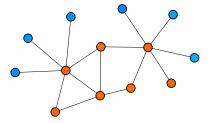
RankMerging: a supervised learning method to predict links in social networks.

Lionel Tabourier

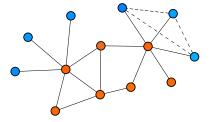
DyNak II September 2014, Monday 15th



Context and problem

The phone service provider problem

Weighted network of users : w(i,j) = number of calls i-j

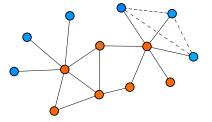


Unknown blue-blue links, yet important for commercial strategy... How to guess these links?

Context and problem

The phone service provider problem

Weighted network of users : w(i,j) = number of calls i-j


Unknown blue-blue links, yet important for commercial strategy...

How to guess these links?

Context and problem

The phone service provider problem

Weighted network of users : w(i,j) = number of calls i-j

Unknown blue-blue links, yet important for commercial strategy... How to guess these links?

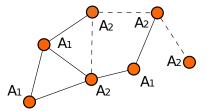
General problem: discovering missing links

Crawled graph : (V, E) , Real graph : (V, E')**Discover links in** $E' \setminus E$

Data for supervised prediction

Context and problem

Dataset - Whole set (test set) $\sim 1,130,000 \text{ nodes} : 75\% \text{ A}, 25\% \text{ B}$ \sim 750,000 links \sim 50,000 B—B links to guess


Data for supervised prediction

Dataset - Learning set $\sim 850,000 \text{ nodes} : \frac{2}{3} A_1, \frac{1}{3} A_2$ \sim 600,000 links $\sim 50,000 \text{ A}_2$ —A₂ links to guess A₁ A_1

Data for supervised prediction

Dataset - Learning set

 \sim 850,000 nodes : $\frac{2}{3}$ A₁ , $\frac{1}{3}$ A₂ \sim 600,000 links $\sim 50,000 \text{ A}_2$ —A₂ links to guess

Tunable number of predictions

depending on commercial strategy

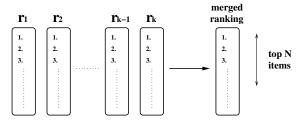
General prediction method

An unbalanced classification problem

For any (unlinked) pair of nodes, is there a missed link or not? two classes: yes / no

unbalanced classes: much more pairs of nodes than missed links

General prediction method


An unbalanced classification problem

For any (unlinked) pair of nodes, is there a missed link or not? two classes: yes / no

unbalanced classes: much more pairs of nodes than missed links

Classification by ranking

Items (pairs) ranked according to various methods :

comes to a learning-to-rank problem

Basic unsupervised ranking methods

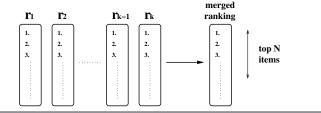
Structural scoring

example: common neighbors in weighted networks

$$s_{CN_w}(i,j) = \sum_{k \in \mathcal{N}(i) \cap \mathcal{N}(j)} w(i,k).w(j,k)$$

Other examples

- local structure : Jaccard index, Adamic-Adar index, ...
- global structure : Katz index, Random Walk, Hitting Time,
 Preferential Attachment ...


Many other: node-based, relation-based... we only consider structural methods

see Al Hasan et al. (SDM06 - LACS ws)

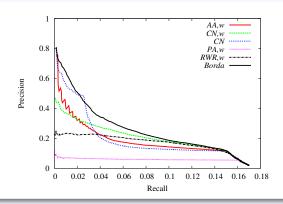
ntext and problem Unsupervised methods Supervised aggregation C

Combining unsupervised methods

General principle

Consensus methods

see Dwork et al. (WWW'01)


- Averaging rankings : Borda's method
- Other methods: median (MedRank), Markov chain mixing...
 Simple to implement, (quasi-)linear complexity

Unsupervised methods: results (learning set)

Visualization metrics

Variable number of predictions, depends on strategy

Trade-off between Precision and Recall

Supervised framework

Using classic methods

see Pujari et al. (WWW'12 - MSDN ws)

Supervised methods for classification problems : Classification Trees, Nearest Neighbor, SVM, AdaBoost...

But fixed number of predictions

ontext and problem Unsupervised methods Supervised aggregation Conclusion

Supervised framework

Using classic methods

see Pujari et al. (WWW'12 - MSDN ws)

Supervised methods for classification problems : Classification Trees, Nearest Neighbor, SVM, AdaBoost...

But fixed number of predictions

Using pairwise transform

see Pedregosa et al. (MLMI 2012)

item X with ranks
$$\{x_1, x_2, ..., x_k\}$$

item Y with ranks $\{y_1, y_2, ..., y_k\}$
From $\{(y_1 - x_1), (y_2 - x_2), ..., (y_k - x_k)\}$, learn if is X over Y

Back to a classification problem

But with ranking size $S: O(S^2) \Rightarrow$ too many pairs

Aggregation with RankMerging

Learning process

- 1. **Define window** W_i of size s: next top-s pairs of ranking i.
- 2. **Measure quality**: number of true links in the window.
- 3. **Select highest quality ranking**: its top pair is selected.
- 4. **Register** selected rankings : index ϕ_i .
- 5. Update windows.
- 6. **Iterate** from 2.

Testing process

Use learned ϕ_i during learning to **aggregate rankings** on test set.

Warning: a pair can only be predicted once.

+ scaling factor if learning set size \neq testing set size

Two rankings r_A and r_B

Grey background: window (size 5)

r_A	tp	r_B	tp
(1,2)		(5,18)	Х
(1,4)	x	(1,2)	
(5,6)	х	(8,9)	
(6,12)	х	(5,6)	Х
(5,18)	Х	(7,11)	Х
(3,4)		(6,9)	Х
(4,9)	х	(1,14)	
(7,11)	х	(2,9)	
(2,9)		(3,7)	

$$\phi_{A} = 0 \; , \; \phi_{B} = 0$$

Two rankings r_A and r_B

Grey background: window (size 5)

r_A	tp	r_B	tp
(1,2)		(5,18)	Х
(1,4)	Х	(1,2)	
(5,6)	х	(8,9)	
(6,12)	х	(5,6)	Х
(5,18)	Х	(7,11)	Х
(3,4)		(6,9)	Х
(4,9)	Х	(1,14)	
(7,11)	х	(2,9)	
(2,9)		(3,7)	

$$\phi_{A} = 1 \; , \; \phi_{B} = 0$$

Two rankings r_A and r_B

Grey background: window (size 5)

r_A	tp	r_B	tp
(1,2)		(5,18)	Х
(1,4)	Х	(1,2)	
(5,6)	Х	(8,9)	
(6,12)	х	(5,6)	Х
(5,18)	Х	(7,11)	Х
(3,4)		(6,9)	Х
(4,9)	х	(1,14)	
(7,11)	Х	(2,9)	
(2,9)		(3,7)	

$$\phi_{A} = 1 \; , \; \phi_{B} = 1$$

Two rankings r_A and r_B

Grey background: window (size 5)

Supervised aggregation

r_A	tp	r_B	tp
(1,2)		(5,18)	Х
(1,4)	х	(1,2)	
(5,6)	Х	(8,9)	
(6,12)	Х	(5,6)	Х
(5,18)	Х	(7,11)	Х
(3,4)		(6,9)	Х
(4,9)	х	(1,14)	
(7,11)	х	(2,9)	
(2,9)		(3,7)	

$$\phi_{A} = 2 \; , \; \phi_{B} = 1$$

Two rankings r_A and r_B

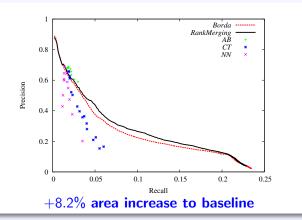
Grey background: window (size 5)

r_A	tp	r_B	tp
(1,2)		(5,18)	Х
(1,4)	x	(1,2)	
(5,6)	х	(8,9)	
(6,12)	Х	(5,6)	Х
(5,18)	Х	(7,11)	Х
(3,4)		(6,9)	Х
(4,9)	х	(1,14)	
(7,11)	x	(2,9)	
(2,9)		(3,7)	

$$\phi_{A} = 3 \; , \; \phi_{B} = 1$$

Test example

Link prediction on test set


learning step s	ϕ_A	ϕ_B
1	1	0
2	1	1
3	2	1
4	3	1

r_A	r_B		r_A	r_B		r_A	r_B		r_A	r_B	Ĺ																														
(2,8)	(1,8)			(1,8)	(1,8) (1,7)	(2,8)	(1,8)		(2,8)	(1,8)																															
(3,9)	(1,7)			(1,7)		(3,9)	(1,7)		(3,9)	(1,7)																															
(1,8)	(5,11)		(1,8)	(5,11)		(1,8)	(5,11)		(1,8)	(5,11)																															
(5,11)	(8,10)			(5,11)	(8,10)		(5,11)	(8,10)		(5,11)	(8,10)																														
(4,7)	(4,5)			(4,7)	(4,5)		(4,7)	(4,5)		(4,7)	(4,5)																														
(3,6)	(3,9)																																			(3,6) (3,9)	(3,6)	(3,9)		(3,6)	(3,9)
(2,3)	(3,6)		(2,3)	(3,6)		(2,3)	(3,6)		(2,3)	(3,6)																															

Results (test set)

Aggregated rankings

Adamic-Adar, Common Neighbors, Jaccard, Katz, Preferential Attachment, Random Walk with Restart and Borda (baseline)

Pros and Cons

Advantages

- Addition of any ranking increases performance
- **Scalable** : $O(N.\alpha)$, α : number of rankings , N predictions
- Simplicity (see lioneltabourier.fr/program.html)

Add as many ranking methods as possible to improve.

Drawbacks

Windows size imply an averaging effect on prediction quality

Not suited for high precision on few items.

Conclusion

Conclusion

PSP: Additional information sources

duration of interactions, text messages

localization? individual attributes (age, gender)? usages (apps)?

General: Relevant when...

Many complementary sources of information Each source yields low precision

Fields of application?

- incomplete data sampling
- network growth microdynamic
- biomedical engineering

Other suggestions?

Thanks for your attention!

lionel.tabourier@lip6.fr

anne-sophie.libert@unamur.be

renaud.lambiotte@unamur.be