that all behaviors in $\mathcal{A}[\pi_0]$ are available in $\mathcal{A}[\pi']$, for $\pi' \models IM(\mathcal{A}, \pi_0)$

- IM guarantees the equality of trace sets
 - Can be seen as too strong in practice
 - One is often interested in the (non-)reachability of certain states only
- Key points of the algorithm
 - Iterative negation of π_0 -incompatible inequalities: prevents behaviors absent from $\mathcal{A}[\pi_0]$
 - Essential for safety
 - State equality in the fixpoint condition: guarantees the same size for all traces
 - Final intersection of the constraints associated to all reachable states: guarantees that all behaviors in $\mathcal{A}[\pi_0]$ are available in $\mathcal{A}[\pi']$, for $\pi' \models IM(\mathcal{A}, \pi_0)$

- IM guarantees the equality of trace sets
 - Can be seen as too strong in practice
 - One is often interested in the (non-)reachability of certain states only
- Key points of the algorithm
 - Iterative negation of π_0 -incompatible inequalities: prevents behaviors absent from $\mathcal{A}[\pi_0]$
 - Essential for safety
 - State equality in the fixpoint condition: guarantees the same size for all traces
 - Non-essential for safety
 - Final intersection of the constraints associated to all reachable states: guarantees that all behaviors in $\mathcal{A}[\pi_0]$ are available in $\mathcal{A}[\pi']$, for $\pi' \models IM(\mathcal{A}, \pi_0)$

- IM guarantees the equality of trace sets
 - Can be seen as too strong in practice
 - One is often interested in the (non-)reachability of certain states only
- Key points of the algorithm
 - Iterative negation of π_0 -incompatible inequalities: prevents behaviors absent from $\mathcal{A}[\pi_0]$
 - Essential for safety
 - State equality in the fixpoint condition: guarantees the same size for all traces
 - Non-essential for safety
 - Final intersection of the constraints associated to all reachable states: guarantees that all behaviors in $\mathcal{A}[\pi_0]$ are available in $\mathcal{A}[\pi']$, for $\pi' \models IM(\mathcal{A}, \pi_0)$
 - Non-essential for safety

Variant with State Inclusion in the Fixpoint (1/2)

- Fixpoint condition of the standard inverse method *IM*
 - Termination when each new state is equal to a state encountered before
 - Exact cyclicity of the system
- Variant of the fixpoint: algorithm *IM* ⊆
 - Termination when each new state is included into a state encountered before
 - State inclusion: equality of locations, inclusion of constraints
 - Non-diverging loops

Variant with State Inclusion in the Fixpoint (2/2)

- States are merged more often than IM
 - Termination earlier and more often than IM
 - State space smaller than IM
- Properties
 - Equality of trace sets not preserved
 - Property: the trace sets are equal up to depth n, where n is the number of iterations of $IM_{\subset}(\mathcal{A}, \pi_0)$
 - More interested property: non-reachability preserved
 - If a location is not reachable in $\mathcal{A}[\pi_0]$, then it is also not reachable in $\mathcal{A}[\pi]$, for $\pi \models IM_{\subset}(\mathcal{A}, \pi_0)$
- Comparison of the constraint
 - Weaker constraint than *IM* (i.e., a larger set of parameter valuations)

Variant with Union of Constraints (1/2)

- Constraint returned by IM
 - Return the intersection of the constraints on the parameters associated to all the reachable states

- Variant of the returned constraint: algorithm IM[∪]
 - Return the union of the constraints on the parameters associated to some of the reachable states
 - Last state of each run

Variant with Union of Constraints (2/2)

- Same termination and memory consumption than IM
- Properties
 - Equality of trace sets not preserved
 - The trace set of $\mathcal{A}[\pi]$ is included into the trace set of $\mathcal{A}[\pi_0]$, for $\pi \models IM_{\subset}(\mathcal{A}, \pi_0)$
 - Corollary: non-reachability preserved
 - Furthermore: At least one trace of $\mathcal{A}[\pi_0]$ is present in $\mathcal{A}[\pi]$
- Comparison of the constraint
 - Weaker than IM
 - Incomparable with IM_{\subset}

Variant with Simple Return (1/2)

- Constraint returned by IM
 - Return the intersection of the constraints on the parameters associated to all the reachable states

- Variant of the returned constraint: algorithm IM^K
 - Return the constraint associated to the first state only

Variant with Simple Return (2/2)

- Same termination and memory consumption than IM
- Properties
 - Equality of trace sets not preserved
 - Only non-reachability is preserved
- Comparison of the constraint
 - Weaker than IM and IM^{\cup}
 - Incomparable with IM_{\subset}

Comparison of the Constraints

- Combined variants
 - One can combine the fixpoint variant (IM_{\subseteq}) with the two return variants $(IM^{\cup}$ and $IM^{\times})$
 - $\bullet \ \leadsto \ IM{}^\cup_\subset \ \text{and} \ IM{}^{\mathsf{K}}_\subset \ \text{respectively}$
- Comparison of the constraints output

• All variants improve the size of the set of parameter valuations

4日 → 4日 → 4目 → 4目 → 990

Comparison of the Constraints: Example

• A toy PTA for comparison

Comparison of the Constraints: Example

• A toy PTA for comparison

Comparison of the constraints output

Comparison of the Properties

Property	IM	$IM \subseteq$	IM^{\cup}	IM^{K}	IM_{\subseteq}^{\cup}	IM_{\subseteq}^{K}
Equality of trace sets		×	×	×	×	×
Equality of trace sets up to n			×	×	×	×
Inclusion into the trace set of $\mathcal{A}[\pi_0]$		×			×	×
Preservation of at least one trace		×		×	×	×
Equality of location sets			×	×	×	×
Convex output			×	$\sqrt{}$	×	
Preservation of non-reachability					$\sqrt{}$	

- Most interesting variants
 - IM for the equality of trace sets
 - IM^{\cup} for the preservation of at least one maximal trace
 - IM_{\subset}^{K} for the sole preservation of non-reachability

Outline

- Parametric Timed Automata
- 2 The Inverse Method
- Optimized Algorithms Based on the Inverse Method
- 4 Implementation and Case Studies
- 5 Conclusions and Future Work

Implementation

- IMITATOR II [André, 2010]
 - IMITATOR: "Inverse Method for Inferring Time AbstracT BehaviOR"
 - 10 000 lines of code
 - Written in OCaml, using the PPL library
- Available on the Web
 - http://www.lsv.ens-cachan.fr/Software/imitator/

Experiments: Method

- In order to evaluate the size of the constraints, we use the behavioral cartography algorithm [André and Fribourg, 2010]
 - ullet Coverage of a rectangular parameter domain V_0 with tiles
 - Tile: constraint output by IM
 - Full coverage of V₀ under certain conditions

• The less tiles for a given V_0 , the larger the constraints are

Experiments: Comparison

Example			Tiles					Time (s)						
Name	P	$ V_0 $	IM	IM^{\cup}	IM^{K}	$IM \subseteq$	IM_{\subset}^{\cup}	IM_{\subset}^{K}	IM	IM^{\cup}	IM^{K}	$IM \subseteq$	IM_{\subset}^{\cup}	IM_{\subset}^{K}
Toy PTA	2	72	14	10	10	7	5	5	0.101	0.079	0.073	0.036	0.028	0.026
Flip-flop	2	644	8	7	7	8	7	7	0.823	0.855	0.696	0.831	0.848	0.699
AND-OR	5	151 200	16	14	16	14	14	14	274	7154	105	199	551	68.4
Latch	4	73 062	5	3	3	5	3	3	16.2	25.2	9.2	15.9	25	9.1
CSMA/CD	3	2 000	139	57	57	139	57	57	112	276	76.0	46.7	88.0	22.6
SPSMALL	2	3 082	272	78	77	272	78	77	894	405	342	894	406	340

- Size of the constraint
 - All experiments conform to the theory
 - In particular, IM_{\subseteq}^{K} outputs the largest constraints
- Computation time
 - IM^{\cup} is sometime slower than IM although it implies less tiles
 - Comes from the non-efficient implementation of the disjunction
 - Subject of future work

Outline

- Parametric Timed Automata
- 2 The Inverse Method
- Optimized Algorithms Based on the Inverse Method
- 4 Implementation and Case Studies
- Conclusions and Future Work

Summary

- Toolbox of algorithms based on the inverse method IM for the synthesis of timing parameters
 - Relaxation of the strong criterion of trace set equality
 - Preservation of non-reachability
 - \leadsto Preservation of safety properties expressed in LTL
 - List of properties satisfied by some algorithms
 - Preservation of at least one trace
 - Inclusion into the original trace set
 - Equality of location sets
 - Advantages over *IM*
 - Better and faster termination
 - Larger sets of parameter valuations

Future Work

- Consider partial orders
 - Consequence: state space reduction

- Extend the variants of *IM* to probablistic systems
 - Study the properties preserved by the algorithms
- Extend the inverse method to hybrid automata
 - Allow to consider continuous variables driven by differential equations

References I

Alur, R. and Dill, D. (1994). A theory of timed automata. TCS, 126(2):183-235.

Alur, R., Henzinger, T. A., and Vardi, M. Y. (1993). Parametric real-time reasoning. In STOC'93, pages 592-601. ACM.

André, É. (2010).

IMITATOR II: A tool for solving the good parameters problem in timed automata.

In INFINITY'10, volume 39 of EPTCS, pages 91-99.

André, É., Chatain, T., Encrenaz, E., and Fribourg, L. (2009). An inverse method for parametric timed automata. International Journal of Foundations of Computer Science, 20(5):819-836.

References II

André, É. and Fribourg, L. (2010).

Behavioral cartography of timed automata.

In RP'10, volume 6227 of LNCS, pages 76-90. Springer.

Clarisó, R. and Cortadella, J. (2007).

The octahedron abstract domain.

Sci. Comput. Program., 64(1):115-139.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (2000).

Counterexample-guided abstraction refinement.

In CAV'00, pages 154-169. Springer-Verlag.

Frehse, G., Jha, S., and Krogh, B. (2008).

A counterexample-guided approach to parameter synthesis for linear hybrid automata. In *HSCC'08*, volume 4981 of *LNCS*, pages 187–200. Springer.

4 m > 4 m >