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INTRODUCTION LUMPABILITY

STOCHASTIC SYSTEMS MODELING

CONTEXT - CONTINUOUS TIME MARKOV CHAINS
» Continuous Time Markov Chains are the underlying semantics of many high-level
formalisms for modeling, analysing and verifying stochastic systems, such as
Stochastic Petri nets, Stochastic Automata Networks, Markovian process algebras

» High-level languages simplify the specification task thanks to compositionality and
abstraction

» So, even very compact specifications can generate very large stochastic systems
that are difficult/impossible to analyse
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INTRODUCTION

STATE SPACE REDUCTION

CONTEXT - LUMPABILITY

> In the non-deterministic setting bisimulation allows to quotient the state space
and precisely characterizes modal logic [Van Benthem Th.]

» On Markov Chains lumpability [Kemeny-Snell 1976] (probabilistic bisimulation
[Larsen-Skou 1991]) plays the same role, preserving stationary quantities
[Buchholz 1994] and stochastic/probabilistic modal logics [Larsen-Skou 1991,
Desharnais et al 2002, Bernardo et al. 2019]
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ISSUE

Lumpability is too demanding
As a consequence it usually provides poor reductions




INTRODUCTION

APPROXIMATIONS

CONTEXT - PSEUDO-METRICS ON PATHS

>

Distances measuring the difference between states of probabilistic systems are
introduced in [Desharnais et al. 1999]

The distance evaluates the probabilities along paths allowing discounts
Probabilistic bisimilar states have distance 0

Behavioural properties have been largely investigated [van Breugel et al. 2001,
Wild et al. 2019]

Compositionality properties have been proved [Gebler et al. 2015]
Algorithmic solutions have been proposed [Bacci et al. Concur 2019]

Stationary distribution bounds?

LUMPABILITY
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INTRODUCTION

APPROXIMATIONS

CONTEXT - QUASI LUMPABILITY AND ¢-BISIMULATION

» Quasi Lumpability relates states allowing € perturbations of the outgoing
probabilities/rates [Franceschinis et al. 1994]

» Bounds on the stationary distributions have been proved

» Behavioural properties have been studied on e-Bisimulation [Desharnais et al.

2008, Tracol et al. 2011, Abate et al. 2014, Abate et al. 2017]
» Algorithmic solutions have been proposed [Milios et al. 2012]
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APPROXIMATIONS

CONTEXT - QUASI LUMPABILITY AND ¢-BISIMULATION

» Quasi Lumpability relates states allowing € perturbations of the outgoing
probabilities/rates [Franceschinis et al. 1994]

» Bounds on the stationary distributions have been proved

» Behavioural properties have been studied on e-Bisimulation [Desharnais et al.
2008, Tracol et al. 2011, Abate et al. 2014, Abate et al. 2017]

» Algorithmic solutions have been proposed [Milios et al. 2012]

UNFORTUNATELY
It is not possible to exactly reconstruct the stationary distribution of the original systemJ
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PROPORTIONAL LUMPABILITY

MoTIVATION

We aim at relaxing the conditions of lumpability while allowing to derive the exact
stationary indices for the original system
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PROPORTIONAL LUMPABILITY

MoTIVATION

We aim at relaxing the conditions of lumpability while allowing to derive the exact
stationary indices for the original system

CONTRIBUTION
» We define the notion of Proportional Lumpability over Continuous Time Markov
Chains (CTMCQ)
» We show that this allows to exactly derive the original stationary distribution

» We introduce the notion of Proportional Bisimulation over the stochastic process
algebra PEPA and prove that it induces a proportional lumpability on the
underlying semantics




INTRODUCTION LUMPABILITY

OUTLINE OF THE TALK

v

The notions of Lumpability and Quasi Lumpability over CTMC

v

The notion of Proportional Lumpability and its properties

v

Proportional Lumpability over the Process Algebra PEPA

v

Example

v

Conclusions



INTRODUCTION

CONTIONUOUS TIME MARKOV CHAINS
CTMC

Let X(t) with t € RT be a stochastic process taking values in a discrete space S.

X(t) is a CTMC if it is stationary and markovian
We focus on finite, time-homogeneous, ergodic Markov Chains

LUMPABILITY

INFINITESIMAL GENERATOR
A CTMC is given as a matrix Q of dim. |S| x |S| such that:
» for i # j the transition rate from / to j is q(i,j) > 0, i.e.,

Prob(X(t + h) = jIX(t) = i) = q(i,j) * h+ o(h)

> q(i7 i) = —Zﬁg,’ q(i,j)




INTRODUCTION LUMPABILITY

STATIONARY ANALYSIS

STATIONARY DISTRIBUTION

A distribution 7 over S such that 7(/) is the probability of being in i when time goes
to oo
In our setting 7 is the unique distribution that solves

Q=0

STATIONARY PERFORMANCES INDICES

Stationary performances indices, such as throughput, expected response time, resource
utilization, can be computed from the steady state distribution 7
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LUMPABILITY - INTUITIVELY

lia + fib + tid = fjc + rid

10 /25



INTRODUCTION LUMPABILITY

LUMPABILITY

STRONG LUMPABILITY
The strong lumpability ~ is the largest equivalence over S such that VS, S’ € S/~ and

Vi,jes
S aia) = qli.a)

acs’ acs’




INTRODUCTION LUMPABILITY

LUMPABILITY

STRONG LUMPABILITY
The strong lumpability ~ is the largest equivalence over S such that VS, S’ € S/~ and
Vi,j€S
> ali,a) =Y alj,a)
acs’ acs’
PROPERTIES

» We can safely restrict to S # S’
» There always exists a unique maximum lumpability

» The stationary distribution [T of the lumped chain is the aggregation of 7

» Probabilistic modal logic properties are preserved
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QUASI LUMPABILITY

QUuUASI LUMPABILITY [FRANCESCHINIS ET AL. '94, MILIOS ET AL. 2012]
An e-quasi lumpability R is an equivalence over S such that VS, 5" € S/R and

Vi,jeS
1> (i) = > qla) <e

aes’ aes’
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QUASI LUMPABILITY

QUASI LUMPABILITY [FRANCESCHINIS ET AL. ‘94, MILIOS ET AL. 2012]
An e-quasi lumpability R is an equivalence over S such that VS, 5’ € S/R and

Vi,jeS
1> (i) = > qla) <e

aes’ aes’

PROPERTIES
» It was originary defined splitting @ into @~ and Q° (perturbation)
» Bounds on the exact stationary distribution (indices) can be computed

» Algorithms for approximating an optimal aggregation have been proposed
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QUASI LUMPABILITY — EXAMPLE

ria + rip + rig = 10 fic + rid = 100

€>90
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PROPORTIONAL LUMPABILITY

PROPORTIONAL LUMPABILITY

Given k : S — R™, a k-proportional lumpability R is an equivalence over S such that
V5,8’ € S/R and Vi, j € S

ZaES’ q(iv a) _ ZaeS’ q(ja a)
k(1) r(/)
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» More properties . ..thanks to one of FORMATS reviewers
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PROPORTIONAL LUMPABILITY — EXAMPLE

ria + rip + rig = 10 fic + rid = 100

k(i) =1 k(j) =10
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PERTURBED SYSTEMS

PERTURBED SYSTEMS

It is any CTMC X'(t) over the state space S having generator Q' such that Vi € S
and VS’ € §/~

Z q'(i,a) = >acs azi 4 @)

aeS’ a#i ,{(,)
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PERTURBED SYSTEMS

PERTURBED SYSTEMS

It is any CTMC X'(t) over the state space S having generator Q' such that Vi € S
and VS’ € §/~

Z q’(i a) _ ZaeS’,aii q(iv a)

aeS’ a#i K(I)

EXAMPLE
X'(t) defined by

q'(i,a) = q/ilgi;) for any a # i

16 /25



INTRODUCTION LUMPABILITY

STATIONARY DISTRIBUTIONS OF PERTURBED SYSTEMS

PROPOSITION
The stationary distributions of X(t) and X'(t) are related as follows
N ()
() = Kn ()

where the normalization factor is K = 3, s 7'(i)/k(i)
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AGGREGATED SYSTEM

AGGREGATED SYSTEM
It is the CTMC X(t)

» over the state space S/~

» it has infinitesimal generator Q@ with §($,5’) = % with i € S
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AGGREGATED SYSTEM

AGGREGATED SYSTEM
It is the CTMC X(t)

» over the state space S/~

» it has infinitesimal generator Q@ with §($,5’) = % with i € S

PROPOSITION
The stationary distributions of X(t) and X(t) are related as follows

- o Zies m(i)k ()
7(S) = =z

where the normalization factor is K = Yics T(i)k(i)
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ExXAMPLE - CPUS SYSTEM

kop koA
ki ki
koA
ki A
4 kapt kit 5

k(1) =1 k(2) = ko K(3) = ki k(4) = ko K(5) = ki

LUMPABILITY
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PERFORMANCES EVALUATION PROCESS ALGEBRA - PEPA

PEPA SYNTAX

Let A be a set of actions with 7 € A
Letac A, ACA andre R

S = 0|(a,r).S|S+S|X
P PEIP|P/A|P\A|S
A

. . . . £
Each variable X is associated to a definition X de P

PEPA SEMANTICS
It defines Labeled Continuous Time Markov Chains J
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PERFORMANCES EVALUATION PROCESS ALGEBRA - PEPA

(a,r) (a,r)
@, p Q 12 ¢
P DE Q —=> P X Q P Dﬁ Q——P Dfl Q'

p (en), (a,r1) P/ Q (a,m) Q,
pi=Q N, proa g

rn rn

ra(P) 1a(Q)

(€ A)

where R =

min(ry(P), ra(Q))
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LUMPABLE BISIMILARITY

LUMPABLE BISIMILARITY [HILLSTON ET AL. 2013, ALZETTA ET AL. 2018]
A lumpable bisimilarity is an equivalence R such that for each action o, VS, S’ € C/R, and VP,Q € S
> either a # T,
» ora=7and S #£ S,

it holds
DI SR
PIESI, PMPI Qles/’ QMQI
4
PROPERTIES

There exists a unique maximum lumpable bisimilarity =, it is contextual, action preserving, and
induces a lumpability

22/25
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PROPORTIONAL BISIMILARITY

PROPORTIONAL BISIMILARITY

Given  : C — R" a k-proportional bisimilarity is an equivalence R such that for each action «,
vS,S"€C/R,and VP, Q € S

> either a # T,
» ora=7and S # S5,

LUMPABILITY

it holds
(r,rey) ra (a,rer) ro
P'eS!, P——P' _ _Qes, Q——
k(P) K(Q)
PROPERTIES

There exists a unique maximum proportional bisimilarity A, it induces a proportional lumpability
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LUMPABILITY

EXAMPLE

(1, ) (m,\) (1, A) (1, ) (m,\)
N o =

Bo B, B; B
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CONCLUSIONS

v

The notion of proportional lumpability has been introduced

> It “preserves” the stationary distribution

v

It can be applied for PEPA components reduction

v

We are looking at its computation and compositionality properties

o
o
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