Parameter Synthesis for Signal Temporal Logic

Alexandre Donzé

University of California, Berkeley

April 7, 2014

Formal methods and parameter synthesis

Verification
Model E? Specifications
Synthesis

Introduction

Formal methods and parameter synthesis

Verification
Model E? Specifications
Synthesis

Problematics

> For complex systems (large-scale, hybrid dynamics), synthesis is intractable

Introduction

Formal methods and parameter synthesis

Problematics

Model

Verification

= ?

Specifications

Synthesis

> For complex systems (large-scale, hybrid dynamics), synthesis is intractable

> Parameter synthesis reduces to finding valid values for “a few" parameters

Alexandre Donzé

Introduction

SynCoP’14 2 /52

Formal methods and parameter synthesis

Verification
Model E? Specifications
Synthesis

Problematics

> For complex systems (large-scale, hybrid dynamics), synthesis is intractable
> Parameter synthesis reduces to finding valid values for “a few" parameters

» We consider here model parameters and specification parameters

Alexandre Donzé ST)

Example !: modeling iron homeostasis

> Specifications
Qualitative knowledge, quantitative measurements, partially formalizable

x107®
r ¢ ='alwp,s) (Fe_stable and Fe_high) and

evys,10] (Fe_stable and Fe_low) untilftas, soj(Fe_depleted)

Fe

1(joint work with N. Mobilia, E. Fanchon, J-M Moulis et al)

Introduction

Example !: modeling iron homeostasis

> Specifications
Qualitative knowledge, quantitative measurements, partially formalizable

x107®
r ¢ ='alwp,s) (Fe_stable and Fe_high) and

evys,10] (Fe_stable and Fe_low) untilftas, soj(Fe_depleted)

Fe

0 5 10 15 20 25 30 35 40 45 50

d
EF@ =k TfR1 Tf — ko Fe FPNla
+ks Fe

1(joint work with N. Mobilia, E. Fanchon, J-M Moulis et al)

Introduction

Example !: modeling iron homeostasis

> Specifications
Qualitative knowledge, quantitative measurements, partially formalizable

x107®
r ¢ ='alwp,s) (Fe_stable and Fe_high) and

evys,10] (Fe_stable and Fe_low) untilftas, soj(Fe_depleted)

Fe

0 5 10 15 20 25 30 35 40 45 50

d
EF@ =k TfR1 Tf — ko Fe FPNla
+ks Fe

Problem: values for k1, ks, k3, etc

1(joint work with N. Mobilia, E. Fanchon, J-M Moulis et al)

Introduction

Example !: modeling iron homeostasis

> Specifications
Qualitative knowledge, quantitative measurements, partially formalizable

x107®
r @ ='alwp,s) (Fe_stable and Fe_high) and

evys,10] (Fe_stable and Fe_low) untilftas, soj(Fe_depleted)

Fe

0 5 10 15 20 25 30 35 40 45 50

d
EF@ =k TfR1 Tf — ko Fe FPNla
+ks Fe

Problem: values for k1, ks, k3, etc

= synthesis of model parameters

1(joint work with N. Mobilia, E. Fanchon, J-M Moulis et al)

Introduction

Example 2: faulty behaviors of a robot
Goal: autograding a robotic lab

Assignement: climb hills+avoid obstacles

2(joint work with G. Juniwal, J. C. Jensen, S. A. Seshia)

Introduction

Example 2: faulty behaviors of a robot
Goal: autograding a robotic lab

Assignement: climb hills+avoid obstacles

Faulty behavior specifications
E.g.: “The robot does not reach the top of the hill in T seconds”

What is a value of 7 that discriminate faulty from acceptable solutions ?

= synthesis of specification parameters

2(joint work with G. Juniwal, J. C. Jensen, S. A. Seshia)

Introduction

Example 3: specification mining
Design of an automatic transmission system:

12 &ED)

ImprellerTorque| RPM
T . >
CD— Throtte N[Eng L gear

throttle Engine Ne

speed gear gear

up_th [ButputTorque
Tout

down_th CALC_TH Nout
ShiftLogic Transmissi Vehicle
=g

down_th N0 gear|€—

up_th throttle
ThresholdCalculation

TransmissionRPM

@

brake

VehicleSpeed

speed

» What is the maximum speed that the vehicule can reach ?
» What is the minimum dwell time in a given gear 7
> etc

= synthesis of both specification and model parameters

J. Deshmuhk, S.A. Seshia

Introduction

Outline

@ Preliminaries: Signal Temporal Logic
@ From LTL to STL
@ Robust semantics

© Parameter synthesis
@ Property parameters
@ Model parameters

© Putting it all together: specification mining

Preliminaries: Signal Temporal Logic

Outline

@ Preliminaries: Signal Temporal Logic
@ From LTL to STL
@ Robust semantics

Preliminaries: Signal Temporal Logic

Temporal logics in a nutshell

Temporal logics specify patterns that timed behaviors of systems may or may not
satisfy.

The most intuitive is the Linear Temporal Logic (LTL), dealing with discrete
sequences of states.

Based on logic operators (=, A, V) and temporal operators: “next”, “
“eventually” (F) and “until” (&)

always” (G),

Preliminaries: Signal Temporal Logic

Linear Temporal Logic

An LTL formula ¢ is evaluated on a sequence, e.g., w = aaabbaaa. ..
At each step of w, we can define a truth value of ¢, noted x¥(w,)

LTL atoms are symbols: a, b:

i = 0 1 2 3 4 5 6 7
w= a a a b b a a a
X“w,i)=1 1 100 1 1 1
x'(w,i)= 0 0 0 1 1 0 0 0

Preliminaries: Signal Temporal Logic

LTL, temporal operators

O (“next"), G (“globally”), F (“eventually”) and U (“until").

They are evaluated at each step wrt the future of sequences

w= a a a b b a a a ...
Ga (always) X!“(w,i): 00000 1?7 17 17 ...
Fo (eventually) xF(w,i)= 1 1 1 1 1 0?7 0?7 0?
aUb (until) xYw,i)= 1 1 1 0 0 0? 07 0?

Preliminaries: Signal Temporal Logic

LTL, temporal operators

O (“next"), G (“globally”), F (“eventually”) and U (“until").

They are evaluated at each step wrt the future of sequences

w= a a a b b a a a
Ob (next) XOw,i)= 0 0 1 1.0 0 0 ? ...
Fb (eventually) X”(w,i): 11 1 1 1 07 07 07 ...
aUb (until) xYw,i)= 1 1 1 0 0 0? 07 0?

Preliminaries: Signal Temporal Logic

LTL, temporal operators

O (“next"), G (“globally”), F (“eventually”) and U (“until").

They are evaluated at each step wrt the future of sequences

w= a ¢ a b b a a a
Ob (next) XOw,i)= 0 0 1 1 0 0 0 0?7
Ga (always) w, 1) 0000 0 17 17 17

U b (a!l! r\ —

a until) 11 0 0 07 07 07 ...

Preliminaries: Signal Temporal Logic

LTL, temporal operators

O (“next"), G (“globally”), F (“eventually”) and U (“until").

They are evaluated at each step wrt the future of sequences

w= a a a b b a a a
Ob (next) Xob(w, i)=0 0 1 1 0 0 0 7?
Ga (always) Ca(,i)= 0 0 0 0 0 1?7 1?7 1?
Fb (eventually) xF(w,i)= 1 1 1 1 1 0?7 0?7 0?

Preliminaries: Signal Temporal Logic

From LTL to STL

Extension of LTL with real-time and real-valued constraints

Preliminaries: Signal Temporal Logic

From LTL to STL

Extension of LTL with real-time and real-valued constraints

Ex: request-grant property
LTLG(r=> F g)
Boolean predicates, discrete-time

Preliminaries: Signal Temporal Logic

From LTL to STL

Extension of LTL with real-time and real-valued constraints

Ex: request-grant property
LTLG(r=> F g)
Boolean predicates, discrete-time

MTL G(r=> F[O,.5S] g)
Boolean predicates, real-time

Preliminaries: Signal Temporal Logic

From LTL to STL

Extension of LTL with real-time and real-valued constraints

Ex: request-grant property

LTLG(r=> F g)
Boolean predicates, discrete-time

MTL G(r=> F[O,.5s] g)
Boolean predicates, real-time

STL G(z[t] >0 => F[07.55]y[t] >0)
Predicates over real values , real-time

Alexandre Donzé Preliminaries: Signal Temporal Logic SynCoP’14 10 / 52

STL syntax

MTL/STL Formulas

=T |p|0|eAp|pUpy
» | =T
» Eventually is F[a,b] =T u[a,b] ¥

> Always is G, 5 = —(Fla,8 —p)

Preliminaries: Signal Temporal Logic

STL syntax

MTL/STL Formulas

=T |ul-pw|pA | U,y

> | =T
> Eventually is Figp @ =T Uy @

> Always is G, 0 = —(Fla,8 —p)

STL Predicates

STL adds an analog layer to MTL. Assume signals z1[t], 22[t], ..., za[t],
then atomic predicates are of the form:

w=fl@lt],..., zalt]) >0

Alexandre Donzé Preliminaries: Signal Temporal Logic SynCoP'14 11 / 52

STL semantics

The satisfaction of a formula ¢ by a signal x = (z1,...,,) at time t is

(x,1) = p & f(mlt],... zlt]) >0

(X7t)|=<P/\¢ & (z0)FEeA (wyt)):¢

(x,) = - & (5t k)

(x,t)lchuab]w < 3t € [t+ a,t+ b] such that (z,¢') =4 A

vt e [t 1], (z,1") = o}

Preliminaries: Signal Temporal Logic

STL semantics

The satisfaction of a formula ¢ by a signal x = (z1,...,,) at time t is

(x,t) Ep & flm[t],...,z,[t]) >0

(X7t))=<P/\¢ & (@) FeA(nt) Y

(x,) = - & (5t k)

(x,t))zwuab]w < 3t € [t+ a,t+ b] such that (z,¢') =4 A

vt e [t 1], (z,1") = o}

> Eventually is Fio 5 @ =T Uiy

(x,t) = Flop ¥ & 3t € [t + a,t 4 b] such that (z,) =9

Preliminaries: Signal Temporal Logic

STL semantics

The satisfaction of a formula ¢ by a signal x = (z1,...,z,) at time t is

(x,t) = p < f(x[t],...,z,[t]) >0

(x.) EeAY & ([mt)FeN(zt) EY

(x,1) =g & ((z,1) F)

(x,t) FE o Uan ¢ < 3t €[t+a,t+ b such that (z,1') F ¢ A

vt e [t 1], (z,1") = o}

> Eventually is Fio 5 @ =T Uiy

(x,t) = Flop ¥ & 3t € [t + a,t 4 b] such that (z,) =9

> Always is G[(hb}gp = —|(F[a,b] —|g0)
(%, t) = Gl & VI’ € [t + a,t + b] such that (z,1') =4

Alexandre Donzé Preliminaries: Signal Temporal Logic SynCoP'14 12 / 52

STL examples

Preliminaries: Signal Temporal Logic

STL examples

The signal is never above 3.5
p:=G (z[t] < 3.5)

Preliminaries: Signal Temporal Logic

STL examples

Between 2s and 6s the signal is between -2 and 2
= Gpg (|2[t]] <2)

No

Preliminaries: Signal Temporal Logic

STL examples

Always |z|>0.5 = after 1 s, || settles under 0.5 for 1.5 s
Y = G(m[t] > 5 — F[O,.G] (G[071_5] :c[t] < 05))

Preliminaries: Signal Temporal Logic

Outline

@ Preliminaries: Signal Temporal Logic

@ Robust semantics

Preliminaries: Signal Temporal Logic

STL semantics

The satisfaction of a formula ¢ by a signal x = (z1,...,,) at time t is

(x,t) E p & flmlt],...,zt]) >0

nEeny e @Oy

(x,t) == & ((z,1) F o)

(x,t)):gpb{ab“b < 3t € [t+ a,t+ b] such that (z,¢) = ¢ A

vi' e[t], (z,1") E ¢}
> Eventually is Fio @ =T Uiy @
(x,t) = Flop ¥ & 3t € [t + a,t 4 b] such that (z, 1) = ¢
> Always is Gg 410 = =(Fa.5))

(X, 1) = Gop¢ & V' € [t + a,t + b] such that (z,1') =4

Alexandre Donzé Preliminaries: Signal Temporal Logic SynCoP'14 15 / 52

STL satisfaction function

The semantics can be defined as function x¥(z, t) such that:

r,tE e x(z,t)=T

Preliminaries: Signal Temporal Logic

STL satisfaction function

The semantics can be defined as function x¥(z, t) such that:

r,tE e x(z,t)=T

Considering Booleans (B, <, —) as an order with involution:

xH(z, t) = flmlt],..., z[t]) >0

X P(z,t) = —x*(z,1)

XFe2 (z, 1) = min(x*'(z, 1), x?*(w, t))

X Yo 92 (g, 1) = dnax (min(x(z,7), min x7(z,5))

Preliminaries: Signal Temporal Logic

STL satisfaction function example

Consider a simple piecewise affine signal:

o~ W

Satisfaction signal of :

Preliminaries: Signal Temporal Logic

STL satisfaction function example

Consider a simple piecewise affine signal:

o~ W

Satisfaction signal of :
» (p =22 Z 2

Preliminaries: Signal Temporal Logic

STL satisfaction function example

Consider a simple piecewise affine signal:

o~ W

Satisfaction signal of :

» p=F(z >2)

Preliminaries: Signal Temporal Logic

STL satisfaction function example

Consider a simple piecewise affine signal:

o~ W

Satisfaction signal of :

> o =Fo5(z>2)

Preliminaries: Signal Temporal Logic

Robust satisfaction signal

The Reals (R, <, —) also form an order with involution:

pH(z,t) = f(m[t],... z[t])

p ¥ (z,t) = —p¥(z,1)

pPe2 (2, t) = min(p¥' (2, 1), p**(w, 1))

pPr e (2 1) = sup (min(p?*(z,7), inf p?(z,s))
ret+]a,b] sE[t,7]

Preliminaries: Signal Temporal Logic

Properties of robust satisfaction signal

» Sign indicates satisfaction status

pP(z,t) > 0=z, tF ¢
pP(z,t) < 0=z, tF ¢

Preliminaries: Signal Temporal Logic

Properties of robust satisfaction signal

» Sign indicates satisfaction status

pP(z,t) > 0=z, tF ¢
pP(z,t) < 0=z, tF ¢

» Absolute value indicates tolerance

r,tEpand ||z — 2| < pP(z,t) = 2, tEp
T, tFpand |z — 2'||cc < —p¥(z,t) = 2 tF

Preliminaries: Signal Temporal Logic

STL satisfaction function example

plp(% -)/X‘p(%)

Satisfaction signals of :

Preliminaries: Signal Temporal Logic

STL satisfaction function example

plp(% -)/X‘p(:&)

Satisfaction signals of :
| 4 Y= Z 2

Preliminaries: Signal Temporal Logic

STL satisfaction function example

plp(% -)/X‘p(:&)

5 T

4

3

2

1

0)i 1
-1
—2

Satisfaction signals of :

» 9p=F(z=>2)

Preliminaries: Signal Temporal Logic

STL satisfaction function example

p?(z, -)/X‘p(:&)

5 T

4

3

2

1

0) 1
-1
—2

Satisfaction signals of :

> p=Fpos5(z>2)

Preliminaries: Signal Temporal Logic

Robust monitoring

A robust STL monitor is a transducer that transform z into p¥(z,.)

Preliminaries: Signal Temporal Logic

Robust monitoring

A robust STL monitor is a transducer that transform z into p¥(z,.)

BN @ s

STL Monitor
Formula ¢ :

|
S S S R R S S]

Preliminaries: Signal Temporal Logic

Robust monitoring

A robust STL monitor is a transducer that transform z into p¥(z,.)

STL Monitor

Formula ¢

|
I S R R ST - S

In practice
» Trace: time words over alphabet R, linear interpolation
Input: z(-) = (¢, z(¢;))sen Output: p?(z,-) = (15, 2(15)) jen
» Continuity, and piecewise affine property preserved

Alexandre Donzé Preliminaries: Signal Temporal Logic SynCoP’14 21 /52

Computing the robust satisfaction function
(Donze, Ferrere, Maler, Efficient Robust Monitoring of STL Formula, CAV'13)

» The function p?(z,t) is computed inductively on the structure of ¢

> linear time complexity in size of z is preserved
> exponential worst case complexity in the size of ¢

» Atomic transducers compute in linear time in the size of the input

» Key idea is to exploit efficient streaming algorithm (Lemire's)
computing the max and min over a moving window

Alexandre Donzé Preliminaries: Signal Temporal Logic SynCoP’14 22 / 52

Performance results

|¢| = 50,Time, ~ 2.45 x 10~°

25t i

Computation Time (s)
[
3

¢| = 25,Time, ~ 1.63 x 10 ° n,

0.5
|¢| =1,Time, ~ 2.34 x 10 n
OW
0 2e4 4e4 6e4 8e4 10e4

Signal size n,

Preliminaries: Signal Temporal Logic

© Parameter synthesis
@ Property parameters
@ Model parameters

Parameter synthesis

Parametric STL

Informally, a PSTL formula is an STL formula where (some) numeric
constants are left unspecified, represented by symbolic parameters.

Definition (PSTL syntax)

p:=pt]) >7| 0| AP | o Uy ¥
where
» 7 is a scale parameter

> 71, To are time parameters

Alexandre Donzé SR 25)

Parametric STL

Parameter synthesis

Parametric STL

“After 2s, the signal is never above 3"
= Fro (2[t] <3)

w

Parameter synthesis

Parametric STL

“After T s, the signal is never above 1"
0= G (z[t] <)

T

—
s
~

Parameter synthesis

Parameter synthesis for PSTL

Problem

Given a system S with a PSTL formula with n symbolic parameters
©(p1,--.,pn), find a tight valuation function v such that

Z, t): (,D(U(pl),) 'U(pn))v

Informally, a valuation v is tight if there exists a valuation v’ in a d-close
neighborhood of v, with § “small”, such that

T,t |7é (P(U,(pl)a KR U/(pn))

Alexandre Donzé SR o)

Example
=G (a[) > 7 = Fon (G 2l <m))

Parameter synthesis

Example
=G (a[) > 7 = Fon (G 2l <m))

» Valuation 1: m+ 1.5, 11+ 1s m<+ 1.15s

Parameter synthesis

Example
=G (a[) > 7 = Fon (G 2l <m))
» Valuation 1: m+ 1.5, 11+ 1s m<+ 1.15s
» Valuation 2 (tight): m < .5, 71 < 0.65 5, 79 < 2 s

T2 s

Parameter synthesis

Parameter synthesis

Challenges
» Multiple solutions: which one to chose ?
> Tightness implies to “optimize” the valuation v(p;) for each p;

The problem can be greatly simplified if the formula is monotonic in each p;.

Parameter synthesis

Parameter synthesis

Challenges
» Multiple solutions: which one to chose ?
> Tightness implies to “optimize” the valuation v(p;) for each p;

The problem can be greatly simplified if the formula is monotonic in each p;.

Definition

A PSTL formula ¢(p1,- -, p,) is monotonically increasing wrt p; if
vx, v, 0, [v(p;) = v'(py),j # i =x e (p),..., v (), --)
(

It is monotonically decreasing if this holds when replacing v'(p;) > v(p;) with
v'(pi) < v(ps).

Alexandre Donzé S 5)

Monotonic validity domains

> The validity domain D of ¢ and z is the set of valuations v s.t. z |= ¢(v)
> A tight valuation is a valuation in D close to its boundary 9D

> In case of monoticity, D has the structure of a Pareto front which can be
estimated with generalized binary search heuristics

b1

(
S

P2

Parameter synthesis

Monotonic validity domains

> The validity domain D of ¢ and z is the set of valuations v s.t. z |= ¢(v)
> A tight valuation is a valuation in D close to its boundary 9D
> In case of monoticity, D has the structure of a Pareto front which can be

estimated with generalized binary search heuristics

p R E D)

Parameter synthesis

Monotonic validity domains

> The validity domain D of ¢ and z is the set of valuations v s.t. z |= ¢(v)
> A tight valuation is a valuation in D close to its boundary 9D
> In case of monoticity, D has the structure of a Pareto front which can be

estimated with generalized binary search heuristics

n EEECDGy) EEEC D)

Parameter synthesis

Monotonic validity domains

» The validity domain D of ¢ and z is the set of valuations v s.t. = = ¢(v)
> A tight valuation is a valuation in D close to its boundary 0D
> In case of monoticity, 9D has the structure of a Pareto front which can be

estimated with generalized binary search heuristics

., EEZOGe) EEEC D)

Parameter synthesis

Monotonic validity domains

» The validity domain D of ¢ and z is the set of valuations v s.t. = = ¢(v)
> A tight valuation is a valuation in D close to its boundary 0D
> In case of monoticity, 9D has the structure of a Pareto front which can be

estimated with generalized binary search heuristics

., EEZOGe) EEEC D)

Parameter synthesis

Monotonic validity domains

» The validity domain D of ¢ and z is the set of valuations v s.t. = = ¢(v)
> A tight valuation is a valuation in D close to its boundary 0D
> In case of monoticity, 9D has the structure of a Pareto front which can be

estimated with generalized binary search heuristics

., EEZOGe) EEEC D)

Parameter synthesis

Monotonic validity domains

» The validity domain D of ¢ and z is the set of valuations v s.t. = = ¢(v)
> A tight valuation is a valuation in D close to its boundary 0D
> In case of monoticity, 9D has the structure of a Pareto front which can be

estimated with generalized binary search heuristics

., EEZOGe) EEEC D)

Parameter synthesis

Monotonic validity domains

» The validity domain D of ¢ and z is the set of valuations v s.t. = = ¢(v)
> A tight valuation is a valuation in D close to its boundary 0D
> In case of monoticity, 9D has the structure of a Pareto front which can be

estimated with generalized binary search heuristics

., EEZOGe) EEEC D)

Parameter synthesis

Deciding monotonicity

Simple cases
> fl@) >N\ fle) <7/
> G ¢\ Flo1 ¢ /7
> etc

Parameter synthesis

Deciding monotonicity

Simple cases
> fla)>m N\ fle) <7/
> G ¢\ Flo1 ¢ /7
> etc

General case
» Deciding monotonicity can be encoded in an SMT query
» However, the problem is undecidable, due to undecidabilty of STL

» In practice, monotonicity can be decided easily (in our experience so
far)

Parameter synthesis

© Parameter synthesis
@ Property parameters
@ Model parameters

Parameter synthesis

Parameter synthesis problem

Problem

Given the system:

U(t), p S(u(t)v p)

Find an input signal w € U, p € P such that S(u(t),p),0 = ¢

Parameter synthesis

Parameter synthesis problem

Problem
Given the system:

’Ll,(t),p S(U(t), p)

Find an input signal w € U, p € P such that S(u(t),p),0 = ¢

In practice

» We parameterize U and reduce the problem to a parameter synthesis
problem within some set P, x P

» The search of a solution is guided by the quantitative measure of
satisfaction of ¢

Alexandre Donzé S €5)

Parameterizing the input space

Input parameter set P, Input signals u(t) € U

Es

o
0

Note
The set of input signals generated by P, is in general a subset of U

l.e., we do not guarantee completeness.

Parameter synthesis

Parameter synthesis with quantitative satisfaction

Given a formula ¢, a signal x and a time ¢, recall that we have:
pP(z,t) >0=z,tF ¢
pP(z,t) <0=z,tF ¢

ok
z(t) STL Monitor ¢ 5 pP(x,t)
|
- ok

Parameter synthesis

Parameter synthesis with quantitative satisfaction

Given a formula ¢, a signal x and a time ¢, recall that we have:
pP(z,t) >0=z,tF ¢
PPz, t) <0=z,tF @

ok
P z(t) STL Monitor ¢ T pP(x,t)
[
- ok

As z is obtained by simulation using input parameters p, the falsification problem
can be reduced to solving

* . @ 0
Pt =min p*(z,0)

If p* < 0, we found a counterexample.

Parameter synthesis

Open question: optimizing satisfaction function

Solving
*= min F = p¥(z,0
p" = min F(pu) = p*(z,0)
is difficult in general, as nothing can be assumed on F'.
In practice, use of global nonlinear optimization algorithms

Success will depend on how smooth is F,, its local optima, etc

Critical is the ability to compute p efficiently.

Alexandre Donzé Parameter synthesis

SynCoP'14 36 / 52

Open question (cont’d): smoothing quantitative

satisfaction functions
Depending on how p is defined, the function to optimize can have different profiles

Parameter synthesis

Open question (cont’d): smoothing quantitative

satisfaction functions
Depending on how p is defined, the function to optimize can have different profiles

(not (ev_][0, 5] (gear4w))) and (not ((ev (speed|t]>70)) and (alw_[40, inf] (speed|t]<30))))

Quantitative Satisfaction

Parameter synthesis

Open question (cont’d): smoothing quantitative

satisfaction functions
Depending on how p is defined, the function to optimize can have different profiles

(not (ev_[0, 5] (gear4w))) and (not ((ev (speed|t]>70)) and (alw_[40, inf] (speed|t]<30))))

Quantitative Satisfaction

Parameter synthesis

© Putting it all together: specification mining

Putting it all together: specification mining

Specification mining

Consider the following automatic transmission system:

>
ImprellerTorque| RPM
>
i L »(7
Thiotte N Engi L gear
throttle Engine Ne I
i
Tspeed gear P gear
up_th ,
Tout [ButputTorque
down_th CALC_TH Nout
ShiftLogic —‘ T issi
X L
down_th run() gear [¢—
up_th throttle: >
ThresholdCalculation
TransmissionRPM
@D
brake
speed

» What is the maximum speed that the vehicule can reach ?
» What is the minimum dwell time in a given gear 7

> etc

Putting it all together: specification mining

Specification synthesis

The approach takes two major ingredients

» PSTL to formulate template specifications

» A counter-example guided inductive synthesis loop alternating
parameter synthesis and falsification

Putting it all together: specification mining

Template specification examples

> the speed is always below 71 and RPM below 1o

©sp_rpn(T1,7m2) := G ((speed < 1) A (RPM < 72)).

Putting it all together: specification mining

Template specification examples

> the speed is always below 7, and RPM below 1o
©sp_rpn(T1,7m2) := G ((speed < 1) A (RPM < 72)).

> the vehicle cannot reach 100 mph in T seconds with RPM always below ©

@rpmioo(T, ™) := = Flo - (speed > 100) A G(RPM < m)).

Putting it all together: specification mining

Template specification examples

> the speed is always below 7, and RPM below 1o
©sp_rpn(T1,T2) := G ((speed < m) A (RPM < 73)).
> the vehicle cannot reach 100 mph in T seconds with RPM always below ©
@rpntoo(T,7) := =(Fpo,r) (speed > 100) A G(RPM < 7)).

> whenever it shift to gear 2, it dwells in gear 2 for at least T seconds

. gear #2 A _

Putting it all together: specification mining

Specification mining algorithm

e u
- + Controller Plant Model

Y

Putting it all together: specification mining

Specification mining algorithm

e u
- + Controller Plant Model

Y

| Flo,m] (%1 < ™1 A Gjg 7y} (x2 > 72)) |

Template Specification

Putting it all together: specification mining

Specification mining algorithm

e u
- + Controller Plant Model

init Y

Simulation
Traces

| Flo,m] (%1 < ™1 A Gjg 7y} (x2 > 72)) |

Template Specification

Putting it all together: specification mining

Specification mining algorithm

—(+

init —

@

Controller

Plant Model

Y

Simulation
Traces

H

Candidate

| Flo,m] (%1 < ™1 A Gjg 7y} (x2 > 72)) |

Template Specification

Putting it all together: specification mining

Specification mining algorithm

— + G

init —

Controller

Plant Model

Y

Simulation
Traces

H

B Candidate
INDPARAM Specification
L —

| Flo,m] (%1 < ™1 A Gjg 7y} (x2 > 72)) |

Template Specification

FALSIFYALGO

Putting it all together: specification mining

Specification mining algorithm

init —

+

@

Controller Plant Model

Y

Counterexample

Simulation
Traces
—

Traces Counter-
w
example
Found

e J—— S ——{ s
w

| Flo,m)(x1 < 71 A Gpo] (%2 > m2)) |

Template Specification

Putting it all together: specification mining

Specification mining algorithm

e U
- + Controller Plant Model
init — Y
Simulation Counterexample
Traces Traces Counter-
— J\

example
Found

FINDPARAM

@

Candidate
S —w
w

| Flo,m] (%1 < ™1 A Gjg 7y} (x2 > 72)) |

Template Specification

Putting it all together: specification mining

Specification mining algorithm

e u
- + Controller Plant Model

init —| Y
Simulation Counterexample
Traces Traces Counter-
— w
example
Found

@

Candidate
FINDPARAM Specification —-@YALGO
¥/—\

| Flo,m] (%1 < ™1 A Gjg 7y} (x2 > 72)) |

| Flo.1.1)(x1 < 3.7 A Gyg 5 (%2 > 0.1)) |

Template Specification Inferred Specification

Putting it all together: specification mining

Results
> the speed is always below 71 and RPM below 7o

sp_rpn(T1,7m2) = G ((speed < m) A (RPM < 72)).

> the vehicle cannot reach 100 mph in T seconds with RPM always below ©

©rpmioo(T,) := = Fjg -] (speed > 100) A G(RPM < m)).

> whenever it shift to gear 2, it dwells in gear 2 for at least T seconds

. gear 2 A _
@stay(T) - G ((F[076] gear _ 2) = G[Eﬁ]gear = 2) .

Template Parameter values Fals. Synth. #Sim. Sat./x

@sp_rpn(71,72) | (155 mph, 4858 rpm) 197.2s 23.1s 496 0.043s
Prpm100(7, T) (3278.3 rpm, 49.91s) 267.7s 10.51s 709 0.026 s
gorpm1oo(7', 7'() (4997 rpm, 12.20 s) 147.8s 5.188 s 411 0.021 s
Pstay () 1.79 s 430.9s 2.157s 1015 0.032s

Alexandre Donzé Putting it all together: specification mining SynCoP’'14 43 / 52

Results on Industrial-scale Model

TOYOTA 4000+ Simulink blocks

M T A A 1 Look-up tables
nonlinear dynamics

Experimental Engine
Control Model

> Attempt to mine maximum observed settling time:

> stops after 4 iterations
> gives answer feirle = Simulation time horizon...

Alexandre Donzé Putting it all together: specification mining

SynCoP’'14 44 / 52

Results on Industrial-scale Model

i

» The above trace found an actual (unexpected) bug in the model

» The cause was identified as a wrong value in a look-up table

Putting it all together: specification mining

Conclusion and future work

Summary

v

Efficient parameter synthesis PSTL for monotonic formulas

v

Model parameter synthesis based on quantitative semantics

v

Parametric specification mining combining both

v

Tools support: Breach toolbox

To dos
» Efficient synthesis for non-monotonic formulas 7
» Better optimization algorithm for quantitative semantics

» Beyond parameter synthesis (signals, formulas, systems)

Alexandre Donzé Conclusion and future work

SynCoP’'14 46 / 52

	Preliminaries: Signal Temporal Logic
	From LTL to STL
	Robust semantics

	Parameter synthesis
	Property parameters
	Model parameters

	Putting it all together: specification mining

