
Metamodeling and Language Engineering

Étienne André

February 15, 2006

Abstract

Language Engineering aims at providing advanced techniques to

design, implement and maintain languages or metalanguages. The

Meta-Modeling Framework provides a method applying Object-Oriented

modeling to the de�nition of languages, as well as a powerful meta-

circular Meta-Modeling Language based on OCL, allowing language

engineers to de�ne high-quality languages at low cost. In order to per-

form a better reusability, Language Engineering also provides language

composition mechanisms, as composition of model elements, inspired

by Software Engineering.

1 Introduction

Since the development of the �rst programming languages, needs toward lan-
guages development and maintainability have always become higher. With
the development of modeling and metamodeling, these needs increase. Thus,
the discipline of Language Engineering is required to support the design,
the implementation, and the validation of languages with the goal to deliver
languages at low cost with high quality. Language Engineering should also
provide methods to reuse parts of languages.

For example, let us imagine a compiler transforming a language A into a
language B, the language B generally being bytecode or assembly language.
This compiler should parse languages sentences, perform conformity checks,
and translate these sentences to an interpretable or executable representa-
tion. If one decides this compiler should now transform another language
(for example C) into the language B, one could rewrite the whole compiler.
Language Engineering should also help software engineers to reuse parts of
the �rst compiler for the second one, or even de�ne a generic compiler being
then specialized into the �rst one or the second one.

1



This document will �rst de�ne a few concepts, like language, Language
Engineering and Domain Speci�c Languages. Then, it will present the Meta-
Modeling Framework and give an example (the Small Modeling Language),
before giving an overview of Language Composition techniques.

2 Concepts

2.1 Language

[wiki] gives an interesting de�nition of a natural language, which can also be
used for formal languages: �a formal language can be thought of as a set of
formal speci�cations concerning syntax, vocabulary, and meaning.�

A more formal de�nition is given by [cla01]: �a language consists of models
for concrete syntax, abstract syntax and for the semantic domain.�

The concrete syntax of a language speci�es which arrangements of sym-
bols in a physical representation of a language sentence are considered well-
formed. Concrete syntaxes are usually speci�ed with context-free grammars.
For example, the concrete syntax in a language for class diagrams represents
the allowed layouts of the boxes and the lines.

The abstract syntax of a language describes the structure of each language
construction, leaving out the details of concrete representations. A context-
free grammar can also be used to specify it. In our example of a language
for class diagrams, the abstract syntax is formed by the classes and the
associations between them.

The semantic domain of a language speci�es the well-formedness rules and
the meaning of the language. Thus, it has to de�ne structural constraints on
the abstract syntax of the language. In our example of a language for class
diagrams, the semantic domain represents the objects and the associations
between them.

2.2 Language Engineering

For [wiki], Language Engineering is the creation of natural language process-
ing systems whose cost and outputs are measurable and predictable. Al-
though this de�nition concerns natural languages, it can be kept for formal
languages.

For [bez05], the goals of Language Engineering are the de�nition of ab-
stract syntax and well-formedness rules, as well as the de�nition of oper-
ational or denotational semantics. Operational semantics is an approach
giving a meaning to computer programs in a mathematically rigorous way,

2



whereas denotational semantics is an approach to formalizing the semantics
of computer systems by constructing mathematical objects which express the
semantics of these systems. Language Engineering is also supposed to de�ne
consistency and re�nement relations, and model transformations. In other
words, Language Engineering must provide methods to check the absence of
contradictions as well as re�nement and transformations techniques.

2.3 Domain Speci�c Language

A Domain Speci�c Language is a language designed to be useful for a speci�c
set of tasks. Contrary to General Purpose Languages (GPL), DSLs tend to
be focused on doing only one sort of task, but on doing it well.

DSLs should enhance quality, by using a speci�c language for a speci�c
problem, as well as maintainability as one only needs to change code linked
to our speci�c problem in case of modi�cations - and not the whole code
structure. DSLs should also enhance portability and reusability, as a code
part can be exported to another program, even if this second program doesn't
use the same programming language.

Unfortunately, DSLs also have some disadvantages, in particular with re-
spect to their costs: a DSL is expensive to design, to implement, and to
maintain. However, this document will explain later how Language Engi-
neering can take part in the costs reduction.

To quote a few examples of DSLs, GraphViz can be used to de�ne di-
rected graphs, Csound to create audio �les, whereas the famous YACC is
used for parsing and compilers. SQL, the database language, can also be
quoted, although this language also ful�lls the de�nition of General Purpose
Languages.

2.4 Catalysis Method

Started 1992 by Desmond D'Souza and Alan Wills, who co-authored the
�rst Catalysis Book ([dsou98]), the Catalysis Method is an Object-Oriented
approach. Complying with many standards, it helped to de�ne the Uni-
�ed Modeling Language 1.0 (UML). The key concepts are described in the
following paragraphs.

First, the action aims at being as important as the object. The action
can even be de�ned as an object.

Furthermore, a precise vocabulary is de�ned for collaborations and mod-
els, permitting clear speci�cation of responsibilities, while not imposing im-
plementation decisions.

3



Figure 1: Interactions between MMF, UML and Catalysis

The re�nement lets the software engineers describe the interactions be-
tween objects at possibly many levels of details. Objects can contain other
objects, all these objects interacting with each other at di�erent scales.

The Catalysis Method also provides the software engineers with a package
import mechanism, as well as with modeling frameworks de�ned as templates.

And last, the separation of concerns makes a clear conceptual separation
between the decisions ofWhat (the combined behavior of a group of objects),
Who (the responsibilities across participants and the dependencies between
them), and How (patterns and interactions which provide the service of com-
ponents).

3 The Meta-Modeling Framework

Described 2002 in [cla01], the Meta-Modeling Framework aimed at improving
UML 1.3, where the authors found many de�ciencies. They also wanted to
support the Model-Driven Architecture (MDA) recently de�ned by the OMG.

This Meta-Modeling Framework (MMF) was based on the Catalysis Method
and should be as consistent as possible with UML 1.3. It also in�uenced, in
some domains strongly, the development of UML 1.3 into UML 2.0, as shown
on �gure 1.

This framework is split in three parts: a Method for Meta-Modeling, a
Language for Meta-Modeling, and a Tool for Meta-Modeling.

3.1 Method for Meta-Modeling

The Method for Meta-Modeling (MMM) is an approach applying Object-
Oriented modeling to the de�nition of languages, especially Object-Oriented
modeling languages.

The Object Constraint Language (OCL) is used to de�ne well-formedness

4



Figure 2: Structure of a language

constraints on the language components, especially for the display mapping
between the concrete and the abstract syntax, and the semantic mapping
between the abstract syntax and the semantic domain.

One of the key features of MMM is the package specialization. This
feature allows partial de�nitions of model elements in a super package to
be then consistently specialized in a sub-package. Although only package
specialization has been de�ned until now, there is no reason why this spe-
cialization shouldn't be applied to other elements. This package inheritance
can of course be multiple and parametrized through templates.

The templates are parametric model elements. Thus, the template pack-
ages are means of representing reusable modeling patterns, by de�ning a
generic template library, and then specializing it for speci�c needs. The
authors of [cla01] wanted UML to become a precisely de�ned family of lan-
guages. That is one reason why the Method for Meta-Modeling provides a
framework for de�ning language families, as a set of template packages can
generate many languages � all belonging to the same language family, by
using the same package libraries structure.

3.2 Language for Meta-Modeling

The Meta-Modeling Framework also contains a Language for Meta-Modeling.
This is a static object-oriented modeling language. Although it is rather
small, it is expressive enough to be meta-circular, and to describe itself.

The basic expression language is based on the OCL and supports basic
types, including sets and sequences.

5



3.2.1 Class de�nition

As one can see in the listing below, a de�nition in MML is a name and an
expression. For example, an attribute is a name (the name of the attribute)
and a type, whereas a class de�nition is a name (the name of the class) and
a more complex de�nition, possibly composed by attributes, constructor,
methods and invariant assumptions.

class Person

name : String

age : Integer

married : Boolean

children : Set(Person);

parents : Set(Person);

init(s:Seq(Instance)):Person

self.name := s->at(0)[]

self.age := s->at(1)[]

self;

averageChildAge():Integer

self.children->iterate(c, a = 0 | a + c.age)

/ self.children->size;

inv

IfMarriedThenOver15

self.married implies self.age >=16;

OnlyTwoParents

self.parents->size = 2

end

In the example above, the class Person is de�ned with a few attributes,
one constructor, one method and two invariants. The constructor is given in
the init method, with a sequence parameter and, of course, the return type
being a Person. A sample method to get the average age of the children is
also presented, as well as an iteration on the children inside.

Furthermore, a very interesting feature, also presented in this example, is
the invariant inv, allowing the language engineers to set invariant properties
on a language by de�ning assumptions being always true.

3.2.2 Association de�nition

One can also easily de�ne associations between language elements. Only
binary associations are supported by MML. One has to de�ne the role name
of the members of the association, their type, and their multiplicity.

6



association Family

parents : Person mult: 2

children : Person mult : *

end

In the example presented above, a family is de�ned as 2 parents (of type
Person) and children (of type Person), the number n of children ranging
from 0 to ∞ (* association).

3.2.3 Package de�nition

Moreover, MML allows to de�ne packages, which are nothing but the com-
position of classes and associations in the same set.

package People

class Person

// as given above...

end;

association Family

// as given above

end

end

Above all, MML provides a powerful package specialization mechanism.
In other words, a package can inherit from another package, keeping every-
thing that has been de�ned in the �rst package, and possibly adding new
features or specializing the existing features. Packages can of course inherit
many other packages (multiple inheritance).

package Employment extends People

class Person

yearsInService : Integer

end;

class Company

name : String

end

association Works

company : Company mult : 1

employees : Person mult : *

end

end

7



In the example presented above, the class Person is specialized, which
means it is de�ned as previously presented, with a new attribute yearsInService.
The mechanism of package specialization is much more di�cult to process
than one could �rst think. Clark, Evans and Kent presented a precise ap-
proach for this problem in [cla02].

3.2.4 Template de�nition

MML also provides a template mechanism, which allows the language engi-
neers to parametrize model elements. The current structure of MML only
allows the packages to be de�ned as templates, but this notion could be
extended to other language elements.

package Contains(Container,n1,m1,Contained,n2,m2)

class <<Container>>

<<n2>>():Set(<<Contained>>)

self.<<n2>>

inv

UniqueNames

self.<<n2>>->forAll(c1 c2 |

c1.name = c2.name implies c1 = c2)

end;

association <<n1 + n2>>

<<n1>> : <<Container>> mult: <<m1>>

<<n2>> : <<Contained>> mult: <<m2>>

end

end

In the example above, a container package is de�ned. MML allows pa-
rameters in templates that can then be used in the de�nition using << and >>.
Thus, the class <<Container>> is here extended with a method called <<n2>>(),
which is a sort of �Get� method giving back the set of contained element, as
well as with an invariant checking that every contained element is named
di�erently. We also notice the association between the container and the
contained. The multiplicity and the types for this association are de�ned
through the template parameters.

Let us instantiate this template, as shown below.

package People extends Container(

``Person'', ``children'', *, ``Person'', ``parents'', 2)

class Person

// attribute and method definitions

8



end

end

The result of this instantiation is an extended package People where the
class Person is extended through a parents() method, giving back the set
of parents, as well as through an invariant checking that the parents are
di�erent from each other. The Childrenparents association is also created,
with 2 parents and n children, n ∈ N.

This extension mechanism of course occurs internally and the extended
package People is invisible for the language engineer. However, let us present
below what this extended package would be after this template instantiation.

package People

class Person

parents():Set(Person)

self.parents

inv

UniqueNames

self.parents->forAll(c1 c2 |

c1.name = c2.name implies c1 = c2)

end;

association Childrenparents

children : Person mult: *

parents : Person mult: 2

end

end

3.3 Tool for Meta-Modeling

The last part of the Meta-Modeling Framework is the Tool for Meta-Modeling
(MMT). However, this tool seems not to be public available. The authors
described it as a prototype tool written in Java and supporting the MMF
approach. This tool should be based on a virtual machine that runs the MML
calculus, and should be able to perform some veri�cations, for example to
check well-formedness rules and OCL constraints validity.

3.4 A Small Modeling Language

To better describe the possibilities of this Meta-Modeling Framework, an
example will now be introduced.

The Small Modeling Language is a language de�ned by Clark, Evans and
Kent in [cla01] to describe how a language can be engineered using the MMF.

9



This Small Modeling Language (SML) is a small static modeling language.
It contains very simple features, such as packages and classes with attributes,
and should be able to model class diagrams. For space reasons, only the
abstract syntax, the semantic domain and the semantic mapping between
these two domains will be presented in this document.

3.4.1 Template libraries

We �rst have to de�ne template libraries, which will be instantiated later to
concretely model the language. Note that these libraries allow the reusability
of the language.

Only one library template will be detailed here, namely the Named pack-
age, as can be seen below.

package Named(Model)

class <<Model>>

name : String;

toString():String

"<" + self.of.name + self.name + ">"

end

end

As one can easily imagine, a named element shall have a name and a
toString method.

Other template libraries should be de�ned. For space reasons, only the
name of some of them will be presented below.

package NameSpace(Container, Contained)

package Contains(Container, Contained)

package Specializable(Model)

package SpecializableContainer(Container, Contained)

extends Specializable(Container), Specializable(Contained)

package Relation(Name, Domain, Range)

package RelateAtt(R, Domain, Range, DomainAtt, RangeAtt, Pred)

extends Relation(R, Domain, Range)

package TypeCorrect(R, Domain, Range)

10



extends RelateAtt(R, Domain, Range, ``type'', ``value'', check)

and so on...

With these template libraries being de�ned, we can now concretely de�ne
the SML construction.

3.4.2 Abstract syntax

The abstract syntax only consists in the specialization of the di�erent tem-
plates presented above. Thus, the package AbstractSyntax is de�ned as
inherited from other packages. A small class Attribute shall also be added,
as shown below.

package AbstractSyntax

extends

SelfContains("Package"),

SpecializableContainer("Package","Package"),

SpecializableContainer("Package","Class"),

SpecializableContainer("Class","Attribute"),

Specializable("Attribute"),

Contains("Package","Class"),

Contains("Class","Attribute"),

Clonable("Package","Class"),

Clonable("Package","Package"),

Clonable("Class","Attribute"),

Named("Package"),

Named("Class"),

Named("Attribute"),

NameSpace("Package","Package"),

NameSpace("Package","Class"),

NameSpace("Class","Attribute")

class Attribute

// some definition

end

end

These template instantiations especially ensure that a package contains
classes, and that classes contain attributes.

11



3.4.3 Semantic Domain

As for the abstract syntax, the SemanticPackage only consists of the spe-
cialization of di�erent template packages, as presented below.

package SemanticDomain

extends

SelfContains("Snapshot"),

Contains("Snapshot","Object"),

Contains("Object","Slot"),

Named("Snapshot"),

Named("Slot")

class Slot value : Object end

end

Here again, these template package specializations especially de�ne con-
tainment relations on the elements, and check that they have a name.

3.4.4 Semantic Mapping

Last, the semantic mapping of SML has to be de�ned in order bind the
abstract syntax to the semantic domain, as presented below.

package SemanticMapping

extends

AbstractSyntax,

SemanticDomain,

ContainsInstances1(

"PackXSnap","Package","Class",

"ClassXObj","Snapshot","Object"),

ContainsInstances(

"ClassXObj","Class","Attribute",

"AttXSlot","Object","Slot"),

SameName("AttXSlot","Attribute","Slot")

TypeCorrect("AttXSlot","Attribute","Slot")

end

One can especially note that the classes are bound to objects, and the
attributes are bound to slots.

12



Figure 3: Language composition as composition of model elements

3.4.5 Conclusion on SML

This Small Modeling Language allowed us to see that one can describe a
static modeling language very shortly. An important point is the reusability,
allowed through the template libraries, which can now be reused for another
modeling language. Although the SML is very simple, one can imagine that
the Meta-Modeling Framework let us easily build much more complicated
languages.

4 Language Composition

In order to perform a better reusability, and of course to reduce development
costs, Language Engineering should provide language composition mecha-
nisms. DSL development is the main application �eld of such a system.

Figure 3 shows the relations between model components and the language,
whose sentences are model components. Model components can be de�ned
as an element that might be subject to composition. We can see in �gure 3
that the subjects to composition, when realizing language composition, are
the models of the language constructs or languages. Indeed, sentences of
language Y, which are also conform to the model of Y, are composed together
to make a new model. The result of the composition is a model X that
describes a new language X.

A parallel can also be seen between Language Engineering and Software
Engineering about composition. In Software Engineering, Invasive Software
Composition (ISC) is a gray-box composition technique, where components
are transformed at previously de�ned places by composition operators in
order to be reused. Consequentially, components are called fragment boxes,

13



Figure 4: Language composition as composition of model elements

and have a composition interface consisting of a set of hooks. A hook is
a point of variability of a fragment box, identifying the locations at which
variations of a fragment box can occur.

One can see on �gure 4 how sets of program fragments are composed to
get the transformed code.

This technique can also be applied to Language Engineering, with lan-
guage fragments. Thus, Invasive Language Composition introduces the con-
cepts of fragment boxes and hooks to a metalanguage by extending a model
that describes this metalanguage. Thus, composers need to be identi�ed and
implemented for composing sentences of this extended metalanguage.

This mechanism of language composition especially requires package spe-
cialization. Clark, Evans and Kent presented a precise approach for this
problem in [cla02].

An example of invasive language composition is given in [bur05], where a
model that describes the EBNF metalanguage is used as a base and extended
to a component model for language speci�cations called Comp-EBNF.

5 Conclusion

The discipline of Language Engineering requires advanced techniques to im-
prove features in the development and the maintainability of languages as well
as to reduce costs. This can be done through packages extension, templates

14



specialization, and language composition. Although Language Engineering
is an old discipline, these mechanisms shall be improved in order to reach a
more practical level, as many of the Language Engineering features are still
theoretical.

References

[bez05] Bézivin J., Heckel R. (2005) Language Engineering for Model-driven
Software Development

[bur05] Bürger T. (2005) Contributions to language composition using Stan-
dard Semantic Web Techniques

[cla00] Clark A., Evans A., Kent S., Brodsky S., Cook S. (2000) A Feasibility
Study in Rearchitecting UML as a Family of Languages using a Precise
OO Meta-Modeling Approach

[cla01] Clark T., Evans A., Kent S. (2001) Engineering Modeling Languages:
A Precise Meta-Modeling Approach

[cla02] Clark T., Evans A., Kent S. (2002) A Metamodel for Package Exten-
sion with Renaming

[dsou98] D'Souza D.F., Wills A.C. (1998) Objects, Components, and Frame-
works with UML: The Catalysis Approach

[mda] Model Driven Architecture http://www.omg.org/mda/

[omg] Object Management Group http://www.omg.org/

[wiki] Wikipedia http://en.wikipedia.org/

15


