Parsing enhancing of the conversational module for a service robot : Différence entre versions
De wikiRcln
(→Abstract) |
(→Work plan) |
||
Ligne 15 : | Ligne 15 : | ||
# Create an evaluation testbed for the parser based on (Doostdar et al., 20907)<ref>Doostdar M., Schiffer S., Lakemeyer G. (2009) [https://www.google.com.mx/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjUxPj4uPfTAhXnrlQKHRINDx4QFgg2MAE&url=https%3A%2F%2Fwww.kbsg.rwth-aachen.de%2Fsites%2Fkbsg%2Ffiles%2FRoiSpeR_camera.pdf&usg=AFQjCNHchFN--JqxyGPNAb1PxvlxsHB5vg&sig2=hZL2uE4Bq06PoB02zYxz0w A Robust Speech Regognition System for Service-Robots Application]. In: Iocchi L., Matsubara H., Weitzenfeld A., Zhou C. (eds) RoboCup 2008: Robot Soccer World Cup XII. RoboCup 2008. Lecture Notes in Computer Science, vol 5399. Springer, Berlin, Heidelberg</ref>. | # Create an evaluation testbed for the parser based on (Doostdar et al., 20907)<ref>Doostdar M., Schiffer S., Lakemeyer G. (2009) [https://www.google.com.mx/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjUxPj4uPfTAhXnrlQKHRINDx4QFgg2MAE&url=https%3A%2F%2Fwww.kbsg.rwth-aachen.de%2Fsites%2Fkbsg%2Ffiles%2FRoiSpeR_camera.pdf&usg=AFQjCNHchFN--JqxyGPNAb1PxvlxsHB5vg&sig2=hZL2uE4Bq06PoB02zYxz0w A Robust Speech Regognition System for Service-Robots Application]. In: Iocchi L., Matsubara H., Weitzenfeld A., Zhou C. (eds) RoboCup 2008: Robot Soccer World Cup XII. RoboCup 2008. Lecture Notes in Computer Science, vol 5399. Springer, Berlin, Heidelberg</ref>. | ||
# Train a machine learning model to generate DGC<ref>Tarau, P. and Figa, E.: [https://www.google.com.mx/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwip84ztuffTAhVmiFQKHfaYBWkQFgg5MAI&url=http%3A%2F%2Fwww.cs.bham.ac.uk%2F~lxz%2Fedrama%2Ftarau.pdf&usg=AFQjCNEk4iOhu1rsfdCUvHYOxyb_3eGkOg&sig2=Qz16T-CCJojtn6AP7ewFIg Knowledge Based Conversational Agents and Virtual Storytelling]. In Proceedings of the 2004 ACM Symposium on Applied Computing (Nicosia, Cyprus, March 14 - 17, 004). SAC '04. ACM Press, New York, NY, 39-44. (2004)</ref> | # Train a machine learning model to generate DGC<ref>Tarau, P. and Figa, E.: [https://www.google.com.mx/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwip84ztuffTAhVmiFQKHfaYBWkQFgg5MAI&url=http%3A%2F%2Fwww.cs.bham.ac.uk%2F~lxz%2Fedrama%2Ftarau.pdf&usg=AFQjCNEk4iOhu1rsfdCUvHYOxyb_3eGkOg&sig2=Qz16T-CCJojtn6AP7ewFIg Knowledge Based Conversational Agents and Virtual Storytelling]. In Proceedings of the 2004 ACM Symposium on Applied Computing (Nicosia, Cyprus, March 14 - 17, 004). SAC '04. ACM Press, New York, NY, 39-44. (2004)</ref> | ||
− | |||
===2018=== | ===2018=== | ||
# Transform the DGC-based (Definite Clause Grammar) parser into a CCG (Combinatorial Categorial Grammar)<ref>R. Cantrell, M. Scheutz, P. Schermerhorn and X. Wu, "[https://www.google.com.mx/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiDm9Shu_fTAhXEs1QKHfAQD4AQFggzMAE&url=https%3A%2F%2Fpdfs.semanticscholar.org%2F428f%2Fcad8ea088d14cc292d2e17d151dd7b7a088e.pdf&usg=AFQjCNHXZSrCbItkGZ37utw6wvkG6I2DEQ&sig2=293KRGnAJj8D1pXwbztdEg Robust spoken instruction understanding for HRI]," 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Osaka, 2010, pp. 275-282.</ref><ref>M. Eppe, S. Trott and J. Feldman, "[https://arxiv.org/pdf/1604.06721 Exploiting Deep Semantics and Compositionality of Natural Language for Human-Robot-Interaction]," 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, 2016, pp. 731-738.</ref> based parser | # Transform the DGC-based (Definite Clause Grammar) parser into a CCG (Combinatorial Categorial Grammar)<ref>R. Cantrell, M. Scheutz, P. Schermerhorn and X. Wu, "[https://www.google.com.mx/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiDm9Shu_fTAhXEs1QKHfAQD4AQFggzMAE&url=https%3A%2F%2Fpdfs.semanticscholar.org%2F428f%2Fcad8ea088d14cc292d2e17d151dd7b7a088e.pdf&usg=AFQjCNHXZSrCbItkGZ37utw6wvkG6I2DEQ&sig2=293KRGnAJj8D1pXwbztdEg Robust spoken instruction understanding for HRI]," 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Osaka, 2010, pp. 275-282.</ref><ref>M. Eppe, S. Trott and J. Feldman, "[https://arxiv.org/pdf/1604.06721 Exploiting Deep Semantics and Compositionality of Natural Language for Human-Robot-Interaction]," 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, 2016, pp. 731-738.</ref> based parser | ||
− | # | + | # Evaluate Google's Parsey MacParseface<ref>[https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html |
− | Announcing SyntaxNet: The World’s Most Accurate Parser Goes Open Source] | + | Announcing SyntaxNet: The World’s Most Accurate Parser Goes Open Source] with the service robot oriented parsing evaluation testbed. |
===2019=== | ===2019=== | ||
# Integrate Parsey MacParceface | # Integrate Parsey MacParceface | ||
− | |||
− | |||
− | |||
* Luis Pineda (IIMAS/UNAM) | * Luis Pineda (IIMAS/UNAM) | ||
* Ivette Vélez (IIMAS/UNAM) | * Ivette Vélez (IIMAS/UNAM) |
Version du 17 mai 2017 à 17:55
Sommaire
Abstract
The goal of the project is to improve the syntactic parser of the Golem service robot [1]
. The parsing module takes its imput from the Automatic Speech Recognition (ASR), which produces a text line to be parsed. The output of the parser is a SitLog command which triggers an action in the robot.
Work plan
2017
- Create an evaluation testbed for the parser based on (Doostdar et al., 20907)[3].
- Train a machine learning model to generate DGC[4]
2018
- Transform the DGC-based (Definite Clause Grammar) parser into a CCG (Combinatorial Categorial Grammar)[5][6] based parser
- Evaluate Google's Parsey MacParseface[7]
2019
- Integrate Parsey MacParceface
- Luis Pineda (IIMAS/UNAM)
- Ivette Vélez (IIMAS/UNAM)
- Jorge García Flores (LIPN/UP13)
Références
- ↑
- ↑
- ↑ Doostdar M., Schiffer S., Lakemeyer G. (2009) A Robust Speech Regognition System for Service-Robots Application. In: Iocchi L., Matsubara H., Weitzenfeld A., Zhou C. (eds) RoboCup 2008: Robot Soccer World Cup XII. RoboCup 2008. Lecture Notes in Computer Science, vol 5399. Springer, Berlin, Heidelberg
- ↑ Tarau, P. and Figa, E.: Knowledge Based Conversational Agents and Virtual Storytelling. In Proceedings of the 2004 ACM Symposium on Applied Computing (Nicosia, Cyprus, March 14 - 17, 004). SAC '04. ACM Press, New York, NY, 39-44. (2004)
- ↑ R. Cantrell, M. Scheutz, P. Schermerhorn and X. Wu, "Robust spoken instruction understanding for HRI," 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Osaka, 2010, pp. 275-282.
- ↑ M. Eppe, S. Trott and J. Feldman, "Exploiting Deep Semantics and Compositionality of Natural Language for Human-Robot-Interaction," 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, 2016, pp. 731-738.
- ↑ [https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
Announcing SyntaxNet: The World’s Most Accurate Parser Goes Open Source] with the service robot oriented parsing evaluation testbed.
2019
- Integrate Parsey MacParceface
- Luis Pineda (IIMAS/UNAM)
- Ivette Vélez (IIMAS/UNAM)
- Jorge García Flores (LIPN/UP13)
Références
<references/>