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Max-Plus-Linear Systems

= Based on max-plus algebra (Rmax, D, ®) where Ryax := RU{—co}.
For all a,b € Ry«

a®b:=max{a,b}, a®b:=a+b

= The operations can be applied to matrices. For A € RI3",

A®" to denote A®... RA (r times)
= Defined as x(k+ 1) = A®x(k), where A € R and x(k) € R".

m Applications: transportations, scheduling, biological systems...
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Max-Plus-Linear Systems

= The precedence graph of A, denoted by ¥ (A), is a weighted directed graph
with vertices 1,2...,n and an edge from j to i with weight A(i,j) for each

= The average weight of path p = igi; ...i; in 4(A) is equal to

Aliy,ig)+-.. —&-A(ik,ik,])
k

= A matrix A € RIS is called irreducible if ¥(A) is strongly connected

max
m If A is irreducible then there is only one eigenvalue
A = the maximum average weight of circuits
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Max-Plus-Linear Systems

. .o, . ES
Transient Condition

For an irreducible matrix A € R2%" and its corresponding eigenvalue A,
there exist kg, c € N such that A®%+¢ = ¢ @ A®F for all k > ko. The smallest
such kg and c are called the transient and the cyclicity of A, respectively.

* Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linear-
ity: An Algebra for Discrete Event Systems. Wiley, Chichester (1992)
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Max-Plus-Linear Systems

. .o, . ES
Transient Condition

For an irreducible matrix A € R2%" and its corresponding eigenvalue A,

there exist kg, c € N such that A®%+¢ = ¢ @ A®F for all k > ko. The smallest

such kg and c are called the transient and the cyclicity of A, respectively.
Given x(k+ 1) = A®x(k) and an initial x(0)

x(0), x(1), x(2), ...
is eventually periodic in max-plus algebraic sense. For all k > ko,
x(k+c) =Acox(k)
x1(k+c¢) Ac x1 (k)
Col= ]

Xn(k+c) Ac Xn (k)

* Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linear-
ity: An Algebra for Discrete Event Systems. Wiley, Chichester (1992)
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Max-Plus-Linear Systems
= Time differences

xi(k) —xj(k) or xi(k+1)—x;(k)
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Max-Plus-Linear Systems
= Time differences

/
Xi—Xj Or X;—X
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Max-Plus-Linear Systems
= Time differences

/
Xi—Xj Or X;—X

= Time difference propositions
/
X —Xi~Q

~e{<,<,>,>andax R
= Time difference specifications
LTL formula over time difference propositions
5 O —x > 5) =x(2) —xi(1) > 5
o0 00" —x <8)=Fk >0s.t. Vm >k xi(m+1) —x;(m) <8
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Max-Plus-Linear Systems

x(k+1)=
A®x(k)

set of initial
Al ?
/ vectors I | 1Fe J

TD spec ¢




Max-Plus-Linear Systems

x(k+1) = [ =R"
A®x(k)
For all x(0) € I
set of initial
/ vectolrsl; / All=e? ] x(0), x(1), x(2),... satisfies ¢@

TD spec ¢




Max-Plus-Linear Systems

x(k+1) = [ =R"
A®x(k)
For all x(0) € I
set of initial
/ vectolrsl; / All=e? ] x(0), x(1), x(2),... satisfies ¢@

TD spec ¢

Infinite and continuous state space

The primed variables

This problem is undecidable

Solve the problem by applying predicate abstractions (PA) and
bounded model checking (BMC)
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PA of MPL Systems

= Abstractions: techniques to generate a finite and smaller system from a large
or even infinite-space system

SEo—SkEo
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PA of MPL Systems

= Abstractions: techniques to generate a finite and smaller system from a large
or even infinite-space system

SEo—SkEo

= MPL systems — Piece-Wise Affine (PWA) System
Partitioning state space into several convex domains (PWA regions).
Each region has corresponding affine dynamics

= Given A € R" the region w.r.t. g € {1,...,n}"is

max?

n n
Ry = (N {x € R"|xg, —x; > Aij) —Ali-g) }
i=1j=1
Ry is a Difference-Bound Matrix (DBM)
= If Ry # 0 then the corresponding affine dynamics

X' =xg,+A(i,8), i=1,...,n
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PA of MPL Systems

Predicate abstraction: using a set of predicates

P:{plv'“apk}

Predicates are identified from the (concrete) system and specifications

Abstract states are generated from all Boolean assignments w.r.t. P

18] < 2k

Predicates also serve as atomic propositions”

* Clarke, E., Grumberg, O., Talupur, M., Wang, D.: Making predicate abstraction
efficient. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
gor20 126-140. Springer, Heidelberg (2003).



PA of MPL Systems

» Predicates from MPL systems?
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» Predicates from MPL systems?

HD:

n
ﬂ X € R"[xg, —x; > A(i,j) — A(i, g1) }
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PA of MPL Systems

» Predicates from MPL systems?

HD:

n
ﬂ X € R"[xg, —x; > A(i,j) — A(i, g1) }

Predicates are in the form of
xp—xj~A(i,j) —A(i,k), i=1,...,n, k<j€fin;

where fin; = {j|A(i,j) # —oo}
WLOG ~ € {>,>}
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PA of MPL Systems
» Predicates from specifications?
)Ci/ —Xi~ O
max {x; +A(i,))} —xi~

jEtin;
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PA of MPL Systems
» Predicates from specifications?
)Ci/ —Xi~ O
max {x; +A(i,))} —xi~

jEtin;

Predicates are in the form of x; —x; ~ o —A(i,j) for all j € fin;

m Ifi € fin;i.e. A(i,i) # —oo, we can ignore x; —x; ~ &t — A(i, i)
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PA of MPL Systems

Example:

2 5

,_ —
X =ARX= [3 3

}@ {xl} and r=x] —x; <5
X
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PA of MPL Systems
Example:
’_ o 2 5 X1 —
x7A®x7[3 3}®L€2 and r=x; —x; <5
Predicates from MPL system Predicates from TD proposition
xk—XjNA(i,j)—A(i,k) Xj—xiN(X—A(iJ)
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PA of MPL Systems

Example:

X =AQx = [2 5} ® {xl} and r=x] —x; <5

3 3 X2
Predicates from MPL system Predicates from TD proposition
X —Xj ~ A(i,j) —A(i,k) xj—x; ~ a0 —A(i.j)
x1—x >3 x—x <0
X1 —X2 > 0

110f 20



PA of MPL Systems

Example:

X =AQx = [2 5} ® {xl} and r=x] —x; <5

3 3 X2
Predicates from MPL system Predicates from TD proposition
X —Xj ~ A(i,j) —A(i,k) xj—x; ~ a0 —A(i.j)
x1—x >3 x—x <0
X1 —X2 > 0

There are two predicates, P = Py U Pyime = {p1,p2} Where

P1=x1—Xx22>3
p2=x1—x 20
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PA of MPL Systems

Example:
There are four possible Boolean assignments

—p17Pp2 (x1 —x2 <3)A(x1 —x2 <0)

“pp2 = (X1 —x2<3)A(x1—x2>0)
P12 = (x1—x>3)A(x; —x2 <0) empty set

pir2 = (x1—x223)A(x; —x2>0)

but only three abstracts states:

S0 =—p1—p2 DBM(S()) = {X e R? |X1 —x < 0}
51 = pipo DBM(3;) = {x € R? | 0 < x; —xp < 3}
S =pip> DBM(S‘z):{XERZ | x1 —.X223}
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PA of MPL Systems

Example:
There are four possible Boolean assignments

—p17Pp2 (x1 —x2 <3)A(x1 —x2 <0)

“pp2 = (X1 —x2<3)A(x1—x2>0)
P12 = (x1—x>3)A(x; —x2 <0) empty set

pir2 = (x1—x223)A(x; —x2>0)

but only three abstracts states:

S0 =—p1—p2 DBM(S()) = {X e R? |X1 —x < 0}
51 = pipo DBM(3;) = {x € R? | 0 < x; —xp < 3}
S =pip> DBM(S‘z):{XERZ | x1 —.X223}

Next step: generate the abstract transition system
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PA of MPL Systems

= Concrete transition systems

Definition (Trans. sys. associated with MPL system)

A transition system for an MPL system is a tuple 7S = (S, 7,1, AP, L) where
e the set of states S is R”,
o (x,X)eTifx =A®x,
e [ C R"is aset of initial conditions, (we use [ = R")
e AP is a set of time-difference propositions,
o the labelling function L : § — 2AP is defined as follows: a state x € S is
labelled by ‘x;’ —x; ~ o if [A®@x—X]; ~ o, where ~ € {>,> <, <}.
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PA of MPL Systems

= Concrete transition systems

Definition (Trans. sys. associated with MPL system)

A transition system for an MPL system is a tuple 7S = (S, 7,1, AP, L) where
the set of states S is R”,

(x,xX) eTif X =A®Xx,

I C R" is a set of initial conditions, (we use I = R")

AP is a set of time-difference propositions,

the labelling function L : § — 2AP is defined as follows: a state x € S is
labelled by ‘x;’ —x; ~ o if [A®@x—X]; ~ o, where ~ € {>,> <, <}.

= The (abstract) transition system for MPL system is 7S = (8, 7,7, Pyuas U Piime, L)

(3:,%;) € T if Im(DBM(5;)) NDBM(5;) # @
where Im(DBM($;)) = {A®x | x € DBM(S;) } (by DBM manipulation)
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PA of MPL Systems

0 {r2}

{p1-p2} fS




PA of MPL Systems

0 {r2}
G S0o

&) —x1 <5) e ps

{p1-p2} fS
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PA of MPL Systems

0 {2}
O~
& —x1<5)ep;
Specs: Q0¥ —x1 <5) = 00ps

{p1-p2} fS

13 0f 20




PA of MPL Systems

@ - <5) e p

Specs: Q0¥ —x; <5) = O0p,

{p1-p2} 7s

= One TD proposition may correspond to more than one predicates

Suppose p1,...,pi are the predicates corresponding to a TD proposition
t=xj—x; ~ 0.

i. For~{>,>},t< (p1V...Vpi)
ii. For~{<, <} t< (p1A...Apg)
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PA of MPL Systems

0 {r2}
G S0o
&) —x1 <5) e ps
Specs: Q0¥ —x1 <5) = 00ps
e fS b& ODpz — TS b& OD(X/I —x1 < 5)7
{prop2} s dont know yet
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PA of MPL Systems

x(k+1) =
A®x(k)

set of initial
Al ?
/vectors]/ [ 1Ee J
TD spec ¢

14 of 20



PA of MPL Systems

x(k+1) =
A®x(k)

set of initial S
Al ? 0?7
/ vectors [ /—{ 19 J [Pred. AbS.J [ ISk ¢! J
TD spec ¢

. Infiniteandconti
a Tho orimed variabl

= This problem is undecidable
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BMC of MPL Systems

= Find a counterexample with length k

= Increase the length until a pre-known completeness threshold is reached or
the problem becomes intractable

= To find completeness threshold is at least as hard as solving the original
model-checking problem
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BMC of MPL Systems

= Find a counterexample with length k

= Increase the length until a pre-known completeness threshold is reached or
the problem becomes intractable

= To find completeness threshold is at least as hard as solving the original
model-checking problem

= Two types of k-length bounded counterexample 7 = 5.

O—-O—-0—0 @%m

no-loop path lasso-shaped path

lasso-shaped:
w
T = mS'tem(ﬂloop)

where e = 30 ...51-1 and Toep = 87 .8
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BMC of MPL Systems

= The framework

x(k+1) =
A®x(k)

set of initial .
Al ? P?
/ vectors [ /—> [ e ] [ Pred Abs J [ W= ]
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BMC of MPL Systems

= The framework

x(k+1) =
A®x(k)

set of initial .
? »?
/ vectors I /—»[ Al = @? ] [Pred. Abs.} [ 1S = ¢? ] AT o
ke kot TS~ ¢

TD spec ¢ Jes no
BMC spuriousness
( k<CT ) not found (fs’ ¢1k> found ( checking J

no

yes

{ 1S = ¢ I refinement
7S 1S, | procedure
AlEe

= BMC by NuSMV 2.6
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BMC of MPL Systems

= Spuriousness checking
Algorithms via forward-reachability analysis. Completeness:

o For no-loop paths
o For lasso-shaped paths (irreducible MPL systems only)
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BMC of MPL Systems

= Spuriousness checking
Algorithms via forward-reachability analysis. Completeness:
o For no-loop paths
o For lasso-shaped paths (irreducible MPL systems only)
= Refinement procedure
o Lazy abstraction™: find pivot state, a state in which the spuriousness starts

* Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-
ceedings of the ACM Symposium on Principles of Programming Languages
(POPL 2002), pp. 58-70 (2002).
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BMC of MPL Systems

= Spuriousness checking
Algorithms via forward-reachability analysis. Completeness:
o For no-loop paths
o For lasso-shaped paths (irreducible MPL systems only)
= Refinement procedure
o Lazy abstraction: find pivot state, a state in which the spuriousness starts
o Splitting procedure in VeriSiMPL 2"
splitting a state with more than one outgoing transitions

* Adzkiya, D., Zhang, Y., Abate, A.: VeriSiMPL 2: an open-source software for
the verification of max-plus-linear systems. Discrete Event Dyn. Syst. 26(1),
20 109-145 (2016).



BMC of MPL Systems

= Spuriousness checking
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= Spuriousness checking
Algorithms via forward-reachability analysis. Completeness:
o For no-loop paths
o For lasso-shaped paths (irreducible MPL systems only)
= Refinement procedure

0 {2}
O, o
7S b= 00(p2)
= (31)(081)

7 is spurious

B

pivot state is §
{p1.r2} TS

DBM(3)) = {x € R? | x; —x, < 0}

DBM(3;) = {XGRZ [0<x]—x; <3}

DBM(%;) = {x € R? | x; —x, > 3}
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BMC of MPL Systems

= Spuriousness checking
Algorithms via forward-reachability analysis. Completeness:
o For no-loop paths
o For lasso-shaped paths (irreducible MPL systems only)
= Refinement procedure

0 {r2}

Q=
&)

P12} Ts prm} 75,

DBM(3)) = {x € R? | x; —x, < 0}
DBM(S‘]) = {XGRZ \Oﬁxl — X2 <3}
DBM(%;) = {x € R? | x; —x, > 3}
Partition of DBM(3 ) is
DBM(31,) = {x € R? | 0 < x; —x, <2} and DBM(§1,) = {x € R? |2 < x; —x < 3}
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BMC of MPL Systems

= Spuriousness checking
Algorithms via forward-reachability analysis. Completeness:
o For no-loop paths
o For lasso-shaped paths (irreducible MPL systems only)
= Refinement procedure
o Lazy abstraction: find pivot state, a state in which the spuriousness starts
o Splitting procedure in VeriSiMPL 2
splitting a state with more than one outgoing transitions

» Upper bound of completeness thresholds

Lemma

Consider an irreducible A € R¥" with transient ko and cyclicity ¢ and the
resulting abstract transition system 7.5 = (S, 7.1, Ppat UP,,-mg,t). The
completeness threshold for 7S and for any LTL formula ¢ over P4 U Pyipe

is bounded by kg + c.
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-
BMC of MPL Systems
e ke

spunousness

k< k not found (TS (P7 found checkmg
{ 1Sk ¢ [ refinement
vef procedure

BMC for irreducible MPL systems is complete
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BMC of MPL Systems

x(k+1) =
A®x(k)

set of initial A N BMC
Al ? N
/ vectors /—»[ dAE=e J [Pred. Abs.J [ 7S = ¢ ]—» (15,0,
TD spec ¢

» Infinite-and-continnous-statespace
. T med-variabl
» This problem is decidable for irreducible MPL systems
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Conclusions

= New abstraction technique of MPL systems
via a set of predicates.

= BMC of MPL systems w.r.t. TD specifications is decidable
for irreducible ones.

m The completeness thresholds are related to the transient
and cyclicity of MPL systems
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