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Motivation: Mass Dampers
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[Intro to Structural Motion Control, Connor 2003]
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Motivation

▪ Most existing cyber-physical systems (CPS) verification techniques only focus 

on physical behaviors as ordinary differential equations (ODEs), or hybrid 

variants thereof (hybrid automata, etc.)

▪ Many CPS domains naturally model systems as DAEs instead of ODEs

▪ Mechatronics, robotics, electrical circuits, earthquake engineering, water 

distribution networks / fluid dynamics (certain problems), process/chemical 

engineering, …

Index-3 DAE system electrical generator (power)

Index-2 interconnected rotating masses 

(IRM) system (automotive)

Index-2 semi-discretized Stoke System (fluids)

Index-3 damped mass-spring system (earthquake)



DAE Modeling Intuition

▪ Consider an RLC (resistor, inductor, capacitor) 
circuit

▪ Kirchhoff's current law (KCL) and voltage law 
(KVL) => algebraic constraints + ODEs for 
transient behavior

▪ KCL: conservation of current: 𝑖𝐸 = 𝑖𝑅 = 𝑖𝐶 = 𝑖𝐿
▪ KVL: conservation of energy: 𝑉𝑅 + 𝑉𝐶 + 𝑉𝐿 + 𝑉𝐸 = 0

▪ Ohm’s laws:

C ሶ𝑉𝐶 = 𝑖𝑐

L ሶ𝑉𝐿 = 𝑖𝐿
𝑉𝑅 = 𝑅 𝑖𝑅
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DAE Modeling Intuition

▪ Replace equal currents (𝑖𝑅 to 𝑖𝐸, 𝑖𝐶 to 𝑖𝐿), don’t 
have to, but reduces dimensionality for fewer 
state variables 

ሶ𝑉𝐶 =
1

𝐶
𝑖𝐿

ሶ𝑉𝐿 =
1

𝐿
𝑖𝐸

0 = 𝑉𝑅 + 𝑅𝑖𝐸
0 = 𝑉𝐸 + 𝑉𝑅 + 𝑉𝐶 + 𝑉𝐿
0 = 𝑖𝐿 − 𝑖𝐸

▪ Now a DAE system with:
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𝑥 𝑡 =

𝑉𝐶(𝑡)
𝑉𝐿(𝑡)
𝑉𝑅(𝑡)
𝑖𝐿(𝑡)
𝑖𝐸(𝑡)



DAE Modeling Intuition

▪ Linear DAE system:
𝑑𝑥

𝑑𝑡
= ሶ𝑥 = 𝐴𝑥

0 = 𝐵𝑥 + 𝐷𝑧
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𝑥 𝑡 =

𝑉𝐶(𝑡)
𝑉𝐿(𝑡)
𝑉𝑅(𝑡)
𝑖𝐿(𝑡)
𝑖𝐸(𝑡)

, 𝑧 𝑡 = 𝑉𝐸(𝑡)𝐵 =
0 0 1 0 𝑅
1 1 1 0 0
0 0 0 1 −1

𝐷 =
0
1
0

ሶ𝑉𝐶 =
1

𝐶
𝑖𝐿

ሶ𝑉𝐿 =
1

𝐿
𝑖𝐸

0 = 𝑉𝑅 + 𝑅𝑖𝐸
0 = 𝑉𝐸 + 𝑉𝑅 + 𝑉𝐶 + 𝑉𝐿
0 = 𝑖𝐿 − 𝑖𝐸

𝐴 =

0 0 0
1

𝐶
0

0 0 0 0
1

𝐿
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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Motivation

▪ Most existing cyber-physical systems (CPS) verification techniques only focus 

on ODE dynamics, or hybrid variants thereof (hybrid automata, etc.)

▪ Verifying DAE systems is more complex than ODE systems

▪ No existing works (to our knowledge) on verifying high-index (>1) DAEs

▪ Scalability: state-space explosion / “curse of dimensionality”

▪ How to verify safety of systems with DAE dynamics?

Index-3 DAE system electrical generator (power)

Index-2 interconnected rotating masses 

(IRM) system (automotive)

Index-2 semi-discretized Stoke System (fluids)

Index-3 damped mass-spring system (earthquake)
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Linear DAE Systems

▪ Linear DAE System: 𝑬 ሶ𝑥 𝒕 = 𝑨𝒙 𝒕 + 𝑩𝒖 𝒕
▪ 𝑥 𝑡 ∈ R𝑛 is the state vector

▪ 𝑢 𝑡 ∈ R𝑚 is the s input vector

▪ 𝐸, 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 are the DAEs matrices, where 𝐸 is singular (non-
invertible)

▪ Index of a DAE: typically (can depend on initial conditions) the minimum 
number of times to differentiate DAEs wrt 𝑡 to get ODEs (“index reduction”), 
where ODEs are called index-0, can typically evaluate rank(E) to check

▪ Example: Index-2 interconnected rotating masses (IRM) system

Where 𝐽1 = 1, 𝐽2 = 2,𝑀2 𝑡 + 𝑀3 𝑡 = 0, 𝑧1 𝑡 = 𝑧2(𝑡)
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Linear DAE Systems

▪ Index-2 interconnected rotating masses (IRM) system

Reachable sets computed using daev: https://github.com/verivital/daev

https://github.com/verivital/daev


1. Decoupling

2. Consistency Checking

▪ Define a consistent space for the initial state and input

▪ Guarantee a solution for the DAE system 

3. Construct reachable set for the decoupled system

▪ Using Star-sets and Simulation

4. Construct reachable set for original DAE system

5. Perform safety verification & falsification using computed reachable set  
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Our Approach

DAEs
𝐸 ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢

ODEs
ሶ𝑥1 = 𝑁1𝑥1 + 𝐵𝑢

AC: Algebraic Constraints
ሶ𝑥𝑖 = 𝑁𝑖𝑥𝑖 +𝑀𝑖𝑢+=

Marz Decoupling
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Index-1 Decoupling

▪ Definition (Tractability index). Assume that the DAE system 𝐸 ሶ𝑥 𝑡 =
𝐴𝑥 𝑡 + 𝐵𝑢(𝑡) is solvable, i.e., the matrix pair (𝐸, 𝐴) is regular. A matrix 
chain is defined by: 

𝐸0 = 𝐸, 𝐴0 = 𝐴

𝐸𝑗+1 = 𝐸𝑗 − 𝐴𝑗𝑄𝑗 , 𝐴𝑗+1 = 𝐴𝑗𝑂𝑗 , 𝑗 ≥ 0, where 𝐸𝑗𝑄𝑗 = 0, 𝑄𝑗
2 = 𝑄𝑗 , 𝑃𝑗 = 𝐼𝑛 − 𝑄𝑗

Where ∃ index 𝜇 s.t. 𝐸𝜇 is non-singular and ∀𝑗 ∈ 0, 𝜇 − 1 , 𝐸𝑗 is singular 

𝜇 is called the tractability index

A matrix pair (𝐸, 𝐴) is regular if det 𝑠𝐸 − 𝐴 ≠ 0

▪ Lemma 1 (Index-1 DAE decoupling). An index-1 DAE system can be 
decoupled using the matrix chain defined as follows:

Δ1: ሶ𝑥1 𝑡 = 𝑁1𝑥1(𝑡) + 𝑀1𝑢(𝑡), ODE subsystems

Δ2: ሶ𝑥2 𝑡 = 𝑁2𝑥1(𝑡) + 𝑀2𝑢(𝑡), AC subsystems

𝑥 𝑡 = 𝑥1 𝑡 + 𝑥2(𝑡)

𝑥1 𝑡 = 𝑃0𝑥 𝑡 , 𝑁1 = 𝑃0𝐸1
−1𝐴0, 𝑀1 = 𝑃0𝐸1

−1𝐵

𝑥2 𝑡 = 𝑄0𝑥 𝑡 , 𝑁2 = 𝑄0𝐸1
−1𝐴0, 𝑀2 = 𝑄0𝐸1

−1𝐵
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Index-2 Decoupling

▪ Lemma 2 (Index-2 DAE decoupling). An index-2 DAE system can be 
decoupled using the matrix chain defined as follows:

▪ Intuition: basically taking derivatives wrt 𝑡 of the 

algebraic constraint subsystems to get ODEs

▪ Scalability issue: increasing dimensionality, more state 
variables being introduced

Δ1: ሶ𝑥1 𝑡 = 𝑁1𝑥1(𝑡) + 𝑀1𝑢(𝑡), ODE subsystems

Δ2: ሶ𝑥2 𝑡 = 𝑁2𝑥1(𝑡) + 𝑀2𝑢(𝑡), AC subsystems 1

𝑥 𝑡 = 𝑥1 𝑡 + 𝑥2 𝑡 + 𝑥3 𝑡

𝑥1 𝑡 = 𝑃0𝑃1𝑥 𝑡 , 𝑁1 = 𝑃0𝑃1𝐸2
−1𝐴2, 𝑀1 = 𝑃0𝑃1𝐸2

−1𝐵

𝑥3 𝑡 = 𝑄0𝑥 𝑡 , 𝑁3 = 𝑄0𝑃1𝐸2
−1𝐴2, 𝑀3 = 𝑄0𝑃1𝐸2

−1𝐵, 𝐿3 = 𝑄0𝑄1

Δ3: ሶ𝑥3 𝑡 = 𝑁3𝑥1 𝑡 + 𝑀3𝑢 𝑡 + 𝐿3 ሶ𝑥2 𝑡 , AC subsystems 2

𝑥2 𝑡 = 𝑃0𝑄1𝑥 𝑡 , 𝑁2 = 𝑃0𝑄1𝐸2
−1𝐴2, 𝑀2 = 𝑃0𝑄1𝐸2

−1𝐵
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Index-3 Decoupling

▪ Lemma 3 (Index-3 DAE decoupling). An index-3 DAE system can be 
decoupled using the matrix chain defined as follows:

Δ4: ሶ𝑥4 𝑡 = 𝑁4𝑥1 𝑡 + 𝑀4𝑢 𝑡 + 𝐿4 ሶ𝑥3 𝑡 + 𝑍4 ሶ𝑥2 𝑡 , AC subsystems 3

Δ1: ሶ𝑥1 𝑡 = 𝑁1𝑥1(𝑡) + 𝑀1𝑢(𝑡), ODE subsystems

Δ2: ሶ𝑥2 𝑡 = 𝑁2𝑥1(𝑡) + 𝑀2𝑢(𝑡), AC subsystems 1

𝑥 𝑡 = 𝑥1 𝑡 + 𝑥2 𝑡 + 𝑥3 𝑡 + 𝑥4 𝑡

𝑥1 𝑡 = 𝑃0𝑃1𝑃2𝑥 𝑡 , 𝑁1 = 𝑃0𝑃1𝑃2𝐸3
−1𝐴3, 𝑀1 = 𝑃0𝑃1𝑃2𝐸3

−1𝐵

𝑥3 𝑡 = 𝑃0𝑄1𝑥 𝑡 , 𝑁3 = 𝑃0𝑄1𝑃2𝐸3
−1𝐴3, 𝑀3 = 𝑃0𝑄1𝑃2𝐸3

−1𝐵, 𝐿3 = 𝑃0𝑄1𝑄2

Δ3: ሶ𝑥3 𝑡 = 𝑁3𝑥1 𝑡 + 𝑀3𝑢 𝑡 + 𝐿3 ሶ𝑥2 𝑡 , AC subsystems 2

𝑥2 𝑡 = 𝑃0𝑃1𝑄2𝑥 𝑡 , 𝑁2 = 𝑃0𝑃1𝑄2𝐸3
−1𝐴3, 𝑀2 = 𝑃0𝑃1𝑄2𝐸3

−1𝐵

𝑥4 𝑡 = 𝑄0𝑥 𝑡 , 𝑁3 = 𝑄0𝑃1𝑃2𝐸3
−1𝐴3, 𝑀4 = 𝑄0𝑃1𝑃2𝐸3

−1𝐵, 𝐿4 = 𝑄0𝑄1, 𝑍4 = 𝑄0 𝑃1𝑄2
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Admissible Projectors

▪ Why is it needed?
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Example: Decoupling for IRM 
System

▪ Consistent initial set of states

▪ IRM can be decoupled into one ODE and two AC subsystems
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Consistency Checking

▪ To guarantee a solution for the DAE system, the initial 
states and inputs must satisfy the following conditions

▪ Where input 𝑢(𝑡) is smooth such that: ሶ𝑢 𝑡 = 
𝐴𝑢𝑢 𝑡 , 𝑢 0 = 𝑢0 ∈ U0
▪ 𝐴𝑢 ∈ R𝑚×𝑛: user-defined input matrix

▪ 𝑈0: the set of initial inputs

Index-1 DAE: 𝑥2 0 = 𝑁2𝑥1(0) + 𝑀2𝑢(0)

Index-2 DAE: 𝑥2 0 = 𝑁2𝑥1 0 + 𝑀2𝑢 0
𝑥3 0 = 𝑁3𝑥1 0 +𝑀3𝑢 0 + 𝐿3 ሶ𝑥2 0

Index-3 DAE: 𝑥2 0 = 𝑁2𝑥1 0 + 𝑀2𝑢 0
𝑥3 0 = 𝑁3𝑥1 0 + 𝑀3𝑢 0 + 𝐿3 ሶ𝑥2 0
𝑥4 0 = 𝑁4𝑥1 0 +𝑀4𝑢 0 + 𝐿4 ሶ𝑥3 0 + 𝑍4 ሶ𝑥2 0
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Consistency Checking

▪ Definition (Consistent space). Consider the DAE system Δ: 𝐸 ሶ𝑥 𝑡 =
𝐴𝑥 𝑡 + 𝐵𝑢(𝑡), by letting 𝑢 𝑡 = 0, we define a consistent matrix Γ as:

▪ An initial state 𝑥0 is consistent if it is in the consistent space, i.e., Γ𝑥0 = 0

Index-1 Δ : Γ = 𝑄0 − 𝑁2𝑃

Index-2 Δ :
𝑃0𝑄1 − 𝑁2𝑃0𝑃1

𝑄0 − 𝑁3 + 𝐿3𝑁2𝑁1 𝑃0𝑃1

Index-2 Δ :

𝑃0𝑃1𝑄2 − 𝑁2𝑃0𝑃1𝑃2
𝑃0𝑄1 − 𝑁3 + 𝐿3𝑁2𝑁1 𝑃0𝑃1𝑃2

𝑄0 − 𝑁4 + 𝐿4 𝑁3𝑁1 + 𝐿3𝑁2𝑁1
2 + 𝑍4𝑁2𝑁1 𝑃0𝑃1𝑃2

Then, 𝐾𝑒𝑟 Γ is the consistent space of the system Δ, also denotes 

null space of the matrix Γ
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Reachability Analysis

▪ Definition (Modified Star-Set). A modified star set Θ is a tuple 〈𝑉, 𝑃〉, 
where 𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑘 ∈ R𝑛×𝑘 is a star basis matrix and 𝑃is a linear 
predicate. The set of states represented by the star is given by:

Θ = {𝑥|𝑥 = Σ𝑖=1
𝑘 𝛼𝑖𝑣𝑖 = 𝑉 × 𝛼, 𝑃 𝛼 ≙ 𝐶𝛼 ≤ 𝑑}

where, 𝛼 = [𝛼1= 1, 𝛼2, … , 𝛼𝑘]
𝑇, 𝐶 ∈ R𝑝×𝑘, 𝑃 ∈ R𝑝 , and 𝑝 is the 

number of linear constraints.
𝑉 =

0 1 0
0 0 1

C=

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

𝑑 =

1
−1
2
1
1
1

[Stanley Bak, Hoang-Dung Tran, Taylor T. Johnson, "Numerical Verification of Affine Systems with Up to a 

Billion Dimensions“, HSCC’19]

[Hoang-Dung Tran, Patrick Musau, Diego Manzanas Lopez, Xiaodong Yang, Luan Viet Nguyen, Weiming 

Xiang, Taylor T. Johnson, "Star-Based Reachability Analysis for Deep Neural Networks", FM’19]
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Reachability Analysis

▪ Lemma 4 (Reachable Set Construction). Given an autonomous 
DAE system 𝐸 ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡) where 𝑢 𝑡 = 0 and a consistent 
initial set of states Θ(0) = 〈𝑉(0), 𝑃〉, let Θ1(t) be the reachable set
at time 𝑡 of the corresponding ODE subsystem after decoupling. 
Then, the reachable set at time 𝒕 of the system is given by 
Θ t = 〈𝑉 𝑡 = 𝛹𝑉1 𝑡 , 𝑃〉, where 𝛹 is a reachable set projector 

defined as 

▪ Recall 𝑁𝑖 , 𝐿𝑗 , 𝑍𝑘 are from Marz decoupling discussed earlier

Index-1: 𝛹 = 𝐼𝑛 + 𝑁2

Index-2: 𝛹 = 𝐼𝑛 + 𝑁2 + 𝑁3 +𝐿3𝑁2𝑁1

Index-3: 𝛹 = 𝐼𝑛 + 𝑁2 + 𝑁3 +𝐿3𝑁2𝑁1 + 𝐿4𝑁3𝑁1 + 𝐿4𝐿3𝑁2𝑁1
2 + 𝑍4𝑁2𝑁1
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Reachability Analysis
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Bounded-time safety 
verification/falsification



22

Reachability Analysis for IRM 
System

▪ Sinusoid input

▪ A consistent initial set of states

▪ Safety verification w.r.t unsafe specification 𝑀2 𝑡 ≤ −0.8

Reachable set

Violation

An unsafe trace
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Scalability Performance

Takeaways:
• Daev is scalable in verifying 

large DAE systems (≥ 1K state 

variables) where other over-

approximation approaches not 

applicable 

• Daev can produce unsafe traces

• Available:

https://github.com/verivital/daev

https://github.com/verivital/daev

/releases/tag/formats2019

Benchmark details:

ARCH’18 paper, 

“Linear Differential-

Algebraic Equations”

https://github.com/verivital/daev/
https://github.com/verivital/daev/releases/tag/formats2019


RLC Circuit
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Damped Mass Spring
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Damped Mass Spring
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Partial Element Equivalent 
Circuit (PEEC)
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▪ Electromagnetics application: RF engineering



Stokes
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Stokes

29
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Scalability Analysis

▪ Stokes-equation PDE

D-T: decoupling time, 

RSC-T: reachable set 

computation time

CS-T: checking safety time

V-T: verification time 

(overall total time sum)

Takeaway:
• Decoupling and reachable set computation 

times dominate the time for verification 

process

• Time for checking safety is almost 

unchanged and very small

• vode, dopri5, and dop853 solvers should 

be used for large DAE systems

Boundary conditions => 

algebraic constraints

(Finite-difference method based 

on marker-and-cell [MAC])
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Conclusion and future works

▪ Conclusion

✓ A simulation-based reachability analysis for high-index, linear DAE 
systems

✓ Based on the effective combination of a decoupling method and 
a reachable set computation using star-sets

✓ Design and implementation of the approach in a Python toolbox, 
called Daev: https://github.com/verivital/daev/

✓ Applied to verify/falsify high-index linear DAE systems 

✓ Approach can deal with DAE systems with up to thousands of state 
variables

▪ Future Work

✓ Enhance the time performance and the scalability of our approach 

✓ Apply to verify million-dimensional DAE systems

✓ DAEs with hybrid/switching behavior (time or state-dependent)

https://github.com/verivital/daev/
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Thank You

32
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