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Introduction

Timed automata (TA) are finite automata extended with clocks that
measure the time that elapsed since past events in order to control
the triggering of future events

Defined [Alur and Dill, 1994] as an abstract model of real-time
systems

A fundamental problem is the reachability problem: is a given
location of a TA reachable from the initial location?

The reachability problem was shown to be decidable (of complexity
PSPACE-complete) [Alur and Dill, 1994] through the construction of
a region automaton

We generalize the reachability problem: we show that the problem of
computing the set of all time values on which any transition occurs
(and thus, a location is reached) is solvable
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Main results

Given a non-deterministic timed automaton with silent transitions A,
we effectively compute its timestamp: the set of all pairs (time value,
action) of all observable timed traces of A

The timestamp is in the form of a union of action-labeled intervals
with integral end-points and is eventually periodic

One can compute a simple deterministic timed automaton with the
same timestamp as that of A

Partial method, not bounded by time or number of steps, for the
general language non-inclusion problem for timed automata

The language of A is periodic with respect to suffixes
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Example (A non-determinizable TA and its timestamp)

The TA in figure (a) is non-determinizable and its language is

L(A) = {(0 + δ0, a), · · · , (k + δk , a) : k ∈ N0, 0 < δi < 1}

The TA in figure (b) is deterministic and has the same timestamp:

R≥0 \ N0

0 < x < 1, {x}
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a
x = 1, {x}

0 < x < 1
a

x = 1, {x}
(a)

a
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Non-deterministic timed automaton - definition

Definition (Timed automaton)

A non-deterministic timed automaton with silent transitions is a tuple
(Q, q0,Σε, C, T ):

Q - a finite set of locations, q0 - the initial location

Σε = Σ ∪ {ε} - a finite set of transition labels, or actions, Σ -
observable, ε - silent

C - a finite set of clocks

T ⊆ Q× Σε × G × P (C)×Q - a finite set of transitions
(q, a, g , Crst , q′):

q, q′ ∈ Q - the source and the target locations, respectively
a ∈ Σε - the transition action
g ∈ G - the transition guard
Crst ⊆ C - the clocks to be reset
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Example (Fishy)
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The semantics of a TA

v : C → R≥0 - a clock valuation

V - the set of all clock valuations

Definition (Semantics of a TA)

The semantics of a TA A is the timed transition system
JAK = (S , s0,R≥0,Σε,T ):

S = {(q, v) ∈ Q× V} - the set of states, s0 = (q0, 0) - the initial
state

T ⊆ S × (Σε ∪ R≥0)× S - the transition relation:

Timed transitions (delays): (q, v)
d−→ (q, v + d), d ∈ R≥0

Discrete transitions (jumps): (q, v)
a−→ (q′, v ′), a ∈ Σε where there

exists a transition (q, a, g , Crst , q′) in T , such that the valuation v
satisfies the guard g and v ′ = v [Crst ]
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Run, timed trace, language

Definition (Run)

A (finite) run % of a TA A - a sequence of alternating timed and discrete
transitions:

(q0, 0)
d1−→ (q0,d1)

a1−→ (q1, v1)
d2−→ · · · dk−→ (qk−1, vk−1 + dk)

ak−→ (qk , vk)

Definition (Timed trace)

A timed trace (timed word) - a sequence of pairs:

λ = (t1, a1), (t2, a2), . . . , (tk , ak),

with ai ∈ Σε and ti = Σi
j=1di

Definition (Language)

The language L(A) - the set of (accepted observable) timed traces of A
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The trail of a path

In order to track the timestamp of an event along a path in the TA A
with clocks x1, · · · , xs we first add a global clock t that displays
absolute time

A run along a path in A induces a trajectory in the non-negative part
of the tx1 · · · xs -space in direction 1, except for the projections during
events with clocks reset

The set of all runs along a given path forms a trail

The trail is triangulated into symplices called regions

Each region sits on the integral grid within a unit hyper-cube and
defines a fixed ordering among the partial parts of the clocks and it
has its immediate time-successor
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The timestamp of an event

Definition (Timestamp of an event in a path)

The timestamp of an event in a path is the union of the timestamps (time,
action) of that event of all runs along the path

Proposition

The timestamp of each event is a labeled interval between points m and n,
m ≤ n, m ∈ N0 and n ∈ N ∪∞

Proof.

It suffices to show that the timestamp of a single simplex is of the required
form.
Another proof is by representing events i by variables ti and showing that
max/min solutions of a corresponding linear programming problem has
integer solutions.
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Example (Trail, timestamp and regions of a path)

We look at the path: (0)
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Infinite augmented region automaton - definition

We augment A with the clock t that measures absolute time and
never resets

Definition (Infinite augmented region automaton)

The infinite augmented region automaton Rt
∞(A) is a tuple (V , v0,E ,Σε):

V - the infinite (in general) set of vertices (q,n,∆), where q - a
location of A, (n,∆) - a region:

n = (n0, n1, . . . , ns) ∈ N0 × {0, 1, . . . ,M,>}s - the integral parts of the
clocks t, x1, . . . , xs
∆ - the simplex defined by the order of the fractional parts of the clocks

v0 = (q0, 0, 0) - the initial vertex

E - the set of labeled edges: (q, r)
a−→ (q′, r ′) ∈ E iff ∃ a run of A

containing (q, v)
d−→ (q, v + d)

a−→ (q′, v ′), where v - clock valuation
belonging to region r and similarly with v ′, r ′

Σε = Σ ∪ {ε} - the set of actions
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Example: Infinite augmented region automaton
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Augmented region automaton

We now fold Rt
∞(A) by ignoring the integral part of t

The result is a finite augmented region automaton Rt(A) obtained by
identifying vertices that contain the same data except for the integral
part of t

As a compensation, we assign weights to the edges of Rt(A) which
equal the integral time difference between the target and source
locations

Rt(A) and Rt
∞(A) are equally informative and more informative than

the regular region automaton: we can construct from Rt(A) a
deterministic automaton which approximates A with a maximal error
of 1/2 time units at each observed transition
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Augmented region automaton - definition

Definition (Augmented region automaton)

The augmented region automaton Rt(A) is a tuple (V , v0,E ,Σε,W
∗):

V - the set of vertices (q,n,∆) without the integral part of t,

v0 - the initial vertex

E - the set of labeled edges: (q, r)
a−→ (q′, r ′) ∈ E iff ∃ a run of A

containing (q, v)
d−→ (q, v + d)

a−→ (q′, v ′), where v - clock valuation
belonging to region r and similarly with v ′, r ′, when ignoring the
integral part of the time measured by t

Σε = Σ ∪ {ε} - the set of actions

W ∗ - the set of weights on the edges: m = bt1c − bt0c ∈ [0..M],
where bt1c is the integral part of t in the target location and bt0c - in
the source location in the corresponding run of A
m∗ := m,m + 1,m + 2, . . .
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Example: Augmented region automaton
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Definition (Duration of a path)

Given a path γ in Rt(A), its minimal (integral) duration d(γ) ∈ N0 is the
sum of the weights on its edges, where a weight m∗ is counted as m

Lemma

There exists a minimal positive integer tnz, the non-Zeno threshold time,
such that every path γ of Rt(A) that is of (minimal) duration tnz or more
contains a vertex belonging to some non-Zeno cycle (a cycle of duration
greater than 0)
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A Period of Rt(A)

Definition (Covering set of non-Zeno cycles)

A set C of non-Zeno cycles of Rt(A) is called a covering set of non-Zeno
cycles if every path γ of Rt(A) whose duration d(γ) is at least tnz
intersects a cycle in C in a common vertex.

Definition (Period of Rt(A))

A (time) period L of Rt(A) is a common multiple of the set of durations
d(π), π ∈ C , for some fixed (minimal) covering set of non-Zeno cycles C
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Eventual Periodicity of Rt
∞(A)

Let tnz,C , L be as above, with C fixed. We denote by Rt
∞(A)|t≥n the

subgraph of Rt
∞(A) that starts at time-level n, that is, the set of vertices

of Rt
∞(A) with absolute time t ≥ n and their out-going edges.

Definition (L-shift in time)

Given a subgraph G of Rt
∞(A), an L-shift in time of G , denoted G + L, is

the graph obtained by adding the value L to each value of the integral part
of the clock t in G and leaving the rest of the data unaltered

Lemma

If Rt
∞(A) is not bounded in time then

Rt
∞(A)|t≥tnz + L ⊆ Rt

∞(A)|t≥tnz+L
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Eventual Periodicity of Rt
∞(A)

Let Vk , k = 0, 1, 2, . . ., be the set of vertices

Vk = V (Rt
∞(A)|t≥tnz+kL) r V (Rt

∞(A)|t≥tnz+(k+1)L)

Theorem

The infinite augmented region automaton Rt
∞(A) is eventually periodic:

there exists an integral time tper > 0 such that

Rt
∞(A)|t≥tper + L = Rt

∞(A)|t≥tper+L

A possible value for tper can be effectively computed by the following:

Proposition

If |Vk | = |Vk+1| = |Vk+2| for some k then we can set tper = tnz + kL
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Example: periodic structure
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Suffix-periodicity of the language of TA

As is known, a TA may be totally non-periodic in the sense that no
single timed trace of it is eventually periodic

However, a special kind of periodicity, which we call suffix-periodicity,
holds between different timed traces, as shown in the following
theorem

Theorem

The language of A, L(A), is suffix-periodic: if tr > tper and

λ = (t1, a1), . . . , (tr−1, ar−1), (tr , ar ), (tr+1, ar+1), . . . , (tr+m, ar+m)

is an observable timed trace of L(A) then, for each k ∈ LZ, if tr + k > tper
then there exists an observable timed trace λ′ ∈ L(A) such that

λ′ = (t ′1, a
′
1), . . . , (t ′s , a

′
s), (tr + k, ar ), (tr+1 + k , ar+1), . . . , (tr+m + k, ar+m)
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Periodic augmented region automaton

After revealing the periodic structure of Rt
∞(A), it is natural to fold it

into a finite graph according to this period, which we call periodic
augmented region automaton, denote by Rt

per (A)

The construction of Rt
per (A) is done by first taking the subgraph of

Rt
∞(A) of time t < tper + L and then folding the infinite subgraph of

Rt
∞(A) of time t ≥ tper + L onto the subgraph of time

tper ≤ t < tper + L, which becomes the periodic subgraph
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Example (Periodic augmented region automaton)

The following known example from Alur and Dill (1994) shows a
totally non-periodic TA: every word accepted by this automaton has
the property that the sequence of time differences between a and the
following b is strictly decreasing

The language accepted by it is

L(A) ={(1, a), (t, b)}∪
{(1, a), (1 + δ1, b), (2, a), (2 + δ2, b), · · · , (k, a), (k + δk , b)

: k ∈ N, 1 ≥ δ1 > δ2 > · · · > δk}

{y}
10 2 3

x = 1, {x}a b
a

x = 1, {x}

b(a)
(0 < x) ∧ (y < 1), {y}
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Example (Periodic augmented region automaton (cont.))

This non-periodicity is irrelevant when considering the periodic
augmented region automaton:
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Timestamp

Theorem

The timestamp of a TA A is a union of action-labeled integral points
and open unit intervals with integral end-points

It is either finite or forms an eventually periodic subset of R≥0 × Σ
and is effectively computable

The timestamp is easily extracted from Rt
per or from the subgraph of

Rt
∞ up to level tper + L

Corollary (Language non-inclusion)

Given two timed automata A,B, the question of non-inclusion of their
timestamps is decidable, thus providing a sufficient condition for
L(A) * L(B)

Amnon Rosenmann (TU Graz) The Timestamp of Timed Automata 26 / 30



Timestamp automata

Definition (Timestamp automaton)

Given a TA A, a timestamp automaton Ã is a deterministic (finite)
timed automaton with a single clock and with timestamp identical to
that of A

Ã is the union of the timestamp automata Ãa, a ∈ Σ, having a
common initial vertex, where each Ãa is in the shape of a linear graph
and possibly ending in a simple loop

Theorem

Ã can be effectively constructed

Amnon Rosenmann (TU Graz) The Timestamp of Timed Automata 27 / 30



Example (A non-determinizable TA and its timestamp
automaton)

The TA in figure (a) is non-determinizable and its language is

L(A) = {(0 + δ1, a), · · · , (k + δk , a) : k ∈ N0, 0 < δi < 1}

The TA in figure (b) is deterministic and has the same timestamp:

R≥0 \ N0
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Example (Timestamp automaton)

Let A be a TA with timestamp

TS(Aa) = (1, 3] ∪ {5} ∪ (6 + ([0, 2) ∪ {3} ∪ (8, 18)) + 21N0)× {a},
TS(Ab) = [0, 1] ∪ (2, 4) ∪ {5} ∪ (6 + ((0, 1) ∪ (1, 2) ∪ (5, 6) ∪ (8, 9)) + 10N0)

×{b},
TS(Ac) = [1, 4] ∪ {6} ∪ (10,∞)× {c}.

(a)

1 2 3

4

5
x = 5
a

x = 3

8 < x < 18
a

6

0 < x < 2
a a

x = 6, {x}
a

x = 21, {x}
a

x = 5

x = 8

6 < x < 7, {x}

x = 10, {x}

10

11

12

13

90 7 8
x = 5
b

2 < x < 4
b

0 ≤ x ≤ 1
b

x = 1
b b

b

b

b

c

14 15 16
10 < x <∞

c
x = 6

1 ≤ x ≤ 4
c

1 < x ≤ 3
a

(b)

(c)

Amnon Rosenmann (TU Graz) The Timestamp of Timed Automata 29 / 30



Conclusion

The timestamp consists of the set of all action-labeled times at which
locations can be reached by observable transitions

The problem of computing the timestamp is a generalization of the
fundamental problem of reachability

The timestamp can be effectively computed, also when the TA is
non-deterministic and includes silent transitions

A sufficient condition for language non-inclusion in TA

By a suitable unfolding of the augmented region automaton one can
compute the timestamp of the k-th time a specific location is reached

Future research: extend the computation of the timestamp to more
complicated (extensions of) timed automata, e.g., more general
clocks’ behavior and transition guards, hybrid automata
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