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Timed Buchi Automata

Person X <= 3.15569€9

O born die @
Embryo g { 2 ’ End

live

*ap Theory of Timed Automata”, 1994, Dill and Alur



Timed Safety Automata

X <= 3.15569e9

born rson die
O X > O
Embryo End

live

* “Symbolic Model Checking for Real-Time Systems”, 1992, Hezinger et al.
** Timed Automata means Timed Safety Automata hereafter



Languages

A rooted run of the timed automaton:

<Embryo, 50, Embryo, born, Person, live, Person, 1000,
Person, live, Person, die, End>

A word of the timed automaton:
<(50,born),(o,live),(1000,live),(0,die)>



The Problem

Let Impl be a timed automaton modeling an
implementation; Spec be a timed automaton
modeling a specification of the system.

Can we check Impl refines Spec, i.e., any word
in Impl is in Spec?



The Problem 1s Undecidable

Timed automata are un-determinable®.

a,bxr #1

JSPNS

¥ “Decision Problems for Timed Automata: a Survey”, 1994, Dill and Madhusudan




The Conclusion?

“... this result is an obstacle in using timed
automata as a specification language ...”*

Shall we look at event-clock timed automata,
one lock timed automata, instead?

* “A Theory of Timed Automata”, 1994, Dill and Alur



This Work

We propose a semi-algorithm for checking
whether an arbitrary timed automaton refines
another.

We would argue that timed automata are not a
bad specification language.



The Result

Are timed automata good for specify commonly
used timed properties?

Our semi-algorithm always terminates on
commonly used timed properties.



The Result

Does the Semi-Algorithm terminate often?

Highly likely (the answer is related to the
transition density of the Spec).



The Result

Is the Semi-Algorithm Scalable in Practice?

With the reduction techniques in place, it is
perhaps as scalable as Uppaal is.



The Approach

Here it goes ...

7N x>3,a 0\

(4 ) )
P g P
x<3, aT x>0, a a

{x}
{X}/,. ~ {x} ( s
| 1 py )
\p ) 0<x<3,a \p /

Impl



Step 0: Remove Invariants

x <= 3.15569e9

born rson die
O X . O
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Step 1: Unfold Spec
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Step 2: Compute the Product

current state in Impl

current states in Spec
with active clocks

a zone on all clocks
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Step 2: Compute the Product
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Step 2: Compute the Product

7N x>3,a N
(po)—— p |
\p// {x} p/
X<3, aT x>0, a a
X} {x}
{X}/ ._\\‘ { I - ! )

==y
P T 0x3a L P2
Impl

x>3, a 7N

&) O\
xS3,aT x>0, a? a
x} {x} | yixy

Spec

Prod

0=x=2z,

Po- {(SOa {ZO})}

x>3 Azp>3,a + {x,z1}

p1. {(s1. {z1. 20})}

(0=x=2z;) A p>3 A zp-x>3 A 2p-2;>3

ay {x2)

0=x=z,

p2. {(s2. {z2})}

0<x<3 A z>0,a
{z3}

x>0 A 2>0, a
\{X. 23}

P3, {(s3, {z2}): (51, {z3. 22})}

p1. {(s3, {z2}), (51, {z3. 22})}

0<z3<x=27; N X-23<3 A 2-23<3 0<x=73<z,
X3 AZz<3.a i 2<3,a z>3.a .t
{x. z} {x. 4} {x.za) &°

po, {(s2, {z4}). (s0. {zs, 22})}

0<x=274<77 N\ Z2-X<3 A 7-74<3

P2, {(s2, {z4}). (s0. {z4. 22})}

0<x=24<77 N\ 72-X<3 A 72-24<3

We will look at this one.




Step 2: Compute the Product

Prod

2. {52, {28}). (s0. {20 22})}
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Step 2: Compute the Product

Prod
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Theorem

Impl refines Spec iff there is no reachable state
(p, {}, Z) in Prod.

One minor problem: the product has infinitely
many states.



Reducing Prod

as much as we could ...



Clock Renaming
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Infinite Clocks

There might be infinitely many active clocks at
a state in Prod.

e

If #clocks are bounded, Prod is finite after clock
renaming (with zone normalization).




Simulation Reduction

If s simulates s’ (w.r.t a set of accepting states),
then if s’ can be skipped if s has been explored.

Identifying the simulation relationship is
expensive in general.



[LU-Simulation

Let (p1, X1, Z1) and (p2, X2, Z2) be two states in Prod. (p2,

X2, Z2) simulates (p1, X1, Z1) iff

e p2=piand X2 = X1 and

e for all clock valuation v1 in Z1, there exists v2 in Z2 such
that vi(x) = v2(x), or L(x)<v2(x)<vi(x), or U(x)<vi(x)
<v2(x) for all x.

where L(x) is the maximal constant from a clock constraint

of the form x>k or x>=k; U(x) is the maximal constant from
a clock constraint of the form x<k or x<=Kk.



Zone Extrapolation

Given a state (p, X, Z), enlarge Z s.t. it contains
all clock valuation v1 s.t. there exists v2 in Z
such that vi(x) = v2(x), or L(x)<v2(x)<vi(x), or
Ux)<vi(x)<va(x) for all x*.

All clock valuations added to Z are simulated by
an existing one.



LU-Simulation: Example
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LU Simulation Reduction

During exploration, a state (p, X, Z) can be
skipped if a state (p, X, extra(Z’)) where Z is a
subset of extra(Z’) has been explored.

* extra(Z) is the enlarged zone based on Z.



Anti-Chain
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Anti-Chain
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The Reduction
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The Algorithm

Algorithm 1 Language inclusion checking

1: let working := Init;
2: let done := 0;
3: while working # 0 do

4: remove ps = (sp, Xs,0) from working:

5: add ps into done and remove all ps” € done s.t. ps’ C ps:
6 for all (s}, X/, 8') € post(ps, ZEV) do

7 if X! = () then

8: return false:

0: end if

10: if 2 ps” € done such that (s, X1, ") C ps’ then

11: put (s5,, X¢,0") into working:

12: end if

13: end for

14: end while
15: return true:




Termination

Always terminates if active clocks are bounded
(which includes SNZ, Event-clock timed
automata, timed automata with integer resets).

Always terminates for one-clock timed
automata.



Evaluation o

Is the algo always terminates given a common
timed property? Yes.

W*@

<X XD@

(a)absence ~ (b) universa k() ister (d) p




Evaluation o

Is the algo always terminates given a common
timed property? Yes.

W*@
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(a)absence ~ (b) universa k() ister (d) p




Evaluation 1

Table 1. Experiments on Language Inclusion Checking for Timed Systems

Is the algo
scalable?

C+LU LU C

System ||C's||Det - - -

stored | total | time | stored | total time |[stored| total | time
Fischer*8 | 1 |Yes| 91563 | 224208 | 28.3 |138657| 300384 | 516.7 - - -
Fischer*6 | 6 |No| 38603 | 78332 |537.0| - - - - - -
Fischer*6 | 2 |No| 27393 | 58531 | 6.8 | 36218 | 70348 | 30.3 - - -
Fischer*7 | 2 |No|121782| 271895 | 42.9 |159631| 326772 | 661.7 | - - -
Railway*8| 1 |Yes|796154(1124950|142.1 - - - - - -
Railway*6| 6 [No| 23265 | 33427 | 7.2 27903 | 39638 | 204 - - -
Railway*7| 7 [No|180034| 260199 | 66.7 [222806| 318698 |1352.8| - - -
Lynch*5 | 1 |Yes| 3852 | 11725 | 0.6 | 16193 | 48165 | 6.0 [45488(421582(377.2
Lynch*7 | 1 |[Yes| 79531 | 400105 | 34.9 - - - - - -
Lynch*5 | 2 [No| 8091 | 29686 | 2.4 | 63623 | 208607 | 151.3 |56135{324899/290.1
Lynch#6 | 2 |[No| 35407 | 162923 | 16.7 4779301828668 |5751.1| - - -
FDDI*7 | 7 |Yes| 1198 | 1590 | 7.4 | 8064 | 9592 | 36.4 | 8452 | 11836 (125.5
CSMA*7 | | |Yes| 9840 | 36255 | 4.5 - - - - - -




Evaluation 2

Does it
terminate?

Table 2. Experiments on Random Timed Automata

5]

3

Dt =0.6

Dt =0.8

Dt =1.0

Dt =1.1

Dt =1.3

1.00\0.99\0.98

0.99\0.93\0.74

0.9910.82\0.59

0.99\0.63\0.39

0.89\0.18\0.09

0.99\0.98\0.94

0.98\0.87\0.68

0.9410.72\0.51

0.85\0.49\0.33

0.45\0.12\0.06

0.9910.98\0.93

0.95\0.82\0.65

0.89\0.67\0.52

0.75\0.42\0.28

0.3110.10\0.06

1.00\0.99\0.98

0.9910.97\0.90

0.99\0.61\0.41

0.97\0.43\0.29

0.8310.13\0.08

0.99\0.99\0.98

0.99\0.96\0.88

0.8810.49\0.32

0.79\0.34\0.22

0.44\0.09\0.05

0.9910.99\0.98

0.99\0.94\0.85

0.78\0.44\0.29

0.69\0.31\0.21

0.34\0.11\0.07

1.0010.99\0.99

0.99\0.92\0.83

0.96\0.53\0.40

0.94\0.37\0.31

0.55\0.08\0.07

0.9910.99\0.99

0.99\0.91\0.84

0.84\0.48\0.37

0.7310.32\0.25

0.25\0.10\0.09

||| N[N |||+

W= | W= W[ —

0.9910.9910.99

0.98\0.91\0.83

0.7810.47\0.38

0.70\0.40\0.32

0.20\0.08\0.07

Dt = #transitions/#states; a\b\c: percentage of termination (a: with reduction;
b: without reduction; c: due to Spec being determinizable)




Related Work

Zone abstraction
LU simulation reduction
Anti-chain simulation reduction



Ongoing Work

How to extend the algorithm to deal with non-
Zenoness?

What is the best way to verify timed automata
with the assumption of non-Zenoness?






