
Are Timed Automata Bad for a
Specification Language?

Language Inclusion Checking for Timed Automata

Contributors
Ting Wang, Zhejiang University
Jun Sun, SUTD
Yang Liu, NTU
Xinyu Wang, Zhejiang University
Shanping Li, Zhejiang University

Timed Buchi Automata

* “A Theory of Timed Automata”, 1994, Dill and Alur

born
x

x <= 3.15569e9
die
x

live

Embryo

Person

End

Timed Safety Automata

* “Symbolic Model Checking for Real-Time Systems”, 1992, Hezinger et al.
** Timed Automata means Timed Safety Automata hereafter

born
x

die
x

live

x <= 3.15569e9

Embryo

Person

End

Languages
A rooted run of the timed automaton:
<Embryo, 50, Embryo, born, Person, live, Person, 1000,
Person, live, Person, die, End>

A word of the timed automaton:
<(50,born),(0,live),(1000,live),(0,die)>

The Problem
Let Impl be a timed automaton modeling an
implementation; Spec be a timed automaton
modeling a specification of the system.

Can we check Impl refines Spec, i.e., any word
in Impl is in Spec?

The Problem is Undecidable
Timed automata are un-determinable*.

* “Decision Problems for Timed Automata: a Survey”, 1994, Dill and Madhusudan

The Conclusion?
“... this result is an obstacle in using timed
automata as a specification language ...”*

Shall we look at event-clock timed automata,
one lock timed automata, instead?

* “A Theory of Timed Automata”, 1994, Dill and Alur

This Work
We propose a semi-algorithm for checking
whether an arbitrary timed automaton refines
another.

We would argue that timed automata are not a
bad specification language.

The Result
Are timed automata good for specify commonly
used timed properties?

Our semi-algorithm always terminates on
commonly used timed properties.

The Result
Does the Semi-Algorithm terminate often?

Highly likely (the answer is related to the
transition density of the Spec).

The Result
Is the Semi-Algorithm Scalable in Practice?

With the reduction techniques in place, it is
perhaps as scalable as Uppaal is.

The Approach
Here it goes …

Impl Spec

Step 0: Remove Invariants

born
x

die
x

live

x <= 3.15569e9

Embryo

Person

End

born
x

die
x

live

x <= 3.15569e9

Embryo

Person

End

x <= 3.15569e9

Step 1: Unfold Spec

active clocks

Step 2: Compute the Product

Prod

Impl

Spec

current state in Impl current states in Spec
with active clocks

a zone on all clocks

Step 2: Compute the Product

Impl

Spec

Prod

Step 2: Compute the Product
Prod

We will look at this one.

Impl

Spec

Step 2: Compute the Product

Impl

Spec
Four combinations:

x>0 and z4>0 and z4>3
x>0 and z4>0 and z4<=3
x>0 and z4<=0 and z4>3
x>0 and z4<=0 and z4<=3

Prod

Step 2: Compute the Product

Impl

Spec
p1, {}, Z

x>0 and z4<=0 and z4<=3, a
{x, z5}

What if Z is not empty?

Prod

Theorem
Impl refines Spec iff there is no reachable state
(p, {}, Z) in Prod.

One minor problem: the product has infinitely
many states.

Reducing Prod
as much as we could ...

Clock Renaming

what if we rename z2 to z0?

Infinite Clocks
There might be infinitely many active clocks at
a state in Prod.

If #clocks are bounded, Prod is finite after clock
renaming (with zone normalization).

Simulation Reduction
If s simulates s’ (w.r.t a set of accepting states),
then if s’ can be skipped if s has been explored.

Identifying the simulation relationship is
expensive in general.

LU-Simulation
Let (p1, X1, Z1) and (p2, X2, Z2) be two states in Prod. (p2,
X2, Z2) simulates (p1, X1, Z1) iff
● p2=p1 and X2 = X1 and
● for all clock valuation v1 in Z1, there exists v2 in Z2 such

that v1(x) = v2(x), or L(x)<v2(x)<v1(x), or U(x)<v1(x)
<v2(x) for all x.

where L(x) is the maximal constant from a clock constraint
of the form x>k or x>=k; U(x) is the maximal constant from
a clock constraint of the form x<k or x<=k.

Zone Extrapolation
Given a state (p, X, Z), enlarge Z s.t. it contains
all clock valuation v1 s.t. there exists v2 in Z
such that v1(x) = v2(x), or L(x)<v2(x)<v1(x), or
U(x)<v1(x)<v2(x) for all x*.

All clock valuations added to Z are simulated by
an existing one.

LU-Simulation: Example

Impl

Spec

Prod

L(x) = 3; U(x)=3
L(z0)=U(z0)=0

LU Simulation Reduction
During exploration, a state (p, X, Z) can be
skipped if a state (p, X, extra(Z’)) where Z is a
subset of extra(Z’) has been explored.

* extra(Z) is the enlarged zone based on Z.

Anti-Chain

Can we skip this state?

(p1, X1, Z1) simultes (p2, X2, Z2) iff
● p1 = p2 and
● X1 is a subset of X2 and
● Z2 is a subset of Z1*

*with clock renaming

Anti-Chain

The Reduction

The Algorithm

Termination
Always terminates if active clocks are bounded
(which includes SNZ, Event-clock timed
automata, timed automata with integer resets).

Always terminates for one-clock timed
automata.

Evaluation 0
Is the algo always terminates given a common
timed property? Yes.

Evaluation 0
Is the algo always terminates given a common
timed property? Yes.

Evaluation 1
Is the algo
scalable?

Evaluation 2
Does it
terminate?

Dt = #transitions/#states; a\b\c: percentage of termination (a: with reduction;
b: without reduction; c: due to Spec being determinizable)

Related Work
Zone abstraction
LU simulation reduction
Anti-chain simulation reduction

Ongoing Work
How to extend the algorithm to deal with non-
Zenoness?

What is the best way to verify timed automata
with the assumption of non-Zenoness?

Q?

