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Performances in networks
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ES: end system

Objective: deterministic performance guarantees
Compute the maximum time it takes for a packet to cross the system (Worst-case
delay)
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Network calculus
Real data (min,plus) functions

Real input traffic abstraction−→ arrival curve

network element abstraction−→ service curve

⇓ ⇓ (min,plus)-operators

Delay / backlog
pessimism−→ Upper bound on the delay / backlog

Two kinds of pessimism
1 The abstraction
2 The (min,plus) operations
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Network calculus

• Theory developed in the 1990’s by R.L. Cruz, then developed and
popularized by C.S. Chang and J.-Y. Le Boudec.

• Filtering theory in the (min,plus) algebra.
• Applications:

− Internet: video transmission (VoD),
− Load-balancing in switches [Birkhoff-von Neumann switches, C.S. Chang]
− Embedded systems: AFDX (Avionics Full Duplex) [Rockwell-Collins software used

to certify A380], Networks-on-chip
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State of the art and contribution: Feed-forward networks

Many recent results for computing tight bounds feed-forward networks:
• PBOO/PMOO phenomena [Schmitt et al 2008]
• Linear programming solutions [B. et al, 2010]

− tight bounds
− the problem is NP-hard
− polynomial for tadem networks

• Exhaustive search / pay segregation only once [Bondorff et al, 2016]
− good heuristics to approximate the worst-case performance bounds

• Neural networks [Geyer, 2018]
− learning the good heuristic

• Tight bounds for tree-networks for the backlog of a subsets of flows and
delay

5 / 32 © 2019 Nokia Public



State of the art and contribution: Feed-forward networks

Many recent results for computing tight bounds feed-forward networks:
• PBOO/PMOO phenomena [Schmitt et al 2008]
• Linear programming solutions [B. et al, 2010]

− tight bounds
− the problem is NP-hard
− polynomial for tadem networks

• Exhaustive search / pay segregation only once [Bondorff et al, 2016]
− good heuristics to approximate the worst-case performance bounds

• Neural networks [Geyer, 2018]
− learning the good heuristic

• Tight bounds for tree-networks for the backlog of a subsets of flows and
delay

5 / 32 © 2019 Nokia Public



State of the art and contribution: Cyclic networks
Few results in networks with cyclic dependencies

• Computing good stability conditions and performance guarantees for
network with cyclic dependencies is an open issue

• Obtaining such guarantees would enable more flexible design of systems,
with fewer switches.

• Flow-based bounds: fix-point/stopped time method
− ”classical” [Cruz 1994]
− PMOO [Amari et Mifdaoui, 2017]

• Backlog-based bounds: ”stability” of the ring [Tassiulas, Georgiadis, 1996]
Additional assumption: the traffic is upper-bounded in each link.

• instability results from adversarial method [Andrews, 2001]
• Improve the fix-point method to combine flow and backlog-based bounds
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Network calculus framework

Networks wih cyclic dependencies

Computing performance bounds in feed-forward networks

Performances in cyclic network

Conclusion
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Cumulative processes
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• A : R+ → Rmin+: process of the cumulative arrivals, non-decreasing function
• B : R+ → Rmin+: process of the cumulative departures, non-decreasing
function

• Causality constraint: A ≥ B
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Arrival and service curves

βA
α

B

Arrival curve
A is constrained by the function α if
∀0 ≤ s ≤ t,

A(t)− A(s) ≤ α(t− s).
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From constraints to performance bounds

Maximum backlog:
Bmax = supt≥0 A(t)− B(t)

Maximum delay:
Dmax = inf{d | ∀t ∈
R+, B(t+ d) ≥ A(t)}

time

da
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α

β

v(
α
,β

)

h(α, β)

Performance bounds
• Bmax ≤ α� β(0) = v(α, β) = sup{α(t)− β(t) | t ≥ 0}
• Dmax ≤ h(α, β) = inf{∀t ≥ 0, d ≥ 0 | α(t) ≤ β(t+ d)} (for FIFO per flow).
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Model and hypotheses

β(1)

β(2)

β(4)

β(3)
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Hypotheses
• m token-bucket arrival curves: αi(t) = bi + rit;
• n rate-latency strict service curves: β(j)(t) = Rj(t− Tj)+.
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Network calculus framework

Networks wih cyclic dependencies

Computing performance bounds in feed-forward networks

Performances in cyclic network

Conclusion
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Stability in cyclic networks

Consider a server offering a strict service curve β : t 7→ R(t− T)+ and a flow
crossing it, with arrival curve α : t 7→ b+ rt.

• This server is said unstable if its worst-case backlog is unbounded: R < r;
• This server is said critical if its worst-case backlog is bounded, but the
lengths of its backlogged periods are not bounded bounded: R = r;

• This server is said stable if the length of its backlogged periods is bounded:
R > r.

Definition (Global stability)
A network is globally stable if for all its servers, the length of the maximal
backlogged period is bounded.
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Fix-point method
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(service curves and arrival curves of
exogenous arrivals are constants of
the problem)

α
(3)
2 = H(1)

2 (α1, α2)

α
(4)
2 = H(3)

2 (α
(3)
1 , α

(3)
3 )...

We write this equation for each output flow at each server and obtain a system

α = H(α)

Lemma
If the system is stable, then there exists a family α = (αi,j)i,j of arrival curves for
the flows (F(j)i ) such that α ≤ H(α).

Take the best arrival curves, they will satisfy every inequality.
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2 = H(3)

2 (α
(3)
1 , α

(3)
3 )...

We write this equation for each output flow at each server and obtain a system

α = H(α)

• If service curves are rate-latency and arrival curves token bucket, this is a
linear equation: b = Mb+ N.
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Network calculus framework

Networks wih cyclic dependencies

Computing performance bounds in feed-forward networks

Performances in cyclic network

Conclusion
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Generic (min,plus) method

1 In the topological order of the servers, for each flow crossing the server:

β(j)α
(j)
C

α
(j)
1 α

(j+1)
1

Residual service curve:
β
(j)
1 = (β(j) − α

(j)
C )+

Output arrival curve:
α
(j+1)
1 = α

(j)
1 � β

(j)
1

2 For the flow of interest

β(1) β(2) β(k)
α
(1)
1

... End-to-end service curve:
β = β

(1)
1 ∗ β(2)

1 ∗ · · · ∗ β(k)
1

3 Delay bound: h(α1, β),
Backlog bound: v(α1, β)

16 / 32 © 2019 Nokia Public



Tight worst-case delays for tandem networks
Joint work with Thomas Nowak [Performance 2015]

β1 β2 β3 β4f2f∗1
f3 f4

Theorem
Consider a tandem network of n servers. The worst-case delay is linear in the
bursts and latencies:

D =
∑
j∈Nn

λjTj +
∑
i∈Nm

µibi

where the coefficients λj and µi depend only on the arrival and service rates and
can be effectively computed in time O(n2 +m).
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Tight worst-case delays and backlog for tree networks
This theorem can be adapted to backlog at server n and for tree-topologies:

β′
1 β1 β2 β3 β4f∗2f1

f3 f∗4

Theorem
Consider a tree network of n servers, and p flows of interest at server n. The
worst-case backlog at server n for the flows of interests is linear in the bursts and
latencies:

B =
∑
j∈Nn

ρjTj +
∑
i∈Nm

φibi +
∑
i∈Np

b∗i

where the coefficients ρj and φi < 1 depend only on the arrival and service rates
and can be effectively computed in time O(n2 +m+ p).
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Sketch of the proof

1 Find properties of a worst-case scenario for the network
− SDF (Shortest-to-destination first) service policy
− one backlogged period for each server
− minimum service
− maximum arrivals

2 Backward induction on the servers
− Only the dates of the start of backlogged periods need to be computed
− they depend only on the amount of data transmitted at those time.
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Comparison of the approaches

1 (min,plus):
− Efficient algorithms (linear in the total length of the flows)
− Pessimistic performance bounds (as soon as two servers and two flows)
− Linear in Tj and bi

2 Our approach:
− Quadratic algorithm in tree network
− Tight delay bound
− Linear in Tj and bi
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Network calculus framework

Networks wih cyclic dependencies

Computing performance bounds in feed-forward networks

Performances in cyclic network

Conclusion
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Flow-based decomposition of the network
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Linear problem:

Maximize Qb+ C
such that b ≤ Mb+ N.

• (min,plus) approach: at each server for each flow

bi,k+1 ≤ bi,k +
ri

Rj −
∑

p∈Fl(j)\{i} rp
(

∑
s∈Sj\{(i,k)}

bs + RjTj).

• Our approach, with a tree decomposition:

bi,k+1 ≤
∑
s∈S

φi,k+1
s bs +

∑
{j|j⇝j1}

ρi,k+1
j Tj,

22 / 32 © 2019 Nokia Public



Flow-based decomposition of the network

β(1)

β(2)

β(4)

β(3)
α1 �

α2 α3

�

α4

Linear problem:

Maximize Qb+ C
such that b ≤ Mb+ N.

• (min,plus) approach: at each server for each flow

bi,k+1 ≤ bi,k +
ri

Rj −
∑

p∈Fl(j)\{i} rp
(

∑
s∈Sj\{(i,k)}

bs + RjTj).

• Our approach, with a tree decomposition:

bi,k+1 ≤
∑
s∈S

φi,k+1
s bs +

∑
{j|j⇝j1}

ρi,k+1
j Tj,

22 / 32 © 2019 Nokia Public



Flow-based decomposition of the network

β(1)

β(2)

β(4)

β(3)
α1 �

α2 α3

�

α4

Linear problem:

Maximize Qb+ C
such that b ≤ Mb+ N.

• (min,plus) approach: at each server for each flow

bi,k+1 ≤ bi,k +
ri

Rj −
∑

p∈Fl(j)\{i} rp
(

∑
s∈Sj\{(i,k)}

bs + RjTj).

• Our approach, with a tree decomposition:

bi,k+1 ≤
∑
s∈S

φi,k+1
s bs +

∑
{j|j⇝j1}

ρi,k+1
j Tj,

22 / 32 © 2019 Nokia Public



Comparison on the ring network
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Backlog-based decomposition
Idea:

• worst-case bounds for flows ending at the same server do not happen at the
same time;

• computing worst-case backlog of all flows following an arc might takes this
phenomenon into account.

Ba ≤
∑
s∈S

φa
sxs +

∑
{j|j⇝j1}

ρaj Tj

≤
∑
a′∈A′

[(
max
s∈S′a′

φa
s

)(∑
s∈S′a

xs
)]

+

m∑
i=1

φa
(i,1)bi +

∑
{j|j⇝j1}

ρaj Tj

≤
∑
a′∈A′

(
max
s∈S′a′

φa
s

)
Ba′ +

m∑
i=1

φa
(i,1)bi +

∑
{j|j⇝j1}

ρaj Tj.
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Ring stability revisited
Theorem (TG96, LT04)
“The ring is stable” under assumption for stability of each server
Additional assumption: the traffic is upper-bounded in each link.

Our approach

B =
∑
j∈Nn

ρjTj +
∑
i∈Nm

φibi +
∑
i∈Np

b∗i

where the coefficients ρj and φi < 1
depend only on the arrival and service
rates.

B ≤ C+ φB

where φ = supφn
j < 1 and B ≤ C

1−φ .
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Comparison on the Ring Network
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Combining Flow-based and Backlog-based bounds

New set of linear constraints:

L =


bs ≤

∑
s′∈S φ

s
s′x

s
s′ + Cs, ∀s ∈ S

Ba ≤
∑

s′∈S φ
a
s′x

a
s′ + Ca, ∀a ∈ Ar

0 ≤ xss′ ≤ bs′ , ∀s′ ∈ S, s ∈ S ∪ Ar∑
s′∈a x

s
s′ ≤ Ba, ∀a ∈ Ar, s ∈ S ∪ Ar

 ,

Number of constraints:
• Flow-based: O(k)
• Backlog-based: O(a)
• Combination: O(k+ a)2

where k is the number of flows is the tree-decomposition and a the number of
arcs removed for this decompostion.

27 / 32 © 2019 Nokia Public



Comparison on the Ring Network
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Two-Ring network
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Conclusion and futurework
Conclusion

• A new efficient algorithm to compute tight worst-case delays and backlog.
• Application to networks with cyclic dependencies:

− best stability conditions
− stability of the ring without additional assumptions

• Implementation in a Python package: https://github.com/nokia/NCBounds

Future work
• Extension to feed-forward networks (we conjecture that a simple
generalization can lead to the same approximation with one linear program)

• what is the best decomposition?
• Extension to some service policies (FIFO, GPS for example), maximum service
rate...
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