Asymptotics of the Stirling numbers of the second kind revisited: A saddle point approach

Guy Louchard

February 15, 2012
Outline

1. Introduction

2. Central region

3. Large deviation, $m = n - n^\alpha$, $\alpha > 1/2$
Introduction

Let \(\binom{n}{m} \) be the Stirling number of the second kind. Their generating function is given by

\[
\sum_n \frac{m!}{n!} \binom{n}{m} z^n = f(z)^m, \\

f(z) := e^z - 1.
\]

In the sequel all asymptotics are meant for \(n \to \infty \).

Let us first summarize the related literature. The asymptotic Gaussian approximation in the central region is proved in Harper [7]. See also Bender [1], Sachkov [13] and Hwang [10].

In the non-central region, most of the previous papers use the solution of

\[
\frac{\rho e^\rho}{e^\rho - 1} = \frac{n}{m}. \\
\text{(1)}
\]

As shown in the next section, this actually corresponds to a Saddle point.
Let us mention

- Hsu [8]:

For $t = o(n^{1/2})$

$$\begin{align*}
\begin{pmatrix} n + t \\ n \end{pmatrix} &= \frac{n^{2t}}{2^t t!} \left[1 + \frac{f_1(t)}{n} + \frac{f_2(t)}{n^2} + \ldots \right], \\
f_1(t) &= \frac{1}{3} t(2t + 1).
\end{align*}$$
Moser and Wyman [12]:

For $t = o(\sqrt{n})$,

$$
\begin{align*}
\binom{n}{n-t} &= \binom{n}{t} q^{-t} \left[1 + \frac{(t)^2}{12} q + \frac{(t)^2}{288} q^2 + \ldots \right], \\
q &= \frac{2}{n-t}.
\end{align*}
$$

For $n - m \to \infty$, $n \to \infty$,

$$
\begin{align*}
\binom{n}{m} &= \frac{n!(e^\rho - 1)^m}{2\rho^n m!(\pi m \rho H)^{1/2}} \left[1 - \frac{1}{m \rho} \left(\frac{15 C_3^2}{16 \rho^2 H} - \frac{3 C_4}{4 \rho H^2} \right) + \ldots \right], \\
H &= \frac{e^\rho (e^\rho - 1 - \rho)}{2(e^\rho - 1)^2},
\end{align*}
$$

C_3, C_4 are functions of ρ.

Good [6]:

\[
\binom{n+t}{t} = \frac{(t+n)! (e^\rho - 1)^t}{t! \rho^{t+n} [2\pi t (1 + \kappa - (1 + \kappa)^2 e^{-\rho})]^{1/2}} \times
\]

\[
\times \left[1 + \frac{g_1(\kappa)}{t} + \frac{g_2(\kappa)}{t^2} + \ldots \right],
\]

\[
\kappa := \frac{n}{t},
\]

\[
g_1(\kappa) = \frac{3\lambda_4 - 5\lambda_3^2}{24},
\]

\[
\lambda_i = \frac{\kappa_i(\rho)}{\sigma^i},
\]

\[
\sigma = \kappa_2(\rho)^{1/2},
\]

\[
\kappa_1 = \kappa, \kappa_2 = (\kappa_1 + 1)(\rho - \kappa_1).
\]
Bender [1]:

\[
\binom{n}{m} \sim \frac{n!e^{-\alpha m}}{m!\rho^{n-1}(1 + e^\alpha)\sigma \sqrt{2\pi n}},
\]

\[
\frac{n}{m} = (1 + e^\alpha) \ln(1 + e^{-\alpha}),
\]

\[
\rho = \ln(1 + e^{-\alpha}),
\]

\[
\sigma^2 = \left(\frac{m}{n}\right)^2 \left[1 - e^\alpha \ln(1 + e^{-\alpha})\right].
\]

It is easy to see that \(\rho\) here coincides with the solution of (1). Bender’s expression is similar to Moser and Wyman’ result.
Bleich and Wang [2]:
Let ρ_1 be the solution of

$$\frac{\rho_1 e^{\rho_1}}{e^{\rho_1} - 1} = \frac{n + 1}{m}.$$

Then

$$\binom{n}{m} = \frac{n!(e^{\rho_1} - 1)^m}{(2\pi(n + 1))^{1/2}m!\rho_1^n(1 - G)^{1/2}} \times$$

$$\times \left[1 - \frac{A}{24(n + 1)(1 - G)^3} + O(1/n^2) \right],$$

where

$$A := 2 + 18G - 20G^2(e^{\rho_1} + 1)$$

$$+ 3G^3(e^{2\rho_1} + 4e^{\rho_1} + 1) + 2G^4(e^{2\rho_1} - e^{\rho_1} + 1),$$

and

$$G = \frac{\rho_1}{e^{\rho_1} - 1}.$$

The series is convergent for for $m = o(n^{2/3})$.
Temme [15]:

\[
\begin{align*}
\left\{ \frac{n}{m} \right\} &= e^A m^{n-m} \binom{n}{m} \sum_{k=0}^{\infty} (-1)^k f_k(t_0) m^{-k}, \\
f_0(t_0) &= \left(\frac{t_0}{(1 + t_0)(\rho - t_0)} \binom{n}{m} \right)^{1/2}, \\
t_0 &= \frac{n}{m} - 1,
\end{align*}
\]

where \(A \) is a function of \(\rho, n, m \).
Tsylova [16]:
Let $m = tn + o(n^{2/3})$.

$$\binom{n}{m} = \frac{(\gamma n)^n}{\sqrt{2\pi \delta n}(\gamma n)^m} \exp \left[-(m - tn)^2 / (2\delta n) \right] (1 + o(1)),$$

$$\gamma(1 - e^{-1/\gamma}) = \gamma,$$

$$\delta = e^{-1/\gamma}(t - e^{-1/\gamma}).$$

After some algebra, this coincides with Moser and Wyman’ result.
Chelluri, Richmond and Temme [3]:
They prove, with other techniques, that Moser and Wyman expression is valid if $n - m = \Omega(n^{1/3})$ and that Hsu formula is valid for $y - x = o(n^{1/3})$

Erdos and Szekeres: see Sachkov [13], p.164:
Let $m < n/\ln n$,

$$\binom{n}{m} = \frac{m^n}{m!} \exp \left[\left(\frac{n}{m} - m \right) e^{-n/m} \right] (1 + o(1)).$$
All these papers simply use ρ as the solution of (1). They don’t compute the detailed dependence of ρ on α for our range, neither the precise behaviour of functions of ρ they use. Moreover, most results are related to the case $\alpha < 1/2$.

We will use multiseries expansions: multiseries are in effect power series (in which the powers may be non-integral but must tend to infinity) and the variables are elements of a scale: details can be found in Salvy and Shackell [14]. The scale is a set of variables of increasing order. The series is computed in terms of the variable of maximum order, the coefficients of which are given in terms of the next-to-maximum order, etc. Actually we implicitly used multiseries in our analysis of Stirling numbers of the first kind in [11].

Let us finally mention that Hsu [9] consider some generalized Stirling numbers.

In Sec.2, we revisit the asymptotic expansion in the central region and in Sec.3, we analyse the non-central region $j = n - n^\alpha$, $\alpha > 1/2$. We use Cauchy’s integral formula and the saddle point method.
Consider the random variable J_n, with probability distribution

$$
\mathbb{P}[J_n = m] = Z_n(m),
$$

$$
Z_n(m) := \binom{n}{m} B_n,
$$

where B_n is the nth Bell number. The mean and variance of J_n are given by

$$
M := \mathbb{E}(J_n) = \frac{B_{n+1}}{B_n} - 1,
$$

$$
\sigma^2 := \mathbb{V}(J_n) = \frac{B_{n+2}}{B_n} - \frac{B_{n+1}}{B_n} - 1.
$$
Let \(\zeta \) be the solution of

\[
\zeta e^\zeta = n.
\]

This immediately leads to

\[
\zeta = W(n),
\]

where \(W \) is the Lambert function (we use the principal branch, which is analytic at 0). We have the well-known asymptotic

\[
\zeta = \ln(n) - \ln \ln(n) + \frac{\ln \ln(n)}{\ln(n)} + O\left(\frac{1}{\ln(n)^2}\right). \tag{2}
\]

To simplify our expressions in the sequel, let

\[
F := e^\zeta, \quad G := e^{\zeta/2}.
\]

The multiseries’ scale is here \(\{\zeta, G\} \).
Our result can be summarized in the following local limit theorem

Theorem 2.1

Let \(x = (m - M)/\sigma \). Then

\[
Z_n(m) = \frac{\binom{n}{m}}{B_n} = e^{-x^2/2} \frac{(1 + \zeta)^{1/2}}{\sqrt{2\pi G}} \left[1 + \frac{x(-6\zeta + 2x^2\zeta + x^2 - 3)}{6G(1 + \zeta)^{3/2}} + O(1/G^2) \right].
\]

Proof. By Salvy and Shackell [14], we have

\[
M = F + A_1 + O(1/F),
\]

\[
\sigma^2 = \frac{F}{1 + \zeta} + A_3 + O(1/F),
\]

\[
\frac{B_n}{n!} = \exp(T_1)H_0, \tag{3}
\]

\[
T_1 = -\ln(\zeta)\zeta F + F - \zeta/2 - \ln(\zeta) - 1 - \ln(2\pi)/2, \tag{4}
\]
\[A_1 = -\frac{2 + 3/\zeta + 2/\zeta^2}{2(1 + 1/\zeta)^2}, \]
\[A_3 = -\frac{2 + 8/\zeta + 11/\zeta^2 + 9/\zeta^3 + 2/\zeta^4}{2(1 + 1/\zeta)^4}, \]
\[H_0 = \frac{1}{(1 + 1/\zeta)^{1/2}} \left[1 + A_5/F + \mathcal{O}(1/F^2) \right], \]
\[A_5 = -\frac{2 + 9/\zeta + 16/\zeta^2 + 6/\zeta^3 + 2/\zeta^4}{24(1 + 1/\zeta)^3}. \]
This leads to (from now on, we only provide a few terms in our expansions, but of course we use more terms in our computations), using expansions in G,

$$
\sigma = \frac{G}{(1 + \zeta)^{1/2}} + \frac{A_3 (1 + \zeta)^{1/2}}{2G} + O\left(\frac{1}{G^3}\right),
$$

$$
\sigma \sim \frac{G}{\sqrt{\zeta}} \sim \frac{\sqrt{n}}{\ln(n)}.
$$
We now use the Saddle point technique (for a good introduction to this method, see Flajolet and Sedgewick [4], ch. VIII). Let \(\rho \) be the saddle point and \(\Omega \) the circle \(\rho e^{i\theta} \). By Cauchy's theorem,

\[
Z_n(m) = \frac{n!}{m!B_n 2\pi i} \int_{\Omega} \frac{f(z)^m}{z^{n+1}} \, dz
\]

\[
= \frac{n!}{m!B_n \rho^n 2\pi} \int_{-\pi}^{\pi} f(\rho e^{i\theta})^m e^{-ni\theta} \, d\theta
\]

\[
= \frac{n!}{m!B_n \rho^n 2\pi} \int_{-\pi}^{\pi} e^{m \ln(f(\rho e^{i\theta})) - ni\theta} \, d\theta
\]

\[
= \frac{n!}{m!B_n \rho^n 2\pi} \int_{-\pi}^{\pi} \exp \left[m \left\{ -\frac{1}{2} \kappa_2 \theta^2 - \frac{i}{6} \kappa_3 \theta^3 + \ldots \right\} \right],
\]

(5)

\[
\kappa_i(\rho) = \left(\frac{\partial}{\partial u} \right)^i \ln(f(\rho e^u)) |_{u=0}.
\]

(6)

See Good [5] for a neat description of this technique.
Let us now turn to the Saddle point computation. ρ is the root (of smallest module) of

$$m \rho f'(\rho) - nf(\rho) = 0, \text{ i.e.}$$

$$\frac{\rho e^\rho}{e^\rho - 1} = \frac{n}{m},$$

which is, of course identical to (1). After some algebra, this gives

$$\rho = \frac{n}{m} + W\left(-\frac{n}{m}e^{-n/m}\right).$$
In the central region, we choose

\[m = M + \sigma x = F + \frac{x}{(1 + \zeta)^{1/2}} G + A_1 + \frac{x A_3 (1 + \zeta)^{1/2}}{2G} + \mathcal{O}(1/G^2). \]

This leads to

\[\ln(m) = \zeta + \frac{x}{(1 + \zeta)^{1/2}} G + \mathcal{O}(1/G^2), \]

\[\frac{n}{m} = \zeta - \frac{\zeta x}{(1 + \zeta)^{1/2} G} + \frac{-A_1 \zeta + \zeta x^2/(1 + \zeta)}{G^2} + \mathcal{O}(1/G^3), \]

\[\rho = \zeta - \frac{\zeta x}{(1 + \zeta)^{1/2} G} + \frac{\zeta (-A_1 + x^2/(1 + \zeta) - 1)}{G^2} + \mathcal{O}(1/G^3), \]

\[\ln(\rho) = \ln(\zeta) - \frac{x}{(1 + \zeta)^{1/2} G} + \mathcal{O}(1/G^2). \]
Now we note that

\[e^\rho - 1 = \rho e^\rho \frac{m}{n}, \]

\[\ln(e^\rho - 1) = \rho + \ln(\rho) + \ln(m) - \ln(n), \] \hspace{1cm} (7)

\[\ln(n) = \zeta + \ln(\zeta), \]

(8)
so, by Stirling’s formula, with (4), the first part of (5) leads to

\[\frac{n!}{m! B_n \rho^n} f(\rho)^m = \exp [T_2] H_1 H_2, \]

\[T_2 = m(\rho + \ln(\rho) - \zeta - \ln(\zeta)) \]

\[- (m + \ln(2\pi)/2 + \ln(m)/2) - \zeta F \ln(\rho) - T_1, \]

\[H_1 = \frac{1}{H_0} = (1 + 1/\zeta)^{1/2} - \frac{A_5 (1 + 1/\zeta)^{1/2}}{G^2} + O(1/G^4), \]

\[H_2 = 1 \left[1 + \frac{1}{12m} + \frac{1}{288m^2} + O(1/m^3) \right] \]

\[= 1 - \frac{1}{12G^2} + \frac{x}{12G^3 (1 + \zeta)^{1/2}} + O(1/G^4). \]
Note carefully that there is a cancellation of the term $m \ln(m)$ in T_2. Using all previous expansions, we obtain

$$\exp(T_2) = e^{-x^2/2+\ln(\zeta)}H_3,$$

(9)

$$H_3 = 1 + \frac{x(-15\zeta - 6\zeta^2 - 6A_1 + x^2 - 12A_1\zeta - 6A_1\zeta^2 + 2x^2\zeta - 9}{6(1 + \zeta)^{3/2}G}$$

$$+ \mathcal{O}(1/G^2).$$

We now turn to the integral in (5). We compute

$$\kappa_2 = -\frac{\rho e^\rho(-e^\rho + 1 + \rho)}{(e^\rho - 1)^2} = \zeta - \frac{\zeta x}{(1 + \zeta)^{1/2}G} + \mathcal{O}(1/G^2),$$

and similar expressions for the next κ_i that we don’t detail here. Note that $\kappa_3, \kappa_5, \ldots$ are useless for the precision we attain here.
Now we use the classical trick of setting

\[m \left[-\kappa_2 \theta^2 / 2! + \sum_{l=3}^{\infty} \kappa_l (i\theta)^l / l! \right] = -u^2 / 2. \]

Computing \(\theta \) as a series in \(u \), this gives, by inversion,

\[\theta = \frac{1}{G} \sum_{1}^{\infty} a_i u^i, \]

with, for instance

\[a_1 = \frac{1}{\zeta^{1/2}} + \frac{\zeta^{1/2}}{2G^2} + O(1/G^3). \]
Setting $d\theta = \frac{d\theta}{du} du$, we integrate on $[u = -\infty..\infty]$: this extension of the range can be justified as in Flajolet and Segewick [4], Ch. VIII. Now, inserting the term ζ coming in (9) as $e^{\ln(\zeta)}$, this gives

$$H_4 = \frac{\zeta^{1/2}}{\sqrt{2\pi G}} \left(1 + \frac{\zeta}{2G^2} + O(1/G^3)\right).$$

Finally, combining all expansions,

$$Z_n(m) = \binom{n}{m} B_n = e^{-x^2/2} H_1 H_2 H_3 H_4 = R_1,$$

$$R_1 = e^{-x^2/2} \frac{(1 + \zeta)^{1/2}}{\sqrt{2\pi G}} \left[1 + \frac{x(-6\zeta + 2x^2\zeta + x^2 - 3)}{6G(1 + \zeta)^{3/2}} + O(1/G^2)\right].$$

Note that the dominant term is equivalent to the dominant term of $1/\sqrt{2\pi \sigma}$, as expected. More terms in this expression can be obtained if we compute $M, \sigma^2, B_n/n!$ with more precision. Also, using (2), our result can be put into expansions depending on $n, \ln n, \ldots$
To check the quality of our asymptotic, we have chosen \(n = 3000 \). This leads to

\[
\zeta = 6.184346264 \ldots, \\
G = 22.02488900 \ldots, \\
M = 484.1556441 \ldots, \\
\sigma = 8.156422315 \ldots, \\
B_n = 0.2574879583 \ldots 10^{6965}, \\
B_{n as} = 0.2574880457 \ldots 10^{6965},
\]

where \(B_{n as} \) is given by (3). Figure 1 shows \(Z_n(m) \) and

\[
\frac{1}{\sqrt{2\pi\sigma}} \exp \left[- \left(\frac{m-M}{\sigma} \right)^2/2 \right].
\]
Figure 1: $Z_n(m)$ and $\frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\left(\frac{m-M}{\sigma}\right)^2/2\right]$
The fit seems quite good, but to have more precise information, we show in Figure 2 the quotient $Z_n(m) \sqrt{\frac{1}{2\pi\sigma}} \exp \left[- \left(\frac{m-M}{\sigma} \right)^2 / 2 \right]$. The precision is between 0.05 and 0.10.
Figure 2: $Z_n(m) / \frac{1}{\sqrt{2\pi \sigma}} \exp \left[- \left(\frac{m-M}{\sigma} \right)^2 / 2 \right]$
Figure 3 shows the quotient $Z_n(m) / R_1$. The precision is now between 0.004 and 0.01.

\[Z_n(m) / R_1 \]

\[460 \quad 470 \quad 480 \quad 490 \quad 500 \quad 510 \]

Figure 3: $Z_n(m) / R_1$
Large deviation, $m = n - n^\alpha$, \quad $\alpha > 1/2$

We set

$$\varepsilon := n^{\alpha - 1},$$

$$\frac{1}{\varepsilon} = n^{1-\alpha} \ll n^\alpha \ll n,$$

$$L := \ln(n).$$

The multiseries' scale is here $\{n^{1-\alpha}, n^\alpha, n\}$.
Our result can be summarized in the following local limit theorem

Theorem 3.1

\[
\begin{align*}
\binom{n}{m} &= e^{T_1 R}, \\
T_1 &= n^\alpha (T_{11} L + T_{10}), \\
R &= \frac{1}{\sqrt{2\pi n^\alpha/2}} \left[R_0 + \frac{R_1}{n} + \frac{R_2}{n^2} + O(1/n^3) \right], \\
R_0 &= R_{00} + \frac{R_{01}}{n^\alpha} + O(1/n^{2\alpha}), \\
R_1 &= R_{10} + \frac{R_{11}}{n^\alpha} + O(1/n^{2\alpha}), \\
R_2 &= R_{20} + \frac{R_{21}}{n^\alpha} + O(1/n^{2\alpha}),
\end{align*}
\]

where $T_{i,j}, R_{i,j}$ are power series in ε.
Proof. Using again the Lambert function, we derive successively (again we only provide a few terms here, we use a dozen of terms in our expansions)

\[m = n(1 - \varepsilon), \]
\[\frac{n}{m} = \frac{1}{1 - \varepsilon}, \]
\[\rho = 2\varepsilon + \frac{4}{3}\varepsilon^2 + \frac{10}{9}\varepsilon^3 + O(\varepsilon^4), \]
\[\ln(m) = L - \varepsilon - \frac{1}{2}\varepsilon^2 + O(\varepsilon^3), \]
\[\ln(\rho) = -L(1 - \alpha) + \ln(2) + \frac{2}{3}\varepsilon + \frac{1}{3}\varepsilon^2 + O(\varepsilon^3). \]
For the first part of Cauchy’s integral, we have, noting that \(n \varepsilon = n^\alpha\), and using (7),

\[
\frac{n!}{m! \rho^n} f(\rho)^m = \exp(T) H_2,
\]

\[
T = m(\rho + \ln(\rho) - L) - (-m + \ln(m)/2) + (-n + nL + L/2) - n \ln(\rho)
\]

\[
= T_1 + T_0,
\]

\[
T_1 = n^\alpha (T_{11} L + T_{10}),
\]

\[
T_{11} = 2 - \alpha,
\]

\[
T_{10} = 1 - \ln(2) - \frac{4}{3} \varepsilon - \frac{5}{9} \varepsilon^2 + \mathcal{O}(\varepsilon^3),
\]

\[
T_0 = \frac{1}{2} \varepsilon + \frac{1}{4} \varepsilon^2 + \mathcal{O}(\varepsilon^3),
\]
\[H_1 = \exp(T_0) = 1 + \frac{1}{2} \varepsilon + \frac{3}{8} \varepsilon^2 + O(\varepsilon^3), \]

\[H_2 = \left[1 + \frac{1}{12n} + \frac{1}{288n^2} + O\left(\frac{1}{n^3}\right) \right] \bigg/ \left[1 + \frac{1}{12m} + \frac{1}{288m^2} + O\left(\frac{1}{m^3}\right) \right] \]

\[= 1 + \frac{\varepsilon}{12(\varepsilon - 1)n} + \frac{\varepsilon^2}{288(\varepsilon - 1)^2n^2} + O\left(\frac{\varepsilon^3}{n^3}\right). \]
Note again that there are cancellations, in T_1 of the terms $m \ln(m)$ and $\ln(2\pi)/2$.

Now we turn to the integral part. We obtain, for instance, using (6),

$$\kappa_2 = \varepsilon + \frac{4}{3} \varepsilon^2 + \frac{13}{9} \varepsilon^3 + \mathcal{O}(\varepsilon^4),$$

$$\theta = \frac{1}{\sqrt{n}} \sum_{1}^{\infty} a_i u^i,$$

$$a_1 = \frac{1}{\sqrt{\varepsilon}} \left[1 - \frac{1}{6} \varepsilon^2 - \frac{1}{72} \varepsilon^4 + \mathcal{O}(\varepsilon^6) \right].$$
Integrating, this gives

\[H_3 = \frac{1}{\sqrt{2\pi n^{\alpha/2}}} \left[H_{31} + \frac{H_{32}}{n^{\alpha}} + O(1/n^{2\alpha}) \right], \]

\[H_{31} = 1 - \frac{1}{6} \varepsilon - \frac{1}{72} \varepsilon^2 + O(\varepsilon^3), \]

\[H_{32} = -\frac{1}{12} + \frac{1}{72} \varepsilon - \frac{71}{864} \varepsilon^2 + O(\varepsilon^3). \]
Now we compute

\[\begin{pmatrix} n \\ m \end{pmatrix} = e^{T_1 H_1 H_2 H_3} = e^{T_1 R}, \]

with

\[
R = \frac{1}{\sqrt{2\pi n^{\alpha/2}}} \left[R_0 + \frac{R_1}{n} + \frac{R_2}{n^2} + \mathcal{O}(1/n^3) \right],
\]

\[
R_0 = R_{00} + \frac{R_{01}}{n^\alpha} + \mathcal{O}(1/n^{2\alpha}),
\]

\[
R_1 = R_{10} + \frac{R_{11}}{n^\alpha} + \mathcal{O}(1/n^{2\alpha}),
\]

\[
R_2 = R_{20} + \frac{R_{21}}{n^\alpha} + \mathcal{O}(1/n^{2\alpha}),
\]
Given some desired precision, how many terms must we use in our expansions? It depends on α. For instance, in T_1, $n^\alpha \varepsilon^k \gg 1$ if $k < \alpha/(1 - \alpha)$. Also ε^k in R_{00} is less than ε^ℓ/n in R_{10}/n if $k - \ell > 1/(1 - \alpha)$. Any number of terms can be computed by almost automatic computer algebra. We use Maple in this paper.
To check the quality of our asymptotic, we have chosen $n = 100$ and a range $\alpha \in [1/2, 9/10]$, i.e. a range $m \in [37, 90]$. We use 5 or 6 terms in our final expansions. Figure 4 shows the quotient $\binom{n}{m}/(e^{T_1 R})$. The precision is at least 0.0066. Note that the range $[M - 3\sigma, M + 3\sigma]$, where the Gaussian approximation is useful, is here $m \in [21, 36]$.
Figure 4: \(\left\{ \frac{n}{m} \right\} / (e^{T_1} R) \)
Central region

Large deviation, \(m = n - n^\alpha \),

E.A. Bender.
Central and local limit theorems applied to asymptotics enumeration.

Asymptotics of Stirling numbers of the second kind.

R. Chelluri, L. B. Richmond, and N. M. Temme.
Asymptotic estimates for generalized Stirling numbers.

P. Flajolet and R. Sedgewick.
Analytic combinatorics.

I. J. Good.
Saddle-point methods for the multinomial distribution.

I. J. Good.
An asymptotic formula for the differences of the power at zero.

L. H. Harper.
Stirling behaviour is asymptotically normal.

L. C. Hsu.
Note on an asymptotic expansion of the nth differences of zero.

L. C. Hsu.
A unified approach to generalized Stirling numbers.

H.K. Hwang.
On convergence rates in the central limit theorems for combinatorial structures.

G. Louchard.

Asymptotics of the stirling numbers of the first kind revisited: A saddle point approach.

L. Moser and M. Wyman.

Stirling numbers of the second kind.

V.N. Sachkov.

Probabilistic Methods in Combinatorial Analysis.

B. Salvy and J. Shackell.

Symbolic asymptotics: Multiseries of inverse functions.
Introduction Central region Large deviation, \(m = n - n^\alpha \),

N.M. Temme.
Asymptotic estimates of Stirling numbers.

E. G. Tsylova.
Probabilistic methods for obtaining asymptotic formulas for generalized Stirling numbers.
\textit{Journal of Mathematical Sciences, 75(2):1607–1614, 1995.}