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Introduction Lumpability

Stochastic Systems Modeling

Context - Continuous Time Markov Chains
I Continuous Time Markov Chains are the underlying semantics of many high-level

formalisms for modeling, analysing and verifying stochastic systems, such as
Stochastic Petri nets, Stochastic Automata Networks, Markovian process algebras

I High-level languages simplify the specification task thanks to compositionality and
abstraction

I So, even very compact specifications can generate very large stochastic systems
that are difficult/impossible to analyse
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Introduction Lumpability

State Space Reduction

Context - Lumpability
I In the non-deterministic setting bisimulation allows to quotient the state space

and precisely characterizes modal logic [Van Benthem Th.]

I On Markov Chains lumpability [Kemeny-Snell 1976] (probabilistic bisimulation
[Larsen-Skou 1991]) plays the same role, preserving stationary quantities
[Buchholz 1994] and stochastic/probabilistic modal logics [Larsen-Skou 1991,
Desharnais et al 2002, Bernardo et al. 2019]

Issue

Lumpability is too demanding
As a consequence it usually provides poor reductions
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Introduction Lumpability

Approximations

Context - Pseudo-Metrics on Paths
I Distances measuring the difference between states of probabilistic systems are

introduced in [Desharnais et al. 1999]

I The distance evaluates the probabilities along paths allowing discounts

I Probabilistic bisimilar states have distance 0

I Behavioural properties have been largely investigated [van Breugel et al. 2001,
Wild et al. 2019]

I Compositionality properties have been proved [Gebler et al. 2015]

I Algorithmic solutions have been proposed [Bacci et al. Concur 2019]

I Stationary distribution bounds?
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Approximations

Context - Quasi Lumpability and ε-Bisimulation

I Quasi Lumpability relates states allowing ε perturbations of the outgoing
probabilities/rates [Franceschinis et al. 1994]

I Bounds on the stationary distributions have been proved

I Behavioural properties have been studied on ε-Bisimulation [Desharnais et al.
2008, Tracol et al. 2011, Abate et al. 2014, Abate et al. 2017]

I Algorithmic solutions have been proposed [Milios et al. 2012]

Unfortunately

It is not possible to exactly reconstruct the stationary distribution of the original system
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Proportional Lumpability

Motivation

We aim at relaxing the conditions of lumpability while allowing to derive the exact
stationary indices for the original system

Contribution
I We define the notion of Proportional Lumpability over Continuous Time Markov

Chains (CTMC)

I We show that this allows to exactly derive the original stationary distribution

I We introduce the notion of Proportional Bisimulation over the stochastic process
algebra PEPA and prove that it induces a proportional lumpability on the
underlying semantics
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Outline of the Talk

I The notions of Lumpability and Quasi Lumpability over CTMC

I The notion of Proportional Lumpability and its properties

I Proportional Lumpability over the Process Algebra PEPA

I Example

I Conclusions
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Contionuous Time Markov Chains

CTMC

Let X (t) with t ∈ R+ be a stochastic process taking values in a discrete space S.
X (t) is a CTMC if it is stationary and markovian
We focus on finite, time-homogeneous, ergodic Markov Chains

Infinitesimal Generator

A CTMC is given as a matrix Q of dim. |S| × |S| such that:

I for i 6= j the transition rate from i to j is q(i , j) ≥ 0, i.e.,

Prob(X (t + h) = j |X (t) = i) = q(i , j) ∗ h + o(h)

I q(i , i) = −
∑

j 6=i q(i , j)
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Stationary Analysis

Stationary Distribution

A distribution π over S such that π(i) is the probability of being in i when time goes
to ∞
In our setting π is the unique distribution that solves

πQ = 0

Stationary Performances Indices

Stationary performances indices, such as throughput, expected response time, resource
utilization, can be computed from the steady state distribution π
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Lumpability - Intuitively

S S ′

i rib
b

i ria

a

rid
dj rjc

c

rjd

ria + rib + rid = rjc + rjd
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Lumpability

Strong Lumpability

The strong lumpability ∼ is the largest equivalence over S such that ∀S , S ′ ∈ S/∼ and
∀i , j ∈ S ∑

a∈S ′

q(i , a) =
∑
a∈S ′

q(j , a)

Properties

I We can safely restrict to S 6= S ′

I There always exists a unique maximum lumpability

I The stationary distribution Π of the lumped chain is the aggregation of π

I Probabilistic modal logic properties are preserved
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Quasi Lumpability

Quasi Lumpability [Franceschinis et al. ’94, Milios et al. 2012]

An ε-quasi lumpability R is an equivalence over S such that ∀S , S ′ ∈ S/R and
∀i , j ∈ S

|
∑
a∈S ′

q(i , a)−
∑
a∈S ′

q(j , a)| ≤ ε

Properties

I It was originary defined splitting Q into Q− and Qε (perturbation)

I Bounds on the exact stationary distribution (indices) can be computed

I Algorithms for approximating an optimal aggregation have been proposed
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Quasi Lumpability – Example

S S ′

i rib
b

i ria

a

rid
dj rjc

c

rjd

ria + rib + rid = 10 rjc + rjd = 100

ε ≥ 90
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Proportional Lumpability

Proportional Lumpability

Given κ : S → R+, a κ-proportional lumpability R is an equivalence over S such that
∀S ,S ′ ∈ S/R and ∀i , j ∈ S ∑

a∈S ′ q(i , a)

κ(i)
=

∑
a∈S ′ q(j , a)

κ(j)

Properties

I We can safely restrict to S 6= S ′

I There exists a unique maximum κ-proportional lumpability ∼κ
I More properties . . . thanks to one of FORMATS reviewers
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Introduction Lumpability

Proportional Lumpability – Example

S S ′

i rib
b

i ria

a

rid
dj rjc

c

rjd

ria + rib + rid = 10 rjc + rjd = 100

κ(i) = 1 κ(j) = 10
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Perturbed Systems

Perturbed Systems

It is any CTMC X ′(t) over the state space S having generator Q ′ such that ∀i ∈ S
and ∀S ′ ∈ S/∼ ∑

a∈S ′,a 6=i

q′(i , a) =

∑
a∈S ′,a 6=i q(i , a)

κ(i)

Example

X ′(t) defined by

q′(i , a) =
q(i , a)

κ(i)
for any a 6= i
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Stationary Distributions of Perturbed Systems

Proposition

The stationary distributions of X (t) and X ′(t) are related as follows

π(i) =
π′(i)

Kκ(i)

where the normalization factor is K =
∑

i∈S π
′(i)/κ(i)
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Aggregated System

Aggregated System

It is the CTMC X̃ (t)

I over the state space S/∼
I it has infinitesimal generator Q̃ with q̃(S , S ′) =

∑
a∈S′ q(i ,a)

κ(i) with i ∈ S

Proposition

The stationary distributions of X (t) and X̃ (t) are related as follows

π̃(S) =

∑
i∈S π(i)κ(i)

K̃

where the normalization factor is K̃ =
∑

i∈S π(i)κ(i)
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Example - CPUs system

1 32

4 5

k2µ

k1λ

k2λ

k1µ

k2λ

k2µ

k1λ

k1µ

κ(1) = 1 κ(2) = k2 κ(3) = k1 κ(4) = k2 κ(5) = k1
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Performances Evaluation Process Algebra - PEPA

PEPA Syntax

Let A be a set of actions with τ ∈ A
Let α ∈ A, A ⊆ A, and r ∈ R

S ::= 0 | (α, r).S | S + S | X

P ::= P ��
A
P | P/A | P \ A | S

Each variable X is associated to a definition X
def
= P

PEPA Semantics

It defines Labeled Continuous Time Markov Chains
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Performances Evaluation Process Algebra - PEPA

P
(α,r)−−−→ P ′

P ��
A
Q

(α,r)−−−→ P ′ ��
A
Q

(α 6∈ A)
Q

(α,r)−−−→ Q ′

P ��
A
Q

(α,r)−−−→ P ��
A
Q ′

(α 6∈ A)

P
(α,r1)−−−→ P ′ Q

(α,r2)−−−→ Q ′

P ��
A
Q

(α,R)−−−→ P ′ ��
A
Q ′

(α ∈ A)

where R =
r1

rα(P)

r2
rα(Q)

min(rα(P), rα(Q))
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Lumpable Bisimilarity

Lumpable bisimilarity [Hillston et al. 2013, Alzetta et al. 2018]

A lumpable bisimilarity is an equivalence R such that for each action α, ∀S , S ′ ∈ C/R, and ∀P,Q ∈ S

I either α 6= τ ,

I or α = τ and S 6= S ′,

it holds ∑
P′∈S′, P

(α,rα)−−−−→P′

rα =
∑

Q′∈S′, Q
(α,rα)−−−−→Q′

rα

Properties
There exists a unique maximum lumpable bisimilarity ≈l , it is contextual, action preserving, and
induces a lumpability
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Proportional Bisimilarity

Proportional bisimilarity

Given κ : C → R+ a κ-proportional bisimilarity is an equivalence R such that for each action α,
∀S , S ′ ∈ C/R, and ∀P,Q ∈ S

I either α 6= τ ,

I or α = τ and S 6= S ′,

it holds ∑
P′∈S′, P

(α,rα)−−−−→P′
rα

κ(P)
=

∑
Q′∈S′, Q

(α,rα)−−−−→Q′
rα

κ(Q)

Properties
There exists a unique maximum proportional bisimilarity ≈κl , it induces a proportional lumpability
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Example

B0 B1 · · · Bi · · · BM

(τ, λ)

(cl , µ)

(τ, λ)

(cl , µ2 )

(τ, λ)

(cl , µi )

(τ, λ)

(cl , µ
M−1 )

(τ, λ)

(cl , µM )
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Conclusions

I The notion of proportional lumpability has been introduced

I It “preserves” the stationary distribution

I It can be applied for PEPA components reduction

I We are looking at its computation and compositionality properties
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