Expected Reachability-Price Games

Shibashis Guha¹, Ashutosh Trivedi²

¹Université libre de Bruxelles

²University of Colorado Boulder

August 29, 2019

Overview and Contribution

Expected reachability-price games on priced probabilistic timed automata (PPTA)

Conditions to reduce to a finite stochastic game arena.

Decidability for PPTA with single clock and price-rates restricted to $\{0, 1\}$.

Timed Automaton (TA)

Priced Timed Automaton

location cost (per time unit)

Priced Timed Automaton

location cost (per time unit)

Cost bounded reachability: given threshold k and a goal location, whether exists a timed path ρ such that $cost(\rho) \le k$?

Priced Probabilistic Timed automata

The semantics is given by an uncountable MDP with a set of timed actions from $Act \times \mathbb{R}_{>0}$.

Reachability on (Priced) Probabilistic Timed automata

Reachability with cost $\leq k$ and probability $\geq p$?

Undecidable for three clocks and clock rates in {0,1}

Undecidable even for two clocks and integer clock rates

Undecidability of cost-bounded reachability in priced probabilistic timed automata J Berendsen, <u>T Chen</u>, <u>DN Jansen</u> - ... on Theory and Applications of Models ..., 2009 - Springer

Reachability on (Priced) Probabilistic Timed automata

Reachability with cost $\leq k$ and probability $\geq p$?

Undecidable for three clocks and clock rates in {0,1}

Undecidable even for two clocks and integer clock rates

Undecidability of cost-bounded reachability in priced probabilistic timed automata J Berendsen, T Chen, DN Jansen - ... on Theory and Applications of Models ..., 2009 - Springer

Optimal expected cost problem is decidable for probabilistic timed automata.

Concavely-Priced Probabilistic Timed Automata

M Jurdziński. M Kwiatkowska, G Norman, A Trivedi - CONCUR 2009-

Two-player reachability games

Mathematical model for supervisory controller synthesis.

Reachability objective: Does Player Min have a strategy to reach ℓ_3 ?

A strategy for a player from a vertex v that he owns is an edge/action chosen from v given a finite run ending in v.

Stochastic game

Round: choose a distribution

Two-player reachability-price timed games

Player Max does not have an optimal positional strategy

Adding negative prices to priced timed games

T Brihaye, G Geeraerts, SN Krishna, L Manasa... - ... on Concurrency Theory, 2014 - Springer

Two-player reachability-price timed games

Optimal strategy for Min player: transition from ℓ_0 to ℓ_1 at time 4/3

A similar example with two clocks appears in the following paper.

Optimal strategies in priced timed game automata

P Bouyer, F Cassez, E Fleury, KG Larsen - International Conference on ..., 2004 - Springer

Two-player reachability-price timed games

- Negative prices: may not be positional strategies for Max player
- Arbitrary positive prices: optimal strategies may not be boundary

Reachability price games on Timed automata

Cost-bounded reachability

• Undecidable for three clocks with costs 0, 1.

```
Improved undecidability results on weighted timed automata P Bouyer, T Brihaye, N Markey - Information Processing Letters, 2006 - Elsevier
```

- Undecidable for two clocks with both positive and negative prices
- Decidability for one-clock bi-valued (a set of two integers from {-d, 0, d}) price timed automata

Adding negative prices to priced timed games

T Brihaye, G Geeraerts, SN Krishna, L Manasa... - ... on Concurrency Theory, 2014 - Springer

Priced Probabilistic Timed Game Arena (PTGA)

 $\mathcal{T} = (\mathsf{T}, L_{\mathsf{Min}}, L_{\mathsf{Max}})$ The semantics is given by a stochastic game arena $[\![\mathcal{T}]\!] = ([\![\mathsf{T}]\!], S_{\mathsf{Min}}, S_{\mathsf{Max}})$.

 S_{Min} : controlled by player Min

S_{Max}: controlled by player Max

Player Min attempts to reach a final state with expected cost as low as possible.

EReach
$$(s, \mu, \chi) \stackrel{\text{def}}{=} \mathbb{E}_s^{\mu, \chi} \left\{ \sum_{i=1}^{\min\{i \mid X_i \in F\}} \pi(X_{i-1}, Y_i) \right\}.$$

Amount that Player Min loses to Player Max.

Player Min attempts to reach a final state with expected cost as low as possible.

EReach
$$(s, \mu, \chi) \stackrel{\text{def}}{=} \mathbb{E}_s^{\mu, \chi} \left\{ \sum_{i=1}^{\min\{i \mid X_i \in F\}} \pi(X_{i-1}, Y_i) \right\}.$$

Amount that Player Min loses to Player Max.

Upper value :
$$\overline{\text{Val}}(s) \stackrel{\text{def}}{=} \inf_{\mu \in \Sigma_{\text{Min}}} \sup_{\chi \in \Sigma_{\text{Max}}} \text{EReach}(s, \mu, \chi)$$
.

Player Min attempts to reach a final state with expected cost as low as possible.

EReach
$$(s, \mu, \chi) \stackrel{\text{def}}{=} \mathbb{E}_s^{\mu, \chi} \left\{ \sum_{i=1}^{\min\{i \mid X_i \in F\}} \pi(X_{i-1}, Y_i) \right\}.$$

Amount that Player Min loses to Player Max.

Upper value :
$$\overline{\text{Val}}(s) \stackrel{\text{def}}{=} \inf_{\mu \in \Sigma_{\text{Min}}} \sup_{\chi \in \Sigma_{\text{Max}}} \text{EReach}(s, \mu, \chi)$$
.

Lower value :
$$\underline{\text{Val}}(s) \stackrel{\text{def}}{=} \sup_{\chi \in \Sigma_{\text{Max}}} \inf_{\mu \in \Sigma_{\text{Min}}} \text{EReach}(s, \mu, \chi)$$
.

Player Min attempts to reach a final state with expected cost as low as possible.

EReach
$$(s, \mu, \chi) \stackrel{\text{def}}{=} \mathbb{E}_s^{\mu, \chi} \left\{ \sum_{i=1}^{\min\{i \mid X_i \in F\}} \pi(X_{i-1}, Y_i) \right\}.$$

Amount that Player Min loses to Player Max.

Upper value :
$$\overline{\text{Val}}(s) \stackrel{\text{def}}{=} \inf_{\mu \in \Sigma_{\text{Min}}} \sup_{\chi \in \Sigma_{\text{Max}}} \text{EReach}(s, \mu, \chi)$$
.

Lower value :
$$\underline{\mathrm{Val}}(s) \stackrel{\mathrm{def}}{=} \sup_{\chi \in \Sigma_{\mathrm{Max}}} \inf_{\mu \in \Sigma_{\mathrm{Min}}} \mathrm{EReach}(s, \mu, \chi)$$
.

A game is determined if $\underline{\text{Val}}(s) = \overline{\text{Val}}(s)$ for all $s \in S$.

Proposition

Every expected reachability-price game is determined.

Expected reachability-price problem

Given an expected reachability-price game $T = (T, L_{Min}, L_{Max})$,

- initial state $s \in S$.
- a bound $B \in \mathbb{R}$

decide whether $Val(s) \leq B$.

Optimality equations

- characterises the value in an expected reachability-price game.
- $P: S \to \mathbb{R}_{\geq 0}$ is a solution of optimality equations $\mathsf{Opt}(\mathcal{T})$, if, for all $s \in S$:

$$P(s) = \begin{cases} 0 & \text{if } s \in F \\ \inf_{\tau \in A(s)} \{\pi(s, \tau) + \sum_{s' \in S} p(s'|s, \tau) \cdot P(s')\} & \text{if } s \in S_{\text{Min}} \setminus F \\ \sup_{\tau \in A(s)} \{\pi(s, \tau) + \sum_{s' \in S} p(s'|s, \tau) \cdot P(s')\} & \text{if } s \in S_{\text{Max}} \setminus F. \end{cases}$$

$$P \models \mathsf{Opt}(\mathcal{T})$$

Optimality equations

 $P:S \to \mathbb{R}_{\geq 0}$ is a solution of optimality equations $\mathsf{Opt}(\mathcal{T}),$ if, for all $s \in S$:

$$P(s) = \begin{cases} 0 & \text{if } s \in F \\ \inf_{\tau \in A(s)} \{\pi(s,\tau) + \sum_{s' \in S} p(s'|s,\tau) \cdot P(s')\} & \text{if } s \in S_{\text{Min}} \setminus F \\ \sup_{\tau \in A(s)} \{\pi(s,\tau) + \sum_{s' \in S} p(s'|s,\tau) \cdot P(s')\} & \text{if } s \in S_{\text{Max}} \setminus F. \end{cases}$$

 $P \models \mathsf{Opt}(\mathcal{T})$

Proposition

If $P \models Opt(\mathcal{T})$, then Val(s) = P(s) for all $s \in S$ and, for every $\varepsilon > 0$, both players have pure ε -optimal strategies.

Optimality equations

 $P: S \to \mathbb{R}_{\geq 0}$ is a solution of optimality equations $\mathsf{Opt}(\mathcal{T}),$ if, for all $s \in S$:

$$P(s) = \begin{cases} 0 & \text{if } s \in F \\ \inf_{\tau \in A(s)} \{\pi(s,\tau) + \sum_{s' \in S} p(s'|s,\tau) \cdot P(s')\} & \text{if } s \in S_{\text{Min}} \setminus F \\ \sup_{\tau \in A(s)} \{\pi(s,\tau) + \sum_{s' \in S} p(s'|s,\tau) \cdot P(s')\} & \text{if } s \in S_{\text{Max}} \setminus F. \end{cases}$$

 $P \models \mathsf{Opt}(\mathcal{T})$

Proposition

If $P \models Opt(\mathcal{T})$, then Val(s) = P(s) for all $s \in S$ and, for every $\varepsilon > 0$, both players have pure ε -optimal strategies.

The problem of solving an expected reachability-price game on \mathcal{T} can be reduced to solving the optimality equations $\mathsf{Opt}(\mathcal{T})$.

Region graph

- 1. for each $x \in C$, either both $v(x) > m_x$ and $v'(x) > m_x$ or $\lfloor v(x) \rfloor = \lfloor v'(x) \rfloor$
- 2. for each $x \in C$ such that $v(x) \le m_x$ frac(v(x)) = 0 iff frac(v'(x)) = 0
- 3. for all $x, y \in C$ such that $v(x) \le m_x$ and $v(y) \le m_y$, $frac(v(x)) \le frac(v(y))$ iff $frac(v'(x)) \le frac(v'(y))$.

s to thin region R: ((b, c, a), R)

s to thick region R in the future:

- infimum delay action: $((b_-, c_-, a), R)$
- supremum delay action: $((b_+, c_+, a), R)$

Summarise the boundary timed actions: finitely many actions from each state

Summarise the boundary timed actions:

finitely many actions from each state

$$\widehat{S} = \{ ((\ell, \nu), (\ell, \zeta)) \, | \, (\ell, \zeta) \in \mathcal{R} \land \nu \in \overline{\zeta} \}$$

Lemma

For every state of a boundary region abstraction, its reachable sub-graph is finite.

The reachable sub-graph from the initial valuation corresponds to the standard corner-point abstraction.

On the optimal reachability problem of weighted timed automata <u>P Bouyer, T Brihaye, V Bruyère, JF Raskin</u> - Formal Methods in System ..., 2007 - Springer

ERPG on Boundary region abstraction

Non-expansive and monotonically decreasing functions

A function $F: X \to \mathbb{R}$ is non-expansive if $|F(\nu)-F(\nu')| \le \|\nu-\nu'\|$ for all $\nu,\nu' \in X$.

Nice functions

 $F: \widehat{S} \to \mathbb{R}_{\geq 0}$ is regionally nice if for every region $(\ell, \zeta) \in \mathcal{R}$ the function $F((\ell, \cdot), (\ell, \zeta))$ is nice.

Properties of nice functions

Non-expansive and monotonically decreasing functions

1. Minimum and Maximum. $F, F' : \widehat{S} \to \mathbb{R}$ are regionally nice functions.

Then min(F, F') and max(F, F') are also regionally nice.

- **2. Convex Combination.** $\langle f_i \rangle_{i=1}^n$ are nice functions then for $\langle p_i \in [0,1] \rangle_{i=1}^n$ with $\sum_{i=1}^n p_i = 1$. Then $\sum_{i=1}^n p_i \cdot f_i$ is nice.
- 3. Limit. The limit of a sequence of nice functions is nice.

Optimality equations for ERPG on BRA

 $P: \widehat{S} \to \mathbb{R}_{\geq 0}$ is a solution of optimality equations $\operatorname{Opt}(\widehat{\mathcal{T}})$: $P \models \operatorname{Opt}(\widehat{\mathcal{T}})$, if for every $s \in \widehat{S}$:

$$P(s) = \begin{cases} 0 & \text{if } s \in \widehat{F} \\ \min_{\alpha \in \widehat{A}(s)} \{\pi(s, \alpha) + \sum_{s' \in S} p(s'|s, \alpha) \cdot P(s')\} & \text{if } s \in \widehat{S}_{\text{Min}} \backslash \widehat{F} \\ \max_{\alpha \in \widehat{A}(s)} \{\pi(s, \alpha) + \sum_{s' \in S} p(s'|s, \alpha) \cdot P(s')\} & \text{if } s \in \widehat{S}_{\text{Max}} \backslash \widehat{F} \end{cases}$$

ERPG on Boundary region abstraction

Consider $f: \widehat{S} \to \mathbb{R}$ over boundary region abstraction.

$$\widetilde{f}: S \to \mathbb{R}$$
 over PTGA: $\widetilde{f}(\ell, \nu) = f((\ell, \nu), (\ell, [\nu]))$.

Let \mathcal{T} be a binary-priced probabilistic timed game.

Theorem

If
$$P \models Opt(\widehat{T})$$
 and P is regionally nice then $\widetilde{P} \models Opt(T)$.

Conditions for reducing expected reachability-price games over the boundary region abstraction.

Clock values in {0, 1}

Proposition

Let \mathcal{T} be a one-clock binary-priced PTGA. If $P \models Opt(\widehat{\mathcal{T}})$, then P is regionally nice.

Clock values in {0,1}

Proposition

Let \mathcal{T} be a one-clock binary-priced PTGA. If $P \models Opt(\widehat{\mathcal{T}})$, then P is regionally nice.

Proof sketch: $\Psi: [\widehat{S} \to \mathbb{R}_{\geq 0}] \to [\widehat{S} \to \mathbb{R}_{\geq 0}]$

$$\Psi(f)(s) = \begin{cases} 0 & \text{if } s \in \widehat{F} \\ \min_{\alpha \in \widehat{A}(s)} \{\pi(s, \alpha) + \sum_{s' \in S} p(s'|s, \alpha) \cdot f(s')\} & \text{if } s \in \widehat{S}_{\mathsf{Min}} \backslash \widehat{F} \\ \max_{\alpha \in \widehat{A}(s)} \{\pi(s, \alpha) + \sum_{s' \in S} p(s'|s, \alpha) \cdot f(s')\} & \text{if } s \in \widehat{S}_{\mathsf{Max}} \backslash \widehat{F}. \end{cases}$$

 Ψ^N is a contraction: Using Banach's fixed point theorem: Ψ can be used in an iterative scheme to converge to the solution of optimality equations $Opt(\widehat{T})$.

Clock values in {0,1}

Proposition

Let \mathcal{T} be a one-clock binary-priced PTGA. If $P \models Opt(\widehat{\mathcal{T}})$, then P is regionally nice.

Proof sketch:

Now show that the fixpoint is regionally nice.

If f is regionally nice, then so is $\pi(s, \alpha) + \sum_{s' \in S} p(s'|s, \alpha) \cdot f(s')$ for one-clock binary-priced PTGA.

Fixpoint is regionally nice follows from properties of nice functions: Minimum and maximum, convex combination, Limit

Clock values in {0, 1}

Proposition

Let \mathcal{T} be a one-clock binary-priced PTGA. If $P \models Opt(\widehat{\mathcal{T}})$, then P is regionally nice.

Clock values in {0,1}

Proposition

Let \mathcal{T} be a one-clock binary-priced PTGA. If $P \models Opt(\widehat{\mathcal{T}})$, then P is regionally nice.

Recall

If $P \models \mathsf{Opt}(\widehat{\mathcal{T}})$ and P is regionally nice then $\widetilde{P} \models \mathsf{Opt}(\mathcal{T})$.

The expected reachability-price game problem is decidable for one-clock binary-priced PTGA.

Conclusion

- Two-player expected reachability-price games
- Decidability of one-clock binary-priced PTGA
 - Reduction of expected reachability-price problem to the game on boundary region abstraction
 - Nice function
- Future Work: Complexity

Conclusion

- Two-player expected reachability-price games
- Decidability of one-clock binary-priced PTGA
 - Reduction of expected reachability-price problem to the game on boundary region abstraction
 - Nice function
- Future Work: Complexity

Thank You