
INFINITY ’09

An Inverse Method

for Markov Decision Processes

Étienne André
Laurent Fribourg

Laboratoire Spécification et Vérification
LSV, ENS de Cachan & CNRS

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 1 / 29



Context and Related Work

Context: Hardware Verification

Verification of real time systems with stochastic behavior
▶ Need to express probabilities
▶ Need to express infinite behaviors
▶ Use of Markov decision processes [Bel57, How60]

Need for adjusting some timings or costs of the system
▶ Use of parameters (unknown constants)
▶ Definition of a zone of good behavior for the parameters

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 2 / 29



Introduction Preliminaries

Markov Decision Process (MDP)
Weighted labeled directed graph augmented with probabilities

▶ A set of states S = {s1, . . . , sn}

▶ A set A of actions (or labels)
▶ A weight function w , associating a cost w(s, a) to every state s and

action a
▶ A probability function Prob, associating a probability to every edge,

such that the sum of the probabilities of leaving a state s through
action a is equal to 1, i.e.,

∑
s′∈S Prob(s, a, s ′) = 1

1 2

3 4

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 3 / 29



Introduction Preliminaries

Markov Decision Process (MDP)
Weighted labeled directed graph augmented with probabilities

▶ A set of states S = {s1, . . . , sn}
▶ A set A of actions (or labels)

▶ A weight function w , associating a cost w(s, a) to every state s and
action a

▶ A probability function Prob, associating a probability to every edge,
such that the sum of the probabilities of leaving a state s through
action a is equal to 1, i.e.,

∑
s′∈S Prob(s, a, s ′) = 1

1 2

3 4

a

b

0.3 0.7

0.5

0.5

d

c

1 0.5

0.5

a

0.1

0.9

b

1

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 3 / 29



Introduction Preliminaries

Markov Decision Process (MDP)
Weighted labeled directed graph augmented with probabilities

▶ A set of states S = {s1, . . . , sn}
▶ A set A of actions (or labels)
▶ A weight function w , associating a cost w(s, a) to every state s and

action a

▶ A probability function Prob, associating a probability to every edge,
such that the sum of the probabilities of leaving a state s through
action a is equal to 1, i.e.,

∑
s′∈S Prob(s, a, s ′) = 1

1 2

3 4

a : 5

b : 2

0.3 0.7

0.5

0.5

d : 2

c : 1

1 0.5

0.5

a : 2

0.1

0.9

b : 0

1

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 3 / 29



Introduction Preliminaries

Markov Decision Process (MDP)
Weighted labeled directed graph augmented with probabilities

▶ A set of states S = {s1, . . . , sn}
▶ A set A of actions (or labels)
▶ A weight function w , associating a cost w(s, a) to every state s and

action a
▶ A probability function Prob, associating a probability to every edge,

such that the sum of the probabilities of leaving a state s through
action a is equal to 1, i.e.,

∑
s′∈S Prob(s, a, s ′) = 1

1 2

3 4

a : 5

b : 2

0.3 0.7

0.5

0.5
d : 2

c : 1
1 0.5

0.5

a : 2

0.1

0.9 b : 0

1

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 3 / 29



Introduction Preliminaries

Markov Decision Process (MDP)
Weighted labeled directed graph augmented with probabilities

▶ A set of states S = {s1, . . . , sn}, including one absorbing state sn
▶ A set A of actions (or labels)
▶ A weight function w , associating a cost w(s, a) to every state s and

action a
▶ A probability function Prob, associating a probability to every edge,

such that the sum of the probabilities of leaving a state s through
action a is equal to 1, i.e.,

∑
s′∈S Prob(s, a, s ′) = 1

1 2

3 4

a : 5

b : 2

0.3 0.7

0.5

0.5
d : 2

c : 1
1 0.5

0.5

a : 2

0.1

0.9 b : 0

1

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 3 / 29



Introduction The Direct Problem

The Direct Problem: Optimal Policy

Policy �: function from states to actions S → A
▶ Resolves the non-determinism
▶ The MDP becomes a Markov Chain [KMST59]

Optimal policy: policy such that the sum of the weights until the
absorbing state is minimal

Optimal policy for our example of MDP

▶ � = {1→ a, 2→ d , 3→ a}

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 4 / 29



Introduction The Direct Problem

The Direct Problem: Optimal Policy

Policy �: function from states to actions S → A
▶ Resolves the non-determinism
▶ The MDP becomes a Markov Chain [KMST59]

Optimal policy: policy such that the sum of the weights until the
absorbing state is minimal
Optimal policy for our example of MDP

▶ � = {1→ a, 2→ d , 3→ a}

1 2

3 4

0.5

0.5

b : 2
1

c : 1

a : 50.3 0.7 0.5

0.5

d : 2

a : 2

0.1

0.9 b : 0

1

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 4 / 29



Introduction The Direct Problem

The Direct Problem: Optimal Policy

Policy �: function from states to actions S → A
▶ Resolves the non-determinism
▶ The MDP becomes a Markov Chain [KMST59]

Optimal policy: policy such that the sum of the weights until the
absorbing state is minimal
Optimal policy for our example of MDP

▶ � = {1→ a, 2→ d , 3→ a}

1 2

3 4

a : 50.3 0.7 0.5

0.5

d : 2

a : 2

0.1

0.9 b : 0

1

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 4 / 29



Introduction The Inverse Problem

The Inverse Problem

The direct problem
▶ Given an MDP, compute an optimal policy

The inverse problem
▶ Given an MDP and an optimal policy, can we change the values of

some weights so that this policy remains optimal?

More formally. . .

Goal

Given an MDPℳ and an optimal policy �0, compute a constraint K0 on
the weights seen as parameters such that, for any value of the parameters,
the policy �0 remains optimal

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 5 / 29



Introduction The Inverse Problem

The Inverse Problem

The direct problem
▶ Given an MDP, compute an optimal policy

The inverse problem
▶ Given an MDP and an optimal policy, can we change the values of

some weights so that this policy remains optimal?

More formally. . .

Goal

Given an MDPℳ and an optimal policy �0, compute a constraint K0 on
the weights seen as parameters such that, for any value of the parameters,
the policy �0 remains optimal

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 5 / 29



Outline

Outline

1 Solving the Direct Problem
The Value Determination Algorithm
The Policy Iteration Algorithm

2 Solving the Inverse Problem
Parametric Markov Decision Processes
General Idea
The Inverse Method
Application

3 Implementation

4 Conclusion and Future Works

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 6 / 29



Solving the Direct Problem

Outline

1 Solving the Direct Problem
The Value Determination Algorithm
The Policy Iteration Algorithm

2 Solving the Inverse Problem
Parametric Markov Decision Processes
General Idea
The Inverse Method
Application

3 Implementation

4 Conclusion and Future Works

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 7 / 29



Solving the Direct Problem The Value Determination Algorithm

The Classical Value Determination Algorithm

Used by the policy iteration algorithm to compute the optimal policy

Inputs

▶ A Markov decision process ℳ = (S ,A,Prob,w)
▶ A policy �

Output

▶ A value function v , associating a value to every state s, i.e., the cost
from s to the absorbing state in ℳ restricted to policy �

Algorithm (Value Determination)

SOLVE {v(s) = w(s, �[s]) +
∑

s′∈S Prob(s, �[s], s ′)× v(s ′)}s∈S∖sn

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 8 / 29



Solving the Direct Problem The Value Determination Algorithm

The Classical Value Determination Algorithm: Application

Algorithm (Value Determination)

SOLVE {v(s) = w(s, �[s]) +
∑

s′∈S Prob(s, �[s], s ′)× v(s ′)}s∈S∖sn

� = {1→ a, 2→ d , 3→ a}
v(1) = w(1, a) + 0.3× v(1) + 0.7× v(2)

= 78
7

v(2) = w(2, d) + 0.5× v(2) + 0.5× v(4)

= 4

v(3) = w(3, a) + 0.9× v(3) + 0.1× v(4)

= 20

v(4) = 0

1 2

3 4

a : 50.3 0.7 0.5

0.5

d : 2

a : 2

0.1

0.9 b : 0

1

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 9 / 29



Solving the Direct Problem The Value Determination Algorithm

The Classical Value Determination Algorithm: Application

Algorithm (Value Determination)

SOLVE {v(s) = w(s, �[s]) +
∑

s′∈S Prob(s, �[s], s ′)× v(s ′)}s∈S∖sn

� = {1→ a, 2→ d , 3→ a}
v(1) = w(1, a) + 0.3× v(1) + 0.7× v(2)

= 78
7

v(2) = w(2, d) + 0.5× v(2) + 0.5× v(4) = 4
v(3) = w(3, a) + 0.9× v(3) + 0.1× v(4) = 20
v(4) = 0

1 2

3 4

a : 50.3 0.7 0.5

0.5

d : 2

a : 2

0.1

0.9 b : 0

1

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 9 / 29



Solving the Direct Problem The Value Determination Algorithm

The Classical Value Determination Algorithm: Application

Algorithm (Value Determination)

SOLVE {v(s) = w(s, �[s]) +
∑

s′∈S Prob(s, �[s], s ′)× v(s ′)}s∈S∖sn

� = {1→ a, 2→ d , 3→ a}
v(1) = w(1, a) + 0.3× v(1) + 0.7× v(2) = 78

7
v(2) = w(2, d) + 0.5× v(2) + 0.5× v(4) = 4
v(3) = w(3, a) + 0.9× v(3) + 0.1× v(4) = 20
v(4) = 0

1 2

3 4

a : 50.3 0.7 0.5

0.5

d : 2

a : 2

0.1

0.9 b : 0

1

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 9 / 29



Solving the Direct Problem The Policy Iteration Algorithm

The Classical Policy Iteration Algorithm

Input: A Markov decision process ℳ = (S ,A,Prob,w)

Output: An optimal policy �

Principle:
1 Start with a random policy
2 Compute the value function, using algorithm ValueDet
3 Choose a strictly better policy, and go to (2) until fixpoint

Algorithm (Policy Iteration)

REPEAT UNTIL FIXPOINT
v := ValueDet(M, �)
for each s ∈ S ∖ sn DO

optimum := v [s]
for each a ∈ e(s) DO

IF w(s, a) +
∑

s′∈S Prob(s, a, s ′)v(s ′) < optimum THEN

optimum := w(s, a) +
∑

s′∈S Prob(s, a, s ′)v(s ′)
�[s] := a

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 10 / 29



Solving the Direct Problem The Policy Iteration Algorithm

The Classical Policy Iteration Algorithm: Application

1 2

3 4

v(1) = 197
7

v(2) = 21
v(3) = 20
v(4) = 0

� :
1 → a
2 → c
3 → a

a : 5

b : 2

0.3 0.7

0.5

0.5
d : 2

c : 1
1 0.5

0.5

a : 2

0.1

0.9 b : 0

1

1 We start from an arbitrary policy

2 We improve policy for states 1 and 2

3 We improve policy for state 1

4 Fixpoint is reached: the policy � is optimal for ℳ

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 11 / 29



Solving the Direct Problem The Policy Iteration Algorithm

The Classical Policy Iteration Algorithm: Application

1 2

3 4

v(1) = 14
v(2) = 4
v(3) = 20
v(4) = 0

� :
1 → b
2 → d
3 → a

a : 5

b : 2

0.3 0.7

0.5

0.5
d : 2

c : 1
1 0.5

0.5

a : 2

0.1

0.9 b : 0

1

1 We start from an arbitrary policy

2 We improve policy for states 1 and 2

3 We improve policy for state 1

4 Fixpoint is reached: the policy � is optimal for ℳ

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 11 / 29



Solving the Direct Problem The Policy Iteration Algorithm

The Classical Policy Iteration Algorithm: Application

1 2

3 4

v(1) = 78
7

v(2) = 4
v(3) = 20
v(4) = 0

� :
1 → a
2 → d
3 → a

a : 5

b : 2

0.3 0.7

0.5

0.5
d : 2

c : 1
1 0.5

0.5

a : 2

0.1

0.9 b : 0

1

1 We start from an arbitrary policy

2 We improve policy for states 1 and 2

3 We improve policy for state 1

4 Fixpoint is reached: the policy � is optimal for ℳ

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 11 / 29



Solving the Direct Problem The Policy Iteration Algorithm

The Classical Policy Iteration Algorithm: Application

1 2

3 4

v(1) = 78
7

v(2) = 4
v(3) = 20
v(4) = 0

� :
1 → a
2 → d
3 → a

a : 5

b : 2

0.3 0.7

0.5

0.5
d : 2

c : 1
1 0.5

0.5

a : 2

0.1

0.9 b : 0

1

1 We start from an arbitrary policy

2 We improve policy for states 1 and 2

3 We improve policy for state 1

4 Fixpoint is reached: the policy � is optimal for ℳ

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 11 / 29



Solving the Inverse Problem

Outline

1 Solving the Direct Problem
The Value Determination Algorithm
The Policy Iteration Algorithm

2 Solving the Inverse Problem
Parametric Markov Decision Processes
General Idea
The Inverse Method
Application

3 Implementation

4 Conclusion and Future Works

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 12 / 29



Solving the Inverse Problem Parametric Markov Decision Processes

Parametric

Markov Decision Process
Markov Decision Process

▶ A set of states S = {s1, . . . , sn}, including one absorbing state sn
▶ A set A of actions
▶ A weight function w , associating a cost w(s, a) to every state s and

action a
▶ A probability function Prob, associating a probability to every edge,

such that the sum of the probabilities of leaving a state s through
action a is equal to 1, i.e.,

∑
s′∈S Prob(s, a, s ′) = 1

1 2

3 4

a : 5

b : 2

0.3 0.7

0.5

0.5
d : 2

c : 1
1 0.5

0.5

a : 2

0.1

0.9 b : 0

1

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 13 / 29



Solving the Inverse Problem Parametric Markov Decision Processes

Parametric Markov Decision Process
Markov Decision Process with parametric weights

▶ A set of states S = {s1, . . . , sn}, including one absorbing state sn
▶ A set A of actions
▶ A parametric weight function W , associating a parametric cost (i.e.,

unknown constant) W (s, a) to every state s and action a
▶ A probability function Prob, associating a probability to every edge,

such that the sum of the probabilities of leaving a state s through
action a is equal to 1, i.e.,

∑
s′∈S Prob(s, a, s ′) = 1

1 2

3 4

a : p1a

b : p1b

0.3 0.7

0.5

0.5
d : p2d

c : p2c
1 0.5

0.5

a : p3a

0.1

0.9 b : 0

1

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 13 / 29



Solving the Inverse Problem Parametric Markov Decision Processes

Parametric Markov Decision Process: Remarks

Instantiating a PMDP ℳ with a valuation � of the parameters gives
a (non-parametric) MDP

▶ Denoted by ℳ[�]

A PMDP models the behavior of an infinite number of MDPs

The parametrization of an MDP into a PMDP is similar to the
parametrization of a Timed Automaton into a Parametric Timed
Automaton

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 14 / 29



Solving the Inverse Problem General Idea

Inputs and Outputs (1/2)

Inverse Method

for MDPs

PMDPℳ

Reference
instantiation �0

Optimal policy �0

Constraint K0 on
the parameters

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 15 / 29



Solving the Inverse Problem General Idea

Inputs and Outputs (2/2)

Inputs
▶ A Parametric MDP ℳ
▶ A reference instantiation �0 of all the parameters of ℳ
▶ A policy �0 optimal for ℳ[�0]

Output: generalization
▶ A constraint K0 on the parameters such that

★ �0 ∣= K0

★ The policy �0 is optimal forℳ[�], for all � ∣= K0

⋅�0

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 16 / 29



Solving the Inverse Problem General Idea

Inputs and Outputs (2/2)

Inputs
▶ A Parametric MDP ℳ
▶ A reference instantiation �0 of all the parameters of ℳ
▶ A policy �0 optimal for ℳ[�0]

Output: generalization
▶ A constraint K0 on the parameters such that

★ �0 ∣= K0

★ The policy �0 is optimal forℳ[�], for all � ∣= K0

K0

⋅�0

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 16 / 29



Solving the Inverse Problem General Idea

The General Idea

Given a PMDP ℳ, an instantiation �0 of the parameters, and a policy �0

optimal for ℳ[�0]

1 Compute a parametric value function for ℳ and �0, using a
parametric version of the value determination algorithm

2 Generate constraints on the parameters of ℳ, using a parametric
version of the policy iteration algorithm

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 17 / 29



Solving the Inverse Problem The Inverse Method

The Parametric Value Determination Algorithm

Straightforward adaptation of the value determination algorithm to
the parametric case

Inputs

▶ A parametric Markov decision process ℳ = (S ,A,Prob,W )
▶ A policy �

Output

▶ A parametric value function V , associating a parametric value to every
state s, i.e., the parametric cost from s to the absorbing state in ℳ
restricted to policy �

Algorithm (Parametric Value Determination P-ValueDet)

SOLVE {V (s) = W (s, �[s]) +
∑

s′∈S Prob(s, �[s], s ′)× V (s ′)}s∈S∖sn

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 18 / 29



Solving the Inverse Problem The Inverse Method

Algorithm P-ValueDet: Application

Algorithm (Parametric Value Determination P-ValueDet)

SOLVE {V (s) = W (s, �[s]) +
∑

s′∈S Prob(s, �[s], s ′)× V (s ′)}s∈S∖sn

� = {1→ a, 2→ d , 3→ a}
V (1) = W (1, a) + 0.3× V (1) + 0.7× V (2)

= 10
7 × p1a + 2× p2d

V (2) = W (2, d) + 0.5× V (2) + 0.5× V (4)

= 2× p2d

V (3) = W (3, a) + 0.9× V (3) + 0.1× V (4)

= 10× p3a

V (4) = 0

1 2

3 4

a : p1a
0.3 0.7 0.5

0.5

d : p2d

a : p3a

0.1

0.9 b : 0

1

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 19 / 29



Solving the Inverse Problem The Inverse Method

Algorithm P-ValueDet: Application

Algorithm (Parametric Value Determination P-ValueDet)

SOLVE {V (s) = W (s, �[s]) +
∑

s′∈S Prob(s, �[s], s ′)× V (s ′)}s∈S∖sn

� = {1→ a, 2→ d , 3→ a}
V (1) = W (1, a) + 0.3× V (1) + 0.7× V (2) = 10

7 × p1a + 2× p2d

V (2) = W (2, d) + 0.5× V (2) + 0.5× V (4) = 2× p2d

V (3) = W (3, a) + 0.9× V (3) + 0.1× V (4) = 10× p3a

V (4) = 0

1 2

3 4

a : p1a
0.3 0.7 0.5

0.5

d : p2d

a : p3a

0.1

0.9 b : 0

1

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 19 / 29



Solving the Inverse Problem The Inverse Method

The Algorithm InverseMethod
Inputs

▶ A PMDP ℳ = (S ,A,Prob,W )
▶ An instantiation �0 of the parameters
▶ A policy �0 optimal for ℳ[�0]

Output
▶ A constraint K0 on the parameters solving the inverse problem

Principle
▶ For each state s, for each action a, generate an inequality stating that

the optimal policy �0[s] is better than a for s

Algorithm (InverseMethod)

V := P-ValueDet(M, �0)
K0 := True

FOR EACH s ∈ S ∖ {sn} DO
FOR EACH a ∈ e(s) s.t. a ∕= �0[s] DO

K0 := K0 ∧ {W (s, a) +
∑

s′∈S Prob(s, a, s ′)V [s ′] ≥ V [s]}

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 20 / 29



Solving the Inverse Problem The Inverse Method

Properties of the Algorithm InverseMethod

Theorem (Correctness)

Given a PMDPℳ, a reference instantiation �0 and a policy �0 optimal
forℳ[�0], the constraint K0 output by the algorithm InverseMethod is
such that

�0 ∣= K0, and

�0 is optimal forℳ[�], for all � ∣= K0

Theorem (Termination and complexity)

The algorithm InverseMethod terminates in polynomial time.

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 21 / 29



Solving the Inverse Problem Application

Application to Our Example

1 2

3 4

�0 :
p1a = 5 p1b = 2
p2c = 1 p2d = 2
p3a = 2

�0 :
1 → a
2 → d
3 → a

a : p1a

b : p1b

0.3 0.7

0.5

0.5
d : p2d

c : p2c
1 0.5

0.5

a : p3a

0.1

0.9 b : 0

1

Application: maximization of, e.g., p2d

▶ By instantiating all parameters except p2d within K0, we get p2d ≤ 34
7

▶ We can thus maximize p2d to 34
7 so that �0 remains optimal

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 22 / 29



Solving the Inverse Problem Application

Application to Our Example

1 2

3 4

�0 :
p1a = 5 p1b = 2
p2c = 1 p2d = 2
p3a = 2

�0 :
1 → a
2 → d
3 → a

V (1) = 10
7
× p1a + 2× p2d

V (2) = 2× p2d

V (3) = 10× p3a

a : p1a

b : p1b

0.3 0.7

0.5

0.5
d : p2d

c : p2c
1 0.5

0.5

a : p3a

0.1

0.9 b : 0

1

Application: maximization of, e.g., p2d

▶ By instantiating all parameters except p2d within K0, we get p2d ≤ 34
7

▶ We can thus maximize p2d to 34
7 so that �0 remains optimal

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 22 / 29



Solving the Inverse Problem Application

Application to Our Example

1 2

3 4

�0 :
p1a = 5 p1b = 2
p2c = 1 p2d = 2
p3a = 2

�0 :
1 → a
2 → d
3 → a

V (1) = 10
7
× p1a + 2× p2d

V (2) = 2× p2d

V (3) = 10× p3a

K0 = True

p1b +
1
2
V (2) + 1

2
V (3)≥V (1) %% for 1 and b

∧ p2c + V (3)≥V (2) %% for 2 and c

a : p1a

b : p1b

0.3 0.7

0.5

0.5
d : p2d

c : p2c
1 0.5

0.5

a : p3a

0.1

0.9 b : 0

1

Application: maximization of, e.g., p2d

▶ By instantiating all parameters except p2d within K0, we get p2d ≤ 34
7

▶ We can thus maximize p2d to 34
7 so that �0 remains optimal

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 22 / 29



Solving the Inverse Problem Application

Application to Our Example

1 2

3 4

�0 :
p1a = 5 p1b = 2
p2c = 1 p2d = 2
p3a = 2

�0 :
1 → a
2 → d
3 → a

V (1) = 10
7
× p1a + 2× p2d

V (2) = 2× p2d

V (3) = 10× p3a

K0 =

True

p1b +
1
2
V (2) + 1

2
V (3)≥V (1) %% for 1 and b

∧ p2c + V (3)≥V (2) %% for 2 and c

a : p1a

b : p1b

0.3 0.7

0.5

0.5
d : p2d

c : p2c
1 0.5

0.5

a : p3a

0.1

0.9 b : 0

1

Application: maximization of, e.g., p2d

▶ By instantiating all parameters except p2d within K0, we get p2d ≤ 34
7

▶ We can thus maximize p2d to 34
7 so that �0 remains optimal

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 22 / 29



Solving the Inverse Problem Application

Application to Our Example

1 2

3 4

�0 :
p1a = 5 p1b = 2
p2c = 1 p2d = 2
p3a = 2

�0 :
1 → a
2 → d
3 → a

V (1) = 10
7
× p1a + 2× p2d

V (2) = 2× p2d

V (3) = 10× p3a

K0 =

True

p1b +
1
2
V (2) + 1

2
V (3)≥V (1) %% for 1 and b

∧ p2c + V (3)≥V (2) %% for 2 and c

a : p1a

b : p1b

0.3 0.7

0.5

0.5
d : p2d

c : p2c
1 0.5

0.5

a : p3a

0.1

0.9 b : 0

1

Application: maximization of, e.g., p2d

▶ By instantiating all parameters except p2d within K0, we get p2d ≤ 34
7

▶ We can thus maximize p2d to 34
7 so that �0 remains optimal

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 22 / 29



Solving the Inverse Problem Application

Application to Our Example

1 2

3 4

�0 :
p1a = 5 p1b = 2
p2c = 1 p2d = 2
p3a = 2

�0 :
1 → a
2 → d
3 → a

V (1) = 10
7
× p1a + 2× p2d

V (2) = 2× p2d

V (3) = 10× p3a

K0 =
p1b + 5p3a ≥ 10

7
p1a + p2d

∧ p2c + 10p3a ≥ 2p2d

a : p1a

b : p1b

0.3 0.7

0.5

0.5
d : p2d

c : p2c
1 0.5

0.5

a : p3a

0.1

0.9 b : 0

1

Application: maximization of, e.g., p2d

▶ By instantiating all parameters except p2d within K0, we get p2d ≤ 34
7

▶ We can thus maximize p2d to 34
7 so that �0 remains optimal

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 22 / 29



Solving the Inverse Problem Application

Application to Our Example

1 2

3 4

�0 :
p1a = 5 p1b = 2
p2c = 1 p2d = 2
p3a = 2

�0 :
1 → a
2 → d
3 → a

V (1) = 10
7
× p1a + 2× p2d

V (2) = 2× p2d

V (3) = 10× p3a

K0 =
p1b + 5p3a ≥ 10

7
p1a + p2d

∧ p2c + 10p3a ≥ 2p2d

a : p1a

b : p1b

0.3 0.7

0.5

0.5
d : p2d

c : p2c
1 0.5

0.5

a : p3a

0.1

0.9 b : 0

1

Application: maximization of, e.g., p2d

▶ By instantiating all parameters except p2d within K0, we get p2d ≤ 34
7

▶ We can thus maximize p2d to 34
7 so that �0 remains optimal

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 22 / 29



Implementation

Outline

1 Solving the Direct Problem
The Value Determination Algorithm
The Policy Iteration Algorithm

2 Solving the Inverse Problem
Parametric Markov Decision Processes
General Idea
The Inverse Method
Application

3 Implementation

4 Conclusion and Future Works

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 23 / 29



Implementation

Implementation

ImPrator: program written in OCaml

▶ ImPrator: “Inverse Method for Policy with Reward AbstracT
BehaviOR”

▶ 4000 lines of code
▶ 2 man-months of work

Features
▶ Very intuitive input syntax
▶ Solves the direct problem for (non-parametric) MDPs
▶ Solves the inverse problem for parametric MDPs

ImPrator will be available on its Web page

▶ http://www.lsv.ens-cachan.fr/∼andre/ImPrator
▶ Coming (very) soon!

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 24 / 29

http://www.lsv.ens-cachan.fr/~andre/ImPrator


Conclusion and Future Works

Outline

1 Solving the Direct Problem
The Value Determination Algorithm
The Policy Iteration Algorithm

2 Solving the Inverse Problem
Parametric Markov Decision Processes
General Idea
The Inverse Method
Application

3 Implementation

4 Conclusion and Future Works

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 25 / 29



Conclusion and Future Works

Final Remarks (1/2)

Generalization method
▶ Modeling of a system with a parametric Markov decision process ℳ
▶ Starting with an instantiation �0 of the parameters, as well a policy �0

optimal for ℳ[�0], we generate a constraint K0 on the parameters
guaranteeing that �0 is optimal for ℳ[�], for any � ∣= K0

Advantages
▶ Useful to optimize costs of systems, e.g., hardware devices
▶ Powerful even on fully parametrized big systems

★ All case studies terminated in less than 1 second

Applications
▶ Real time systems
▶ Hardware verification

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 26 / 29



Conclusion and Future Works

Final Remarks (2/2)

Other frameworks for the inverse method
▶ Parametric Timed Automata [ACEF09]

★ Tool Imitator [And09]

▶ Max–Plus Algebra [AF09]
★ Computation of the maximal circuit mean in a directed weighted graph
★ Tool under development

Future works
▶ Prove that the generated K0 is maximal

★ If �0 is an optimal policy for M[�], then � ∣= K0

▶ Handle MDPs with 2 kinds of weights
★ Example: (1) power consumption and (2) number of lost requests
★ Application: dynamic power management [PBBDM98]

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 27 / 29



Bibliography

References I

Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fribourg.
An inverse method for parametric timed automata.
International Journal of Foundations of Computer Science, 2009.
To appear.

É. André and L. Fribourg.
An inverse method for policy-iteration based algorithms.
In INFINITY ’09, August 2009.

Étienne André.
Imitator: A tool for synthesizing constraints on timing bounds of timed automata.
In ICTAC’09, LNCS. Springer, August 2009.
To appear.

R. Bellman.
A Markov decision process.
Journal of Mathematical Mechanics, 6:679–684, 1957.

R. A. Howard.
Dynamic Programming and Markov Processes.
John Wiley and Sons, Inc., 1960.

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 28 / 29



Bibliography

References II

J. Kemeny, H. Mirkil, J. Snell, and G. Thompson.
Finite mathematical structures.
Prentice-Hall, Englewood Cliffs, N.J., 1959.

G. A. Paleologo, L. Benini, A. Bogliolo, and G. De Micheli.
Policy optimization for dynamic power management.
In DAC ’98, pages 182–187, New York, NY, USA, 1998. ACM.

Étienne ANDRÉ (LSV) INFINITY ’09 August 31st 2009 29 / 29


	Context and Related Work
	Introduction
	
	
	

	Outline
	Solving the Direct Problem
	The Value Determination Algorithm
	The Policy Iteration Algorithm

	Solving the Inverse Problem
	Parametric Markov Decision Processes
	General Idea
	The Inverse Method
	Application

	Implementation
	Conclusion and Future Works
	Bibliography

