Parsing enhancing of the conversational module for a service robot

De wikiRcln
Révision de 17 mai 2017 à 17:50 par Jgflores (discussion | contributions) (Participants)

Aller à : navigation, rechercher

Abstract

The goal of the project is to improve the syntactic parser of the Golem robot. The parsing module takes its imput from the Automatic Speech Recognition (ASR), which produces a text line to be parsed. The output of the parser is a SitLog command which triggers an action in the robot.

Work plan

2017

  1. Develop an evaluation testbed for the parser based on (Doostdar et al., 20907)[1].
  2. Train a machine learning model to generate DGC[2]

2018

  1. Transform the DGC-based (Definite Clause Grammar) parser into a CCG (Combinatorial Categorial Grammar)[3][4] based parser

2018

  1. Create an evaluation testbed for the

Participants

  • Luis Pineda (IIMAS/UNAM)
  • Ivette Vélez (IIMAS/UNAM)
  • Jorge García Flores (LIPN/UP13)

Références

  1. Doostdar M., Schiffer S., Lakemeyer G. (2009) A Robust Speech Regognition System for Service-Robots Application. In: Iocchi L., Matsubara H., Weitzenfeld A., Zhou C. (eds) RoboCup 2008: Robot Soccer World Cup XII. RoboCup 2008. Lecture Notes in Computer Science, vol 5399. Springer, Berlin, Heidelberg
  2. Tarau, P. and Figa, E.: Knowledge Based Conversational Agents and Virtual Storytelling. In Proceedings of the 2004 ACM Symposium on Applied Computing (Nicosia, Cyprus, March 14 - 17, 004). SAC '04. ACM Press, New York, NY, 39-44. (2004)
  3. R. Cantrell, M. Scheutz, P. Schermerhorn and X. Wu, "Robust spoken instruction understanding for HRI," 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Osaka, 2010, pp. 275-282.
  4. M. Eppe, S. Trott and J. Feldman, "Exploiting Deep Semantics and Compositionality of Natural Language for Human-Robot-Interaction," 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, 2016, pp. 731-738.