A State Class Construction for Computing the Intersection of Time Petri Nets Languages

Eric LUBAT, Silvano DAL ZILIO, Didier LE BOTLAN, Yannick PENCOLE and Audine SUBIAS

LAAS - CNRS

August 2019 / FORMATS

Index

- Introduction
 - Background on (net) Languages and Product
 - Composability of TPN
- 2 PTPN
 - Arnold-Nivat Product of TPN
 - Expressiveness
 - Application to the Composability Problem
- 3 Experimental Results

Introduction

Objective: computing (efficiently) the intersection of timed languages to check properties on systems.

Which properties? Temporal properties; observability;

Introduction

Traces:
$$t_0 t_1 t_0 t_1 \dots$$
$$t_0 f t_3 t_0 t_1 \dots$$

$$\mathcal{L}(t_0) = a$$
 Words and Labels: $\mathcal{L}(t_1) = \mathcal{L}(t_3) = b$ $\mathcal{L}(f) = \epsilon$

abab... Labelled Traces:

abab...

Introduction

Language: (ab)*

Property: is diagnosable?

Checking diagnosability

We can use "synchronous product" (\parallel) to check the intersection between languages.

$$\llbracket \mathsf{Sys} \rrbracket \cap \llbracket \mathsf{Sys}_{|f} \rrbracket \approx \llbracket \mathsf{Sys} \parallel \mathsf{Sys}_{|f} \rrbracket$$

Time Petri Nets

TPN are composed of :

- a Petri net; an initial marking
- timing constraints $I_s(t)$ (aka static time interval).

Possible executions:

$$2.1 t_0 2 t_1 \dots / 2.1 a 2 b \dots$$

 $2.1 t_0 1 f 3 t_3 \dots / 2.1 a 4 b \dots$

Language: (ab)*

Motivation for our work

Fault diagnosis for Discrete Event System \equiv properties on trace languages [Lafortune - 95].

Addition of time constraints.

- Δ -diagnosability \equiv "reachability of (non-Zeno) runs in product of TA" [Tripakis 02]
- au au-diagnosability \equiv "same" for TPN [Silva 15, Basile 17] (but ask for a firing sequence)

Composition of TPN

Analysing the "intersection" of TPN is hindered by two problems:

- State Space is infinite
- Composability problem

State Space is infinite

Solution: use abstractions based on State Classes [Berthomieu - 83].


```
# states 3; transitions 4
(class 0) marking: p0
domain: 2 <= t0 <= 4
successors: t0/1</pre>
```

```
(class 2) marking: p2
domain: 3 <= t3 <= 4
successors: t3/0</pre>
```

Composability: third solution

IPTPN are TPN with "Inhibit" and "Permit" arcs [Perez - 11].

Adds the possibility to isolate "timing constraints" from "transition enabledness".

Composability of TPN

Extend the *State Classes* construction to the product of two¹ TPN.

¹also work with the product of *n* transitions

Index

- Introduction
 - Background on (net) Languages and Product
 - Composability of TPN
- 2 PTPN
 - Arnold-Nivat Product of TPN
 - Expressiveness
 - Application to the Composability Problem
- 3 Experimental Results

PTPN

Idea: use a product, $N_1 \times N_2$, and force transitions with same label (e.g. $t_3.1 \in N_1$ and $t_1.2 \in N_2$) to fire "synchronously".

PTPN

We fire "Synchronous Sets" of transitions at the same time:

$$\{t_0.1, t_0.2\}, \{t_1.1, t_1.2\}, \{t_3.1, t_1.2\}, \{f\}$$

PTPN: example of behaviour

Time elapse as in "classical" TPN \Rightarrow must fire t_0 before 1 initially.

Transitions $\{t_0, t_2\}$ and $\{t_1, t_3\}$ must fire simultaneously \Rightarrow this can create "timelocks".

PTPN: expressiveness

On one side, PTPN semantics introduces new timelocks.

On the other side, you cannot "lose a transition" only by waiting.

Theorem

PTPN are as expressive as TPN (up-to wtb: \approx):

 $\forall P \in PTPN \ \exists N \in TPN \ . \ N \approx P$

¹Says nothing about the size of $N \propto P$.

PTPN: application to the composability problem

 We prove that "product" is a congruent composition operator:

$$\llbracket \textit{N}_1 \times \textit{N}_2 \rrbracket \approx \llbracket \textit{N}_1 \rrbracket \parallel \llbracket \textit{N}_2 \rrbracket$$

- It is possible to adapt the SCG construction to PTPN
- Hence we can compute the "SCG" for the intersection of two TPN
- This has been implemented in a tool: TWINA (https://projects.laas.fr/twina/)

DBM and PTPN

Assume we fire $I = \{t_a, t_b, \dots\}$ synchronously from (m, D)

Index

- Introduction
 - Background on (net) Languages and Product
 - Composability of TPN
- 2 PTPN
 - Arnold-Nivat Product of TPN
 - Expressiveness
 - Application to the Composability Problem
- Experimental Results

Comparing size of PTPN and IPTPN

		Twina	IPTPN/sift	
Model	Exp.	Classes	Classes	Ratio
jdeds	plain	26	28	× 1.1
jdeds	twin	544	706	$\times 1.3$
jdeds	obs	57	64	× 1.1
train3	plain	$3.10 \cdot 10^{3}$	$5.05 \cdot 10^{3}$	× 1.6
train3	twin	$1.45 \cdot 10^{6}$	$4.02 \cdot 10^{6}$	× 2.8
train3	obs	$6.20 \cdot 10^{3}$	$1.01 \cdot 10^{4}$	$\times 1.6$
train4	plain	$1.03 \cdot 10^{4}$	$1.68 \cdot 10^{4}$	× 1.6
train4	twin	$2.10 \cdot 10^{7}$	$5.76 \cdot 10^{7}$	$\times 2.7$
train4	obs	$2.06 \cdot 10^4$	$3.37 \cdot 10^4$	× 1.6
plant	plain	$2.70 \cdot 10^{6}$	$4.63 \cdot 10^{6}$	× 1.7
plant	twin	$1.30 \cdot 10^{3}$	$1.63 \cdot 10^{3}$	$\times 1.3$
plant	obs	$5.72 \cdot 10^{6}$	$9.79 \cdot 10^{6}$	$\times 1.7$
wodes	plain	$2.55 \cdot 10^{3}$	$5.36 \cdot 10^{3}$	× 2.1
wodes	twin	$5.54 \cdot 10^4$	$1.51 \cdot 10^{5}$	$\times 2.7$
wodes	obs	$5.77 \cdot 10^{3}$	$1.47 \cdot 10^4$	$\times 2.5$
wodes232	plain	$2.04 \cdot 10^{4}$	$3.24 \cdot 10^{4}$	× 1.6
wodes232	twin	$3.96 \cdot 10^{7}$	$3.39 \cdot 10^{8}$	× 8.6
wodes232	obs	$1.06 \cdot 10^{5}$	$2.26 \cdot 10^{5}$	$\times 2.1$

Focus on WODES-2-3-2

		Twina	IPTPN/sift	
Model	Exp.	Classes	Classes	Ratio
wodes232	plain	$2.0 \cdot 10^4$	$3.2 \cdot 10^4$	× 1.6
wodes232	twin	$4.0 \cdot 10^{7}$	$3.4 \cdot 10^{8}$	$\times 8.6$
wodes232	obs	$1.1 \cdot 10^{5}$	$2.3 \cdot 10^{5}$	$\times 2.1$

$$|N \times N_{|f}| \leqslant \mathcal{O}(|N|^2)$$

Comparison with encoding into TPN

Results on our running example; for exp. twin

	TWINA	IPTPN/sift	TPN/sift
PLACES	6	6	25
Trans.	7	12(6+6)	211
Classes	3	3	1389

Conclusion

- We propose an extension of TPN with "synchronous product" of transitions and extend the (Linear) State Class Graph construction.
- We have implemented this construction in a tool.
- This is a tribute to Bernard Berthomieu's work.
- Future works: experimental comparaison with T.A.; motif detection in traces; ...

Conclusion

Thanks for your attention !

Any questions ?

Composability of TPN: related work

Use encoding of TPN into TA [Cassez - 05, Bérard - 08] preserves \approx / restricted to "closed" timing constraints size \propto region graph; size of net with |T| clocks

Structural encoding of TPN into composable TPN [Peres - 11] preserves \approx / restricted to "left-closed" timing constraints size \propto $|T|\times$ t.c.

Structural encoding of TPN into TPN with "priorities" (IPTPN) [Peres - 11]; preserves \approx / requires the use of "strong classes" size \propto size of net