Pseudorandom Objects and Generators

Journées ALEA 2012
Lecture 1: Pseudorandom objects: examples and constructions

David Xiao LIAFA
CNRS, Université Paris 7

Plan

- Today: examples of pseudorandom objects
- Expander graphs
- Error-correcting codes
- Tomorrow: applications of pseudorandom objects to computer science

Why Pseudorandom Objects?

- Because random objects are interesting!
- Can show random objects have many interesting properties
- "Probabilistic method": show existence of object satisfying some property
- Define probability distribution D
- Show $\operatorname{Pr}_{x}<-\mathrm{D}[\mathrm{x}$ does not satisfy property] << 1
- First used systematically in work of Erdös
- For example, proves existence of good expander graphs and good error-correcting codes

Pseudorandom objects

- Great, random objects have nice properties
- But: usually need explicit constructions
- Will see applications of expanders tomorrow
- Explicit: give algorithm for constructing size n object in time poly(n)

Expander Graphs

Expander graphs

- Expander graphs: highly connected and sparse graphs, e.g. $|E|=O(|V|)$
- Useful: algorithms, network design, coding theory, graph theory, topology, geometry, group theory, number theory...
- Many equivalent definitions
- Def: for all sets $S \subseteq V$, where $|S| \leq|V| / 2$ it holds that $|N(S)| \geq(3 / 2)|s|$
- Thm [Pinsker'73]: random graphs are expander graphs
proof of bipartite case...

Expander graphs

- Expander graphs: highly connected and sparse graphs, e.g. $|E|=O(|V|)$
- Useful: algorithms, network design, coding theory, graph theory, topology, geometry, group theory, number theory...
- Many equivalent definitions

Random walk converges quickly to uniform

Defining Expanders

Spectral expander: G is (n, D, λ)expander if:

- G is D-regular, $|V|=n$
- Let $M=$ adjacency matrix of G
- $M_{i j}=1 / D$ if $(i, j) \in G, 0$ else
- Eigenvalues of M in $[-1,1]$
- Max eigenvalue $=1$
- $\lambda \geq$ all other eigenvalues of M in absolute value
- Want family of (n, D, λ) graphs with $n \rightarrow \infty, D$ constant, λ constant in [0, 1[
- Suppose G is (n, D, λ) expander, then:
- G has vertex expansion [Alon-Milman'85, Tanner'84]:
- For all $\mathrm{S} \subseteq \mathrm{V},|\mathrm{S}| \leq|\mathrm{V}| / 2$, it holds that $|N(S)| \geq 2 /\left(\lambda^{2}+1\right)|S|$

Defining Expanders

Spectral expander: G is (n, D, λ)expander if:

- G is D-regular, $|V|=n$
- Let $M=$ adjacency matrix of G
- $M_{i j}=1 / D$ if $(i, j) \in G, 0$ else
- Eigenvalues of M in $[-1,1]$
- Max eigenvalue $=1$
- $\lambda \geq$ all other eigenvalues of M in absolute value
- Suppose G is (n, D, λ) expander, then:
- Expander Chernoff bound [Gillman'93]:

For any $S \subseteq V$, small $|S| \leq|V| / 3$
$\operatorname{Pr}\left[\right.$ majority of random walk of length \dagger lies in S] < $2^{-(1-\lambda)+}$

Defining Expanders

Spectral expander: G is (n, D, λ)expander if:

- G is D-regular, $|V|=n$
- Let $M=$ adjacency matrix of G
- $M_{i j}=1 / D$ if $(i, j) \in G, 0$ else
- Eigenvalues of M in $[-1,1]$
- Max eigenvalue $=1$
- $\lambda \geq$ all other eigenvalues of M in absolute value
- Suppose G is (n, D, λ) expander, then:
- Expander mixing lemma [Alon-Chung'88]: For all $S, T \subseteq V,||E(S, T)|-|S|| T|D / n| \leq \lambda D \sqrt{ }(|S||T|)$
expected \# edges and T in random Do proof...

Defining Expanders

- Building expander graphs?

Spectral expander: G is (n, D, λ)expander if:

- G is D-regular, $|V|=n$
- Let $M=$ adjacency matrix of G
- $M_{i j}=1 / D$ if $(i, j) \in G, 0$ else
- Eigenvalues of M in $[-1,1]$
- Max eigenvalue $=1$
- $\lambda \geq$ all other eigenvalues of M in absolute value
- $V=(\mathbb{Z} / N \mathbb{Z})^{2}$

E: (x, y) connected to:

$$
\begin{aligned}
& (x, y+2 x),(x, y+2 x+1),(x, y-2 x),(x, y-2 x-1) \\
& (x+2 y, y),(x+2 y+1, y),(x-2 y, y),(x-2 y-1, y)
\end{aligned}
$$

- Theorem [Gabber-Galil'81]: above is ($N^{2}, 8,0.89$)-expander
- Theorem [Lubotzky-Philips-Sarnak'88, Margulis'88]: constructions of "Ramanujan graphs" where $\lambda=(2 / D) \sqrt{ }(D-1)$ (optimal [Alon'86])
- Theorem [Reingold-Vadhan-Wigderson'01]: combinatorial constructions of expander graphs

Error correcting codes

Error correcting codes

- Alice and Bob communicate over noisy channel
- Encode messages to handle errors
- [n, k, d] code:
- Codeword length n : bits transmitted across channel
- Message length k: bits before encoding
- Distance $d=2$ * (maximum \# of errors tolerated)
- Given n, maximize k and d

A geometric view

- Code: subset of $\{0,1\}^{n}$, codeword length n
- Message length $k=\log$ (\# codewords)
- Distance $d=$ minimal distance between any two codewords
- Linear code: code forms subspace of $\{0,1\}^{n} \simeq G F(2)^{n}$
- Suffices to define basis of subspace $\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{k}}$

Gilbert-Varshamov

Bound

- Theorem [G'52]: for all n and ε, random code is a [$n, \varepsilon^{2} n, n(1 / 2-\varepsilon)$] code
- Theorem [$V^{\prime} 57$]: for all n and ε, random linear code is a $\left.n, \varepsilon^{2} n, n(1 / 2-\varepsilon)\right]$ linear code
- No known explicit codes with such good parameters
- Theorem [Alon-Goldreich-Håstad-Peralta'92]: for all ε and infinitely many n, can construct explicitly $[n, 2 \varepsilon \sqrt{ } n, n(1 / 2-\varepsilon)$] linear

Summary

- Pseudorandom objects: non-random objects that have some properties of random objects:
- Expander graphs: connectivity
- Error-correcting codes: large distance
- Common tools:
- Extremal combinatorics
- Linear Algebra
- Group theory, representation theory
- Finite fields, polynomials over finite fields
- Open questions: better constructions
- Combinatorial construction of optimal expanders?
- Binary linear codes matching Gilbert-Varshamov bound?
- Tomorrow: applications to computer science

Fin

