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Context and Related Work

Context: Hardware Verification

Verification of real time systems with stochastic behavior
▶ Need to express probabilities
▶ Need to express infinite behaviors
▶ Use of Markov decision processes [Bel57, How60]

Need for adjusting some timings or costs of the system
▶ Use of parameters (unknown constants)
▶ Definition of a zone of good behavior for the parameters
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Introduction Preliminaries

Markov Decision Process (MDP)
Weighted labeled directed graph augmented with probabilities

▶ A set of states S = {s1, . . . , sn}

▶ A set A of actions (or labels)
▶ A weight function w , associating a cost w(s, a) to every state s and

action a
▶ A probability function Prob, associating a probability to every edge,

such that the sum of the probabilities of leaving a state s through
action a is equal to 1, i.e.,

∑
s′∈S Prob(s, a, s ′) = 1

1 2

3 4
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Introduction Preliminaries

Markov Decision Process (MDP)
Weighted labeled directed graph augmented with probabilities

▶ A set of states S = {s1, . . . , sn}, including one absorbing state sn
▶ A set A of actions (or labels)
▶ A weight function w , associating a cost w(s, a) to every state s and

action a
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Introduction The Direct Problem

The Direct Problem: Optimal Policy

Policy �: function from states to actions S → A
▶ Resolves the non-determinism
▶ The MDP becomes a Markov Chain [KMST59]

Optimal policy: policy such that the sum of the weights until the
absorbing state is minimal

Optimal policy for our example of MDP

▶ � = {1→ a, 2→ d , 3→ a}
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Introduction The Inverse Problem

The Inverse Problem

The direct problem
▶ Given an MDP, compute an optimal policy

The inverse problem
▶ Given an MDP and an optimal policy, can we change the values of

some weights so that this policy remains optimal?

More formally. . .

Goal

Given an MDPℳ and an optimal policy �0, compute a constraint K0 on
the weights seen as parameters such that, for any value of the parameters,
the policy �0 remains optimal
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Outline

Outline

1 Solving the Direct Problem
The Value Determination Algorithm
The Policy Iteration Algorithm

2 Solving the Inverse Problem
Parametric Markov Decision Processes
General Idea
The Inverse Method
Application

3 Implementation

4 Conclusion and Future Works
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Solving the Direct Problem The Value Determination Algorithm

The Classical Value Determination Algorithm

Used by the policy iteration algorithm to compute the optimal policy

Inputs

▶ A Markov decision process ℳ = (S ,A,Prob,w)
▶ A policy �

Output

▶ A value function v , associating a value to every state s, i.e., the cost
from s to the absorbing state in ℳ restricted to policy �

Algorithm (Value Determination)

SOLVE {v(s) = w(s, �[s]) +
∑

s′∈S Prob(s, �[s], s ′)× v(s ′)}s∈S∖sn
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Solving the Direct Problem The Value Determination Algorithm

The Classical Value Determination Algorithm: Application

Algorithm (Value Determination)

SOLVE {v(s) = w(s, �[s]) +
∑

s′∈S Prob(s, �[s], s ′)× v(s ′)}s∈S∖sn

� = {1→ a, 2→ d , 3→ a}
v(1) = w(1, a) + 0.3× v(1) + 0.7× v(2)

= 78
7

v(2) = w(2, d) + 0.5× v(2) + 0.5× v(4)

= 4

v(3) = w(3, a) + 0.9× v(3) + 0.1× v(4)

= 20

v(4) = 0
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Solving the Direct Problem The Policy Iteration Algorithm

The Classical Policy Iteration Algorithm

Input: A Markov decision process ℳ = (S ,A,Prob,w)

Output: An optimal policy �

Principle:
1 Start with a random policy
2 Compute the value function, using algorithm ValueDet
3 Choose a strictly better policy, and go to (2) until fixpoint

Algorithm (Policy Iteration)

REPEAT UNTIL FIXPOINT
v := ValueDet(M, �)
for each s ∈ S ∖ sn DO

optimum := v [s]
for each a ∈ e(s) DO

IF w(s, a) +
∑

s′∈S Prob(s, a, s ′)v(s ′) < optimum THEN

optimum := w(s, a) +
∑

s′∈S Prob(s, a, s ′)v(s ′)
�[s] := a
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Solving the Direct Problem The Policy Iteration Algorithm

The Classical Policy Iteration Algorithm: Application
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1 We start from an arbitrary policy

2 We improve policy for states 1 and 2

3 We improve policy for state 1

4 Fixpoint is reached: the policy � is optimal for ℳ
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Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 11 / 29



Solving the Direct Problem The Policy Iteration Algorithm

The Classical Policy Iteration Algorithm: Application

1 2

3 4

v(1) = 78
7

v(2) = 4
v(3) = 20
v(4) = 0

� :
1 → a
2 → d
3 → a

a : 5

b : 2

0.3 0.7

0.5

0.5
d : 2

c : 1
1 0.5

0.5

a : 2

0.1

0.9 b : 0

1

1 We start from an arbitrary policy

2 We improve policy for states 1 and 2

3 We improve policy for state 1

4 Fixpoint is reached: the policy � is optimal for ℳ
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Solving the Inverse Problem Parametric Markov Decision Processes
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Solving the Inverse Problem Parametric Markov Decision Processes

Parametric Markov Decision Process
Markov Decision Process with parametric weights
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Solving the Inverse Problem Parametric Markov Decision Processes

Parametric Markov Decision Process: Remarks

Instantiating a PMDP ℳ with a valuation � of the parameters gives
a (non-parametric) MDP

▶ Denoted by ℳ[�]

A PMDP models the behavior of an infinite number of MDPs

The parametrization of an MDP into a PMDP is similar to the
parametrization of a Timed Automaton into a Parametric Timed
Automaton
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Solving the Inverse Problem General Idea

Inputs and Outputs (1/2)

Inverse Method

for MDPs

PMDPℳ

Reference
instantiation �0

Optimal policy �0

Constraint K0 on
the parameters
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Solving the Inverse Problem General Idea

Inputs and Outputs (2/2)

Inputs
▶ A Parametric MDP ℳ
▶ A reference instantiation �0 of all the parameters of ℳ
▶ A policy �0 optimal for ℳ[�0]

Output: generalization
▶ A constraint K0 on the parameters such that

★ �0 ∣= K0

★ The policy �0 is optimal forℳ[�], for all � ∣= K0

⋅�0
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Solving the Inverse Problem General Idea

The General Idea

Given a PMDP ℳ, an instantiation �0 of the parameters, and a policy �0

optimal for ℳ[�0]

1 Compute a parametric value function for ℳ and �0, using a
parametric version of the value determination algorithm

2 Generate constraints on the parameters of ℳ, using a parametric
version of the policy iteration algorithm
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Solving the Inverse Problem The Inverse Method

The Parametric Value Determination Algorithm

Straightforward adaptation of the value determination algorithm to
the parametric case

Inputs

▶ A parametric Markov decision process ℳ = (S ,A,Prob,W )
▶ A policy �

Output

▶ A parametric value function V , associating a parametric value to every
state s, i.e., the parametric cost from s to the absorbing state in ℳ
restricted to policy �

Algorithm (Parametric Value Determination P-ValueDet)

SOLVE {V (s) = W (s, �[s]) +
∑

s′∈S Prob(s, �[s], s ′)× V (s ′)}s∈S∖sn
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Solving the Inverse Problem The Inverse Method

Algorithm P-ValueDet: Application

Algorithm (Parametric Value Determination P-ValueDet)

SOLVE {V (s) = W (s, �[s]) +
∑

s′∈S Prob(s, �[s], s ′)× V (s ′)}s∈S∖sn

� = {1→ a, 2→ d , 3→ a}
V (1) = W (1, a) + 0.3× V (1) + 0.7× V (2)

= 10
7 × p1a + 2× p2d

V (2) = W (2, d) + 0.5× V (2) + 0.5× V (4)

= 2× p2d

V (3) = W (3, a) + 0.9× V (3) + 0.1× V (4)

= 10× p3a

V (4) = 0

1 2

3 4

a : p1a
0.3 0.7 0.5

0.5

d : p2d

a : p3a

0.1

0.9 b : 0

1
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Solving the Inverse Problem The Inverse Method

The Algorithm InverseMethod
Inputs

▶ A PMDP ℳ = (S ,A,Prob,W )
▶ An instantiation �0 of the parameters
▶ A policy �0 optimal for ℳ[�0]

Output
▶ A constraint K0 on the parameters solving the inverse problem

Principle
▶ For each state s, for each action a, generate an inequality stating that

the optimal policy �0[s] is better than a for s

Algorithm (InverseMethod)

V := P-ValueDet(M, �0)
K0 := True

FOR EACH s ∈ S ∖ {sn} DO
FOR EACH a ∈ e(s) s.t. a ∕= �0[s] DO

K0 := K0 ∧ {W (s, a) +
∑

s′∈S Prob(s, a, s ′)V [s ′] ≥ V [s]}
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Solving the Inverse Problem The Inverse Method

Properties of the Algorithm InverseMethod

Theorem (Correctness)

Given a PMDPℳ, a reference instantiation �0 and a policy �0 optimal
forℳ[�0], the constraint K0 output by the algorithm InverseMethod is
such that

�0 ∣= K0, and

�0 is optimal forℳ[�], for all � ∣= K0

Theorem (Termination and complexity)

The algorithm InverseMethod terminates in polynomial time.
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Solving the Inverse Problem Application

Application to Our Example

1 2

3 4

�0 :
p1a = 5 p1b = 2
p2c = 1 p2d = 2
p3a = 2

�0 :
1 → a
2 → d
3 → a

a : p1a

b : p1b

0.3 0.7

0.5

0.5
d : p2d

c : p2c
1 0.5

0.5

a : p3a

0.1

0.9 b : 0

1

Application: maximization of, e.g., p2d

▶ By instantiating all parameters except p2d within K0, we get p2d ≤ 34
7

▶ We can thus maximize p2d to 34
7 so that �0 remains optimal
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Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 22 / 29



Solving the Inverse Problem Application

Application to Our Example

1 2

3 4

�0 :
p1a = 5 p1b = 2
p2c = 1 p2d = 2
p3a = 2

�0 :
1 → a
2 → d
3 → a

V (1) = 10
7
× p1a + 2× p2d

V (2) = 2× p2d

V (3) = 10× p3a

K0 =
p1b + 5p3a ≥ 10

7
p1a + p2d

∧ p2c + 10p3a ≥ 2p2d

a : p1a

b : p1b

0.3 0.7

0.5

0.5
d : p2d

c : p2c
1 0.5

0.5

a : p3a

0.1

0.9 b : 0

1

Application: maximization of, e.g., p2d

▶ By instantiating all parameters except p2d within K0, we get p2d ≤ 34
7

▶ We can thus maximize p2d to 34
7 so that �0 remains optimal
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Implementation

Implementation

ImPrator: program written in OCaml

▶ ImPrator: “Inverse Method for Policy with Reward AbstracT
BehaviOR”

▶ 4000 lines of code
▶ 2 man-months of work

Features
▶ Very intuitive input syntax
▶ Solves the direct problem for (non-parametric) MDPs
▶ Solves the inverse problem for parametric MDPs

ImPrator will be available on its Web page

▶ http://www.lsv.ens-cachan.fr/∼andre/ImPrator
▶ Coming (very) soon!
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Conclusion and Future Works

Final Remarks (1/2)

Generalization method
▶ Modeling of a system with a parametric Markov decision process ℳ
▶ Starting with an instantiation �0 of the parameters, as well a policy �0

optimal for ℳ[�0], we generate a constraint K0 on the parameters
guaranteeing that �0 is optimal for ℳ[�], for any � ∣= K0

Advantages
▶ Useful to optimize costs of systems, e.g., hardware devices
▶ Powerful even on fully parametrized big systems

★ All case studies terminated in less than 1 second

Applications
▶ Real time systems
▶ Hardware verification
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Conclusion and Future Works

Final Remarks (2/2)

Other frameworks for the inverse method
▶ Parametric Timed Automata [ACEF09]

★ Tool Imitator [And09]

▶ Max–Plus Algebra [AF09]
★ Computation of the maximal circuit mean in a directed weighted graph
★ Tool under development

Future works
▶ Prove that the generated K0 is maximal

★ If �0 is an optimal policy for M[�], then � ∣= K0

▶ Handle MDPs with 2 kinds of weights
★ Example: (1) power consumption and (2) number of lost requests
★ Application: dynamic power management [PBBDM98]
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