Projet PACS

Deliverable 1 :
Report on Advances on Discrete Parameter Synthesis

1 Summary

Various research works have been achieved in the context of the Task 1 of ANR Project PACS
whose main focus was to develop verification and synthesis techniques for models defined with
parameters. In these different works, the considered parameters are taking their value in some
discrete (but unbounded) state space. The main ideas of these works are provided in this Section
and the corresponding articles can be found in Appendix of this document

1.1 Studying networks where the number of participants is a parameter

In order to analyze networks protocols which are designed to run over an unbounded num-
ber of participants, it is natural to consider models where a parametric number of entities have
a similar behavior. Many works over such models have been done in this task and the variations
between them comes from the studied family of networks and as well from the different nature of
the problems.

Three of these works propose methods for a model where the communication between the
entities of the network is done by broadcasting of messages and they assume as well that the net-
work comes with a communication topology (basically a graph). In some cases, this graph can
be assumed to be static, i.e. the communication topology does not change during an execution of
the protocol. In other cases, the configuration topology is subjected to reconfiguration, in order to
simulate both the loss of the messages and the possible mobility of the entities.

For what concerns, the last work, it studies simpler networks, where processes communicate
through a shared register but the technical breakthrough comes from the fact that it provides some
results which take into account a randomized scheduler in the network whose role is to indicate
at each instant the process to be executed.

In [DST16], the authors study parameterized verification problems for networks of interac-
ting register automata. The network is represented through a graph, and processes may exchange
broadcast messages containing data with their neighbours. Upon reception a process can either
ignore a sent value, test for equality with a value stored in a register, or simply store the value in a
register. They consider safety properties expressed in terms of reachability, from arbitrarily large
initial configurations, of a configuration exposing some given control states and patterns. They

PACS (PARAMETRIC ANALYSES OF TIMED SYSTEMS) 1/3
Projet ANR-14-CE28-0002 (2014-2019)

.
R RAC

investigate, in this context, the impact on decidability and complexity of the number of local re-
gisters, the number of values carried by a single message, and dynamic reconfigurations of the
underlying network.

In [ADR"16], the authors study decidability and undecidability results for parameterized ve-
rification of a formal model of timed Ad Hoc network protocols. The communication topology is
defined by an undirected graph and the behaviour of each node is defined by a timed automaton
communicating with its neighbours via broadcast messages. They consider parameterized verifi-
cation problems formulated in terms of reachability. In particular they are interested in searching
for an initial configuration from which an individual node can reach an error state. They study
the problem for dense and discrete time and compare the results with those obtained for (fully
connected) networks of timed automata.

In [BFS15] the authors study the problems of reaching a specific control state, or converging to
a set of target states, in networks with a parameterized number of identical processes communi-
cating via broadcast. To reflect the distributed aspect of such networks, they restrict their attention
to executions in which all the processes must follow the same local strategy that, given their past
performed actions and received messages, provides the next action to be performed. They show
that the reachability and target problems under such local strategies are NP-complete, assuming
that the set of receivers is chosen non-deterministically at each step. On the other hand, these pro-
blems become undecidable when the communication topology is a clique. However, decidability
can be regained for reachability under the additional assumption that all processes are bound to
receive the broadcast messages.

In [BMR*16], the authors study the almost-sure reachability problem in a distributed system
obtained as the asynchronous composition of N copies of the same automaton (that can com-
municate via a shared register with finite domain. The automaton has two types of transitions :
write-transitions update the value of the register, while read-transitions move to a new state de-
pending on the content of the register. Non-determinism is resolved by a stochastic scheduler. Gi-
ven a protocol, they focus on almost-sure reachability of a target state by one of the processes. The
answer to this problem naturally depends on the number N of processes. However, they prove that
our setting has a cut-off property : the answer to the almost-sure reachability problem is constant
when N is large enough ; we then develop an EXPSPACE algorithm deciding whether this constant
answer is positive or negative.

1.2 Introducing parameters in the transition relation of Petri nets

In [DJLR15], the authors have studied how discrete parameters can be introduced in the tran-
sition relation of Petri net. In a system modelled as a Petri net, the number of identical processes
involved, the number of identical processes required for some task, or the number of identical
processes spawned by some task, can all be modeled using the marking of the net and the input or
output weights of the arcs. Besides, most safety properties can be modeled by the coverability pro-
perty of Petri nets : is it possible to put at least this many tokens in some given places. They have
therefore studied the parameterization of markings and weights in Petri nets and, particularly, the

PACS (PARAMETRIC ANALYSES OF TIMED SYSTEMS) 2/3
Projet ANR-14-CE28-0002 (2014-2019)

I[P
R %‘%xi‘

parametric decision problems related to coverability : does there exist a parameter valuation such
that some marking in the instantiated net is coverable ? and is some marking coverable for all pa-
rameter valuations ? They prove that the problem is undecidable in general, but provide natural
syntactical subclasses for which it is decidable.

1.3 Extending regular model-checking to more expressive models

Concerning regular model-checking the authors have considered in [DH16] an extension of
the classical setting using words over a finite alphabet and their transformation to data words.
Data words consist of letters which are pairs of an element from a finite domain and a data value
from an infinite domain. They study a class of transformations of finite data words which gene-
ralizes the well-known class of regular finite string transformations described by MSO-definable
transductions of finite strings. These transformations map input words to output words whereas
our transformations handle data words where each position has a letter from a finite alphabet and
a data value. Each data value appearing in the output has as origin a data value in the input. As
is the case for regular transformations they show that our class of transformations has equivalent
characterizations in terms of novel deterministic two-way and streaming string transducers.

Références

[ADR*16] Parosh Aziz Abdulla, Giorgio Delzanno, Othmane Rezine, Arnaud Sangnier, and Ric-
cardo Traverso. Parameterized verification of time-sensitive models of ad hoc network
protocols. Theoretical Computer Science, 612 :1-22, 2016. 2

[BFS15] Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Distributed local strate-
gies in broadcast networks. In 26th International Conference on Concurrency Theory,
CONCUR 2015, volume 42 of LIPIcs, pages 44-57. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015. 2

[BMR*16] Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan.
Reachability in networks of register protocols under stochastic schedulers. In Procee-
dings of the 43rd International Colloquium on Automata, Languages and Programming
- Part II (ICALP’16 (2)), volume 55 of LIPIcs, pages 106 :1-106 :14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016. 2

[DH16] Antoine Durand-Gasselin and Peter Habermehl. Regular transformations of data words
through origin information. In FOSSACS 2016, volume 9634 of Lecture Notes in Com-
puter Science, pages 285-300. Springer, 2016. 3

[DJLR15] Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux. Discrete parameters in

petrinets. In PETRI NETS’15, volume 9115 of Lecture Notes in Computer Science, pages
137-156. Springer, 2015. 2

[DST16] Giorgio Delzanno, Arnaud Sangnier, and Riccardo Traverso. Adding data registers to
parameterized networks with broadcast. volume 143(3-4), pages 287-316, 2016. 1

PACS (PARAMETRIC ANALYSES OF TIMED SYSTEMS) 3/3
Projet ANR-14-CE28-0002 (2014-2019)

Parameterized Verification of Time-sensitive Models of
Ad Hoc Network Protocols!

Parosh Aziz Abdulla?, Giorgio Delzanno®, Othmane Rezine?®, Arnaud
Sangnier®, Riccardo Traverso®

% Uppsala University, Sweden
b University of Genova, Italy
¢LIAFA, Univ Paris Diderot, CNRS, France

Abstract

We study decidability and undecidability results for parameterized verification
of a formal model of timed Ad Hoc network protocols. The communication
topology is defined by an undirected graph and the behaviour of each node is
defined by a timed automaton communicating with its neighbours via broad-
cast messages. We consider parameterized verification problems formulated in
terms of reachability. In particular we are interested in searching for an initial
configuration from which an individual node can reach an error state. We study
the problem for dense and discrete time and compare the results with those
obtained for (fully connected) networks of timed automata.

Keywords Parameterized Verification, Timed Automata, Ad Hoc Networks,
Graphs, Decidability, Well Structured Transition Systems

1. Introduction

In recent years there has been an increasing interest in automated verifica-
tion methods for ad hoc networks, see e.g. [18, 24, 23, 11, 12]. Ad Hoc Networks
(AHN) consist of wireless hosts that, in absence of a fixed infrastructure, com-
municate sending broadcast messages. In this context, protocols are supposed
to work independently from a specific configuration of the network. Indeed,
discovery protocols are often applied in order to identify the vicinity of a given
node. In the AHN model proposed in [11] undirected graphs are used to rep-
resent a network in which each node executes an instance of a fixed (untimed)
interaction protocol based on broadcast communication. Since individual nodes
are not aware of the network topology, in the ad hoc setting it is natural to
consider verification problems that are parametric in the size and shape of the
initial configuration as in [11].

IThis work is partially supported by the ANR national research program ANR-14-CE28-
0002 PACS.

Preprint submitted to Elsevier September 2, 2016

In this paper we introduce a new model of distributed systems obtained by
enriching the AHN model of [11] with time-sensitive specification of individual
nodes. In the resulting model, called Timed Ad Hoc Networks (TAHN), the
connection topology is still modelled as a graph in which nodes communicate
via broadcast messages but the behaviour of a node is now defined as a timed
automaton. More in detail, each node has a finite set of clocks which all advance
at the same rate and transitions describing the behaviour of the nodes are
guarded by conditions on clocks and have also the ability to reset clocks.

Following [11, 12], we study the decidability status of the parameterized
reachability problem taking as parameters the initial configuration of a TAHN,
i.e., we aim at checking the existence of an initial configuration that can evolve
using continuous and discrete steps into a configuration exposing a given lo-
cal state (usually representing an error). Our model presents similarities with
Timed Networks introduced in [2]. A major difference between TAHN and
Timed Networks lies in the fact that in the latter model the connection topol-
ogy is always a fully-connected graph, i.e., broadcast communication is not
selective since a message sent by a node always reaches all other nodes. For
Timed Networks, it is known that reachability of a configuration containing a
given control location is undecidable in the case of two clocks per node, and
decidable in the case of one clock per node.

When constraining communication via a complex connection graph, the de-
cidability frontier becomes much more complex. More specifically, our technical
results are as follows:

e For nodes equipped with a single clock, parameterized reachability be-
comes undecidable in a very simple class of graphs in which nodes are
connected so as to form stars with diameter five.

e The undecidability result still holds in the more general class of bounded
path graphs, i.e., graphs in which the length of maximal simple paths is
bounded by a constant. In our proof we consider a bound N > 5 on the
length of simple paths. Since nodes have no information about the shape of
the network topology, the undecidability proof is not a direct consequence
of the result for stars. Indeed the undecidability construction requires a
preliminary step aimed at discovering a two-star topology in a graph of
arbitrary shape but simple paths of at most five nodes.

e The problem turns out to be undecidable in the class of cliques of arbitrary
order (that contains graphs with arbitrarily long paths) in which each
timed automaton has at least two clocks.

e Decidability holds for special topologies like stars with diameter three and
cliques of arbitrary order assuming that the process running in each node
is equipped with a single clock (as in Timed Networks).

e Finally when considering discrete time, e.g. to model time-stamps, instead
of continuous time, we show that the local state reachability problem
becomes decidable for processes with any number of clocks in the class of

graphs with bounded path. The same result holds for cliques of arbitrary
order.

2. Preliminaries

Let N be the set of natural numbers and RZ° the set of non-negative real
numbers. For sets A and B, we use f : A — B to denote that f is a total
function that maps A to B. For a € A and b € B, we write f [a < b] to denote
the function f’ defined as follows: f'(a) = b and f'(a’) = f(a’) for all @’ # a.
We denote by [A — B] the set of all total functions from A to B.

We now recall the notion of well-quasi-ordering (which we abbreviate as
wqo). A quasi-order (A, =) is a wqo if for every infinite sequence of elements
a1,a2, ... in A, there exist two indices ¢ < j such that a; < a;. Given a set A
with an ordering < and a subset B C A, the set B is said to be upward closed
in Aif ay € B, as € A and a1 = as implies ay € B. Given a set B C A, we
define the upward closure 1 B to be the set {a € A | 3o’ € B such that ¢’ < a}.
For a quasi-order (A, <), an element a is minimal for B C A if for all b € B,
b < a implies a =X b. If (4,=) is a wqo and if B is upward closed in A, then
the set of minimal elements of B is finite. If {by,...,b;} is the set of minimal
elements of B, then 1{by,...,b;} = B; hence B can be represented finitely.

3. Timed Ad Hoc Networks

8.1. Syntax

A Timed Ad Hoc Network (TAHN) consists of a graph where the nodes
represent processes that run a common predefined protocol defined by a com-
municating timed automaton. The values of the clocks manipulated by the au-
tomaton inside each process are incremented all at the same rate. In addition,
processes may perform discrete transitions which are either local transitions or
communication events. When firing a local transition, a single process changes
its local state without interacting with the other processes. For what concerns
communication, it is performed by means of selective broadcast, a process sends
a broadcast message which can be received only by its neighbours in the net-
work. We choose to represent the communication relation as a graph. Finally,
transitions are guarded by conditions on values of clocks and may also reset
clocks.

We now provide the formal definition of the model. We assume that each
process operates on a set of clocks X. A guard is a boolean combination of
predicates of the form k <z for k e N, < € {=,<,<,>, >}, and z € X. We
denote by G(X) the set of guards over X. A reset R is a subset of X. The guards
will be used to impose conditions on the clocks of processes that participate in
transitions and the resets to identify the clocks that will be reset during the
transition. A clock valuation is a mapping F : X — R2Y. For a guard g and
a clock valuation F, we write F' |= ¢ to indicate that the formula obtained by
replacing in the guard g each clock by F'(x) is valid. For a clock valuation F'

and a subset of clocks Y C X, we denote by F[Y] the clock valuation such that
FlY|(z)=0forall z € Y and F[Y](x) = F(z) for allx € X \ Y.

For a finite alphabet ¥ of messages, we define the set of events associated
to this alphabet as follows: M(X) = {7} U {lla,??a | a € ¥}. These events
correspond to the following ideas:

(i) 7 is used for a local move ;
(ii) "a represents the broadcast of the message a;

(iii) ??7a denotes the reception of the message a (that has been broadcasted by
another process).

We now give the definition of a protocol which will be executed by the nodes
in the network.

Definition 1. A protocol P is a tuple (Q,X, ¥, R, qimt) such that Q is a finite
set of states, X is a finite set of clocks, ¥ is a finite message alphabet, R C
Q x G(X) x M(X) x 2% x Q is a finite set of rules labelled with a guard, a
message and a reset, and ¢ € Q is an initial state.

Intuitively P defines the protocol that is run by each of the nodes (or entities)
present in the network, where) is the set of local states of each node, while
R is a set of rules describing the behaviour of each node. We will use the

notation (q,g SN R,q’) to represent the rule (gq,g,e,R,q'). For a protocol

P =(Q,X,%,R,q"™"), we denote by nbclocks(P) the size of X, i.e., the number
of clocks it uses.
A TAHN T is then simply a pair (G, P) where:

e G = (V, E)is a connectivity graph composed of a finite set of nodes V and a
set of undirected edges without self-loops, i.e., E C VxV\{(v,v) |v eV}
s.t. F is symmetric;

e P is the protocol which will be executed by the node present in the nodes
of the graph.

Intuitively, the graph G characterizes potential process interactions in the net-
work T; the set V represents the nodes and E defines the connectivity relation
between the nodes of the network. The nodes belonging to an edge are called
the endpoints of the edge. For an edge (u,v) € E, we often use the notation
u ~ v and say that the vertices u and v are adjacent to each other.

8.2. Operational Semantics

We now define the operational semantics of TAHN by means of a timed
transition system. Let 7 = (G, P) be a TAHN with G = (V,E) and P =
(Q,X, 3R, qimt). A configuration v of T is a pair (Q, X) where:

e Q:V — Q@ is a function that maps each node of the graph with a state
of the protocol;

e X : V= [X — R2Y is a function that assigns to each node a clock
valuation.

An important point is that, in a configuration, each node of the graph has its own
set of clocks. We denote by C7 the set of configurations. The initial configuration
of T is the configuration (Q™, X™it) with Q™ (v) = ¢™* and X" (v)(x) = 0
forallv € V and z € X. In other words, in an initial configuration all the nodes
are in the initial local state and all their associated clocks have value 0.

We now introduce a notation to characterize the nodes in a configuration
that are able to receive a message a. Given a configuration v = (Q, X') of the
TAHN 7 = (G, P) (with G = (V, E)) and given a message a € 3, let Eny(v,a)
be the following set of nodes able to receive a in v from the connectivity graph

G:
Enr(y,a)={veV |3 (q,g Tra R, q’) € R s.t. Q(v) =qand X(v) g}

In the rest of the paper we will use En(vy,a) when T is clear from the context.

The semantics associated to a TAHN 7T is then defined by the timed tran-
sition system (Cj,=7), where the transition relation =>7+C Cy x Cy corre-
sponds to the union of a discrete transition relation =7 4, representing tran-
sitions induced by the rules of 7 and a timed transition relation =7 ; which
characterizes the elapse of time.

The discrete transition relation =7 4C C7 x C7 is such that given two
configurations v = (Q, X) and ' = (Q', X’), we have v =7 4 7' if and only if
one of the following conditions is satisfied:

Local: There exists a rule (q, g — R, q’) and a vertex v € V such that Q(v) =

q, X(v) E g, @ = Qv+ (], and X' = X [v + X(v)[R]], and, for each
w € V\ {v}, we have Q' (w) = Q(w), X' (w) = X(w).

Broadcast: There exists a rule (q, g Ma, R, q') and a vertex v € V such that
Q) = q, X(v) E g, Q(v) = ¢ and X'(v) = X(v)[R], and, for each
w €V \ {v}, we have:
e cither w ~ v and w € En(y,a) and there exists a rule of the form
(0191 =% Risgt) such that Qw) = g1, X(w) k= g1, Q'(w) = gb,
and X' (w) = X (w)[Ra].
e or (wovorwé¢ En(y,a)), Q(w)=Q(w), and X' (w) = X (w).
The timed transition relation =7 ;C C7 x C7 is such that given two con-

figurations v = (Q,X) and v = (Q,X’), we have v =7, 7' if and only
if:

Time: There is a § € RZY such that for all v € V and z € X, Q'(v) = Q(v)
and X' (v)(z) = X(v)(z) + 6 .

As said before, =7 is then equal to =74 U =7 +.

3.3. Topologies

As we will see, we will often restrict the connectivity graph of TAHN to
belong to a family of graphs. In this paper, we consider different families of
graphs that we call topologies. A topology Top is hence a class of graphs that
we use to impose structural restrictions on the communication graph of a set
of configurations. In the sequel we write G € Top to indicate that the graph G
belongs to a given Top. We now list the topologies we will take into account in
this work.

e GRAPH is the topology consisting of all finite graphs.

e For ¢ > 0, STAR(Y) is the star topology of depth ¢. It characterizes graphs
G = (V, E) for which there is a partition of V of the form {vy}UV U---UV
such that:

(i) vo ~ v for all v € Vi;

(ii) for each 1 <i < ¢ and v; € V; there is one and only v; 1 € V41 with
v; ~ v;41 and one and only one v;_; € V;_; with v; ~ v;_1;

(iii) no other nodes are adjacent to each other.

In other words, in a star graph of dimension ¢, there is a central node vg
and an arbitrary number of rays. A ray consists of a path vy, vo,...,vp of £
nodes, starting from v, adjacent to vg. We call vg the root, vi,ve,...,vp_1
internal nodes, and vy a leaf of G.

e For ¢ > 0, BOUNDED(¥) is the bounded path topology of bound ¢. Tt charac-
terizes graphs for which the length of the maximal simple path is bounded
by ¢. Formally, if G € BOUNDED(/) with G = (V, E) then there does not
exist a finite sequence of nodes (v;)1<i<m such that m > ¢, and, v; # v; for
all 4,7 in {1,...,m} with i # j, and, v; ~v;41 for alli € {1,...;m — 1}.

e CLIQUE is the set of cliques which characterizes graphs G = (V, E) such
that v ~ w for all v,w € V with v # w.

8.4. State reachability problem

We now present the verification problem we study in this work. It consists
in determining for a given protocol whether there exists a connectivity graph
belonging to a certain topology such that in the obtained TAHN it is possible
to reach, from the initial configuration, a configuration exhibiting a specific
state (for instance an error state). We insist on the fact that we do not restrict
the number of nodes appearing in the considered connectivity graphs. Notice
that all the classes of graphs (called topologies) introduced previously have an
infinite cardinality hence an algorithm enumerating all the graphs belonging to
a given topology cannot be applied to solve our reachability problem. In fact,
as we shall see, the main difficulty in this problem is that the set of connectivity
graphs to consider is infinite.

Let 7 = (G, P) be a TAHN with a protocol P = (Q,X7Z,’R, qi”“) and a
connectivity graph G = (V, E). We say that a configuration =, is reachable in T
if there exists a finite path, starting at the initial configuration -y, of the form
Yo =T 71 =>T + - =T 7n in the associated transition system . Given a state
q € Q, we say that ¢ is reachable in the TAHN 7T if there exists a reachable
configuration v = (Q, X') and a vertex v € V such that Q(v) = q.

We now define the state reachability problem TAHN—Reach (Top, K) param-
eterized by a topology Top and a number of clocks K as follows:

Input: A protocol P such that nbclocks(P) < K and a control state g;

Output: Is there a TAHN T = (G, P) with G € Top such that ¢ is reachable
in7T ?

In [11, 12], a model of Ad Hoc Networks without time has been studied; it
is the same as the one we have introduced considering protocols without clocks.
The authors have shown that when the connectivity graphs are unrestricted,
then the state reachability problem is undecidable. However, one can regain
the decidability by restricting the graphs to have bounded path (i.e., graphs in
which the length of the maximal simple path is bounded). Note also that when
the reachability problem is restricted to cliques, then TAHN without clocks are
equivalent to Broadcast Protocols (with no rendez-vous communication) which
were introduced in [17] and for which the reachability problem is proved to be
decidable. A proof, in terms of Ad Hoc Networks, of this latter result can also
be found in [12]. The following theorem rephrases these results in our context.

Theorem 1. [11, 17, 12]

1. TAHN—Reach (GRAPH, 0) is undecidable.
2. For all N > 1, TAHN—Reach (BOUNDED(N), 0) is decidable.
3. TAHN—Reach (CLIQUE,O) is decidable

Remark 1. We point out the fact that for a number of clocks K and given two
topologies Top and Top’, if Top C Top', we cannot infer directly any relation be-
tween the decidability status of TAHN—Reach (Top, K) and TAHN—Reach (Top, K').
For instance if TAHN—Reach (Top, K) is undecidable, then it does not imply nec-
essarily that TAHN—Reach (Top, K') is undecidable, it could be in fact the case
that dealing with a larger class of graphs renders the problem solvable. Similarly
if TAHN—Reach (Top, K') is undecidable, we know that TAHN—Reach (Top, K)
could be decidable (see the above theorem where we have CLIQUE C GRAPH).

3.5. Example

Consider the protocol P described at Figure 1 which uses a single clock per
process. In this protocol, after more than one time unit, processes can broadcast
my or mg. A process in initial state can then receive a message mi, and after
reception of such a message, it can broadcast a message mq if the delay between
the reception of m and the broadcast of ms is strictly more than one time unit.

51

x> 1,1'mq,0
q2
x> 1,1'm3,0
qim't
true, ??my, {z}

q3 z > 1,1!ma, 0

true, ??mo, {z}
qa af

z=2,7"m3,0

Figure 1: A protocol P

Finally, a process can reach the state gy if it receives a message ms and exactly
2 times unit after, it receives a message ms.

The Figure 2 gives two examples of connectivity graphs; the first one G;
belongs to the topology CLIQUE and the second one G2 belongs to STAR(2).

(a) A clique graph G (b) A star graph G» of depth 2

Figure 2: Example of two connectivity graphs

We are interested in knowing whether g is reachable in (G4, P) and (G, P).
We first consider the TAHN (Gy, P). In this model as soon as a process broad-
casts a message m1, then all the processes in initial state have to receive it with
the rule (qm”, true 8 {x}, q;;); because of the clique graph, each broadcast
message is received by all the processes in the TAHN. Consequently, there does
not remain any node in g™ ready to receive the message ms that is needed to
go to g¢. Indeed there does not exist any connectivity graph G' € CLIQUE, such
that ¢ is reachable in the TAHN (G, P).

On the other hand, if we consider the TAHN (G2, P), then gy can be reached.

We describe a possible scenario. After 2 times units one of the leaf broadcasts
my, which is received by the adjacent internal node. After 2 times units this
latter node broadcasts mo (note that this broadcast happens at global time 4).
The message mo is received by the root node, which resets its clock, and exactly
2 times unit after (the global time is now 6), one of the two internal nodes,
which remained in state ¢***, broadcasts a message ms, allowing thus the root
node to reach gy (it receives mgs exactly two times units after the reception of
mg).

4. Undecidability with Dense Time

In this section, we show undecidability of the reachability problem in TAHN
for three different topologies, namely:

e STAR(2): star connectivity graphs of depth 2 (one root and several rays
with two nodes); the undecidability holds even if each process uses a single
clock;

e CLIQUE: clique topologies; for this case, we need at least two clocks per
process to get the undecidability;

e BOUNDED(5) : bounded path topologies with maximal simple path of length
at most 5; the undecidability holds even if each process uses a single clock.

In the first two cases, the undecidability results are obtained thanks to a re-
duction into the reachability problem for timed networks where processes are
equipped with two clocks. We will hence first recall the definition of this latter
model, which was originally presented in [2]. Afterwards, we will provide the
reduction allowing to lift the undecidability result for Timed Network to the
case of TAHN.

4.1. Timed Networks

In [2], the authors introduce a model called Timed Network (TN) which can
be used to describe a system consisting of an arbitrary number of processes,
each of which being a finite-state system operating on real-valued clocks. The
differences between the TN model and TAHN can be summarized as follows:

1. A TN contains a distinguished controller that is a finite-state automaton
without any clocks [2] (note that adding clocks to the controller does not
affect our results).

2. Each process in a TN may communicate with all the other processes and
hence it is not meaningful to describe connectivity graphs in the case of
TN.

3. Communication takes place through rendez-vous between fixed sets of pro-
cesses rather than broadcast messages.

Following [2], we provide the syntax and the semantics of Timed Networks.

4.1.1. Syntax
Definition 2. A Timed Network (TN) N is a tuple (Q°", QP™¢, X, R, ¢

ctrl?

qimit) where Q°™ is a finite set of controller states, QP™° is a finite set of

process states, X is finite set of clocks, ¢ € Q° is an initial controller

stater, q;”ffc € QP™° is an initial process state and R is a finite set of rules. A

T
dn
gn — Rn
T

rule is of the form:
such that qo,qy € Q°", and, q;,q; € QP™¢, g; € G(X) and R; € 2% for all

q q1

— g1 —)Rl

a a4
ie{l,...,n}.

4.1.2. Operational semantics

As for TAHN, we give the semantics associated to a TN in term of a timed
transition system. We consider a TN N = (Q“'", QP™, X, R, ¢4, qinit). A
configuration ~ is a tuple of the form (I, q, Q, X') with:

e [is a finite set of indices;

° qGQctrl;
e O:] QPrc;
o X: I+ [X — R

Intuitively, the configuration refers to the controller whose state is ¢, and to a
finite set of processes, each one associated to an element of I. The mapping
Q describes the states of the processes and the mapping X their associated
clock values. More precisely, for i € I and = € X, X (i)(x) gives the value of
clock x in the process of index i. We use || to denote the number of processes
in v, i.e., |y] = |I|. Let Cnr be the set of configurations of N'. A configuration
v = (1,q,Q, X) is said to be initial if ¢ = ¢l7'}, Q(i) = qpris., and X(i)(z) = 0
for each i € I and x € X. This means that an execution of a timed network
starts from a configuration where the controller and all the processes are in
their initial states, and the clock values are all equal to 0. Note that there is an
infinite number of initial configurations, namely one for each finite index set I.

Before we give the formal definition of the transition relation associated to
N, let us explain intuitively the behaviour of a rule of the form:

q0 q1 dn
— g1 — Rl gn — Rn
% a n,

Such a rule is enabled from a given configuration, if the state of the controller
is qo and if there are n processes with states q1, - - - , ¢, whose clock values satisfy
the corresponding guards. The rule is then executed by simultaneously changing
the state of the controller to g}, the states of the n processes to ¢i,--- , ¢, and
by resetting the clocks belonging to the sets Ry,..., R,.

10

The semantics associated to the TN N is given by the timed transition sys-
tem (Car, —>ar) where the transition relation —xC Cpr X Cps is defined as the
union of a discrete transition relation — s 4, representing transitions induced
by the rules of N and a timed transition relation —» s ; which characterizes the
elapse of time.

We begin by describing the transition relation —ar ¢C Cpr X Cpr. For this
matter, we define a transition relation — s, for each rule r € R of the TN
N. We consider a rule 7 described as above. Let v = (I,q,Q,X) and v/ =
(I',¢',Q', X') be two configurations in Cpr. We have v — 7, 7/ if and only
if I = I’ and there exists an injection h : {1,...,n} — I such that, for all
ie{l,...,n}k

1. ¢ = qo, Q(h(i)) = ¢; and X(h(i)) E g; (i-e., the rule r is enabled);

2. ¢ = ¢, and Q'(h(i)) = ¢, (i.e. the states of the processes are changed
according to r);

3. X'(h(i)) = X(h(i))[R;] (i-e. a clock is reset to 0 if it occurs in the set R;,
otherwise its value remains unchanged).

4. Q'(j) = Q(j) and X'(j) = X(j) for all j € T\ {h(i) |i € {1,...,n}}.

The discrete transition relation — x4 is then equal to |J,cr — a7,

We now provide the definition of the timed transition relation —a;C Cpar X
Cyr. Given two configurations v = (I, ¢, Q,X) and ' = (I, ¢, @', X’) in Cpr, we
have v — ¢ 7 if and only if I’ =1, ¢’ = ¢, @' = Q and there exists § € R=0
such that X7 (i)(z) = X(i)(x) + 0 for all i € I and all x € X. Hence, as in
TAHN, a timed transition has no effect on the states of the different processes
but its effect changes the value of the different clocks making them evolve at
the same rate.

Finally we define — z to be —5r,q U —> a7t Note that if v — s 4/ then
the index sets of v and 7 are identical (by definition of the transition relation)
and therefore |y| = |4/|. This reflects the fact that in the considered networks,
the number of processes is indeed parametric but once fixed it does not change
during an execution, in other words there is no dynamic creation or deletion of
processes.

4.1.8. State reachability problem

Similarly to the case of TAHN, we will present here the state reachability
problem for TN. Here also this problem is parameterized by the number of
processes involved in the execution, that is why we do not impose any bounds
on the size of the initial configurations and we investigate whether there exists
an initial configuration from which the system can reach another configuration
in which the controller is in a given control state (for instance an error state).

Let N = (Q°, Q7™ X, R, 2, qimit) be a TN. We say that a configura-
tion v, in Cy is reachable in A if there exists a finite path 79 —n V1 —n

- — A" Yn in the transition system associated to A. As for TAHN, a con-

troller state ¢ is said to be reachable in A if there is a reachable configuration
of the form (I,q,Q,X). The TN state reachability problem TN—Reach (K),
parametric in the a number of clocks K, is defined as follows:

11

Input: A TN N = (Q°",QP™°, X, R, ¢/, ¢init) with |X| < K and a con-
troller state ¢ € Q°"*;

Output: Is g reachable in N ?

As said earlier, Timed Networks have already been introduced in [2] where
results for the state reachability problems are also presented. These latter result
can be expressed as follows:

Theorem 2. [{]

1. TN—Reach (2) is undecidable.
2. TN—Reach (1) is decidable.

4.2. Two-Star Topologies

In this section we prove that the reachability problem for the star topology
is undecidable even when the rays are restricted to have length 2 and the nodes
are restricted to have a single clock. The proof is based on the encoding of a
generic TN N with two clocks per process into a protocol P of TAHNs. We
will refer to the clocks inside a process of AV as x; and w5 respectively. For
each state ¢ in N, we will have a corresponding state x(g) in the protocol P.
Furthermore, we will have a number of auxiliary states in P that we need to
perform the simulation. We omit state labels in the automata representation
when their names are not relevant.

Given a TN NV = (Q°"",QP°, X, R, ¢/, it) ‘and a controller state ¢ in
N, we define a protocol P with nbclocks(P) = 1 together with a local state x(q)
satisfying the following property: there exists a 7 = (G, P) with G € STAR(2)
such that such that x(q) is reachable in 7 iff ¢ is reachable in N. The root of G
plays the role of the controller in N, while each ray in G plays the role of one
process in /. The local state of a process in A is stored in the internal node of
the corresponding ray. Furthermore, the two clocks x; and x5 of a process are
represented respectively by the clock of the internal node and by the clock of
the leaf of the ray. For technical reasons, we require that the connectivity G of
the considered TAHNSs has at least three rays needed in the initialization phase.
In case N has fewer than three processes, the additional rays will not simulate
any processes, and remain passive (except during the initialization phase; see
below).

Notation. We will assume without loss of generality that the guards present
in the TN N are conjunctions of predicates of the form k <z for &k € N,
g€ {=<<,>2>}, and x € X. In the sequel, (e.g. Fig. 4, 5, and 6), we
will write g(z; < z) to denote the guard obtained by first projecting ¢ on the
constraints involving only the variable ; (this is done by deleting the predicates
on the other variables), and then by replacing x; (a clock of N) with z (the
clock of P) in the resulting formula. For instance, if g is 1 > 2 A 25 = 4, then
g(x1 <) is equal to z > 2 and g(x2 +) equals z = 4. For a reset R, we will
write R(z; < x) for the reset {z} if ; € R, or for () otherwise, i.e., we map a

12

true, ??ack, 0 true, ??ack, () true, ??ack, ()

qimt
true, lack, 0 true, lack, true, lack, true, lack,
true, ??ack, 0 true, ??ack, true, ??ack,
true, ??7int, true, ??ctrl,) true,lctrl, 0
true, Neaf, D true, lint, 0 z =0, !!start,(
g k(i)

true, ??eaf,

true, ?77start,)

K(gpre.)

Figure 3: Initializing the simulation

reset on x; to a reset on the clock variable z of P. For instance, if R = {z1},
then R(x1 + z) = {2} and R(x2 < x) = (. We are now ready to describe the
simulation protocol. It consists of two phases.

Initialization. Recall that the nodes of a TAHN are identical in the sense
that they execute the same (predefined) protocol. This means that the nodes
are not a priori aware of their positions inside the network. The purpose of the
initialization phase (Fig. 3) is to identify the nodes that play the roles of the
controller and those that play the roles of the different processes.

As shown in Fig. 3, a node starts by broadcasting/receiving an ack message
to/from his neighbours. The messages of type ack are used for the election
phase. The elected node becomes the controller of the TN A. To be elected, a
node has to receive acknowledgements (messages ack) from at least three other
processes. This implies that only the root of our star configuration can be
elected. Indeed, it is the only node that is connected to more than two other
nodes (the internal nodes are connected to two other nodes while the leafs are
connected to only one other node). Notice that a node can become a controller
via several different sequences of receive and send actions, the important points
is that they contain three ??ack actions and one !lack actions in any possible
order. Sending !lack after ?7ack-actions is necessary to synchronize with the

13

other nodes.

Once the root has become the controller, it will make the internal nodes
aware of their positions by sending the broadcast message ctrl. Due to the star
topology, this message is received only by the internal nodes. A node receiving
this broadcast message will initiate a subprotocol defined as follows.

(i) It changes local state to accept the role of internal node.

ii) It makes the leaf of the ray aware of its position by broadcasting a message
g g
int. Such a message is received only by the leaf of the ray and by the root
(controller). The root ignores the message.

(iii) The leaf broadcasts the acknowledgement message leaf that can only be
received by the internal node of the ray and goes to state ¢°~.

(iv) The internal node changes state when it receives the acknowledgement
and declares itself ready for the next step.

Remark that the internal node and the leaf may choose to ignore performing
steps (ii) or (iv). In such a case we say that the protocol fails for the considered
ray, otherwise we declare the ray to be successful.
In the last step of the initialization, the root will send one more broadcast
where the following step take place:
(i) It changes local state to k(¢”") which means that it is now simulating
the initial controller state.

(ii) It checks that its clock is equal to 0 which means that the initialization
phase has been performed instantaneously.

(iii) The internal nodes of the successful rays will change state to s(gpre.). The

rest of the nodes will remain passive throughout the rest of the simulation.

Now all the nodes are ready: the root of G in T is in the initial state of the
controller of A/; the internal nodes of the successful rays are in the initial states
of the processes of \; the leafs are in state ¢°* and all clocks have values equal
to 0.

Simulating Discrete Transitions. Below, we show how 7 simulates a rule
r of the form

qo q1 dn
— a1 — Rl e n — Rn
7 a0 8

The behaviour of the root, internal, and leaf nodes is detailed respectively in
Fig. 4, Fig. 5, and Fig. 6. At first, the root of G in T is in the state x(qp) and
executes a transition to reset its clock to 0. The reset is used later to ensure
that a simulation step has taken no time. The simulation consists of different
phases, where in each phase the root tries to identify a ray that can play the

14

role of process k for 1 < k < n. To find the first ray, it sends a broadcast
message !lsel]. An (internal) node that receives the message and whose local
state is ¢; may either decide to ignore the message or to try to become the node
that simulates the first process in the rule. In the latter case it will enter a
temporary state from which it initiates a sub-protocol whose goal is to confirm
its status as the simulator of the first process. In doing so, the node guesses that
its clocks satisfy the values specified by the guard. If the guess is not correct it
will eventually be excluded from the rest of the simulation (will remain passive
in the rest of the simulation). At the end of this phase, exactly one node will
be chosen among the ones that have correctly guessed that their clocks satisfy
g1. The successful node will be the one that plays the role of the first process.
The sub-protocol proceeds as follows:

(i) The internal node checks whether the value of its clock satisfies the guard
g1- Recall that each node contains one clock. Since the guard g; only
compares the clocks x1,xs with constants, the conditions of g; can be
tested on separate nodes. Namely a node v can deal with the sub-guard
involving x1 and another node w can deal with the sub-guard involving
clock x5. The condition is then satisfied if both v and w acknowledge a
certain request. If the clock of the node does not satisfy ¢g; (which means
that x1 does not satisfy ¢1), the node will remain passive from now on
(it has made the wrong guess). Otherwise, the node resets its clock if R;
contains z1, and then broadcasts a message (such a message is received
by the leaf of the ray).

(ii) The leaf checks whether the value of its clock satisfies the guard ¢; (i.e.,
if xo satisfies g1); if yes it resets its clock if x5 is included in Ry, and then
broadcasts an acknowledgement.

(iii) Upon receiving the above acknowledgement, the internal node declares
itself ready for the next step by broadcasting an acknowledgement. At
the same time, it moves to new local state and waits for a last acknowl-
edgement from the root (described below) after which it will move to local
state k(q1).

(iv) When the root receives the acknowledgement it sends a broadcast declar-
ing that it has successfully found a ray to simulate the first process. All
the nodes in temporary states will now enter local states from which they
remain passive. To prevent multiple nodes from playing the role of the first
process, the root enters an error state on reception of an acknowledgement
from more than one internal node.

The root now proceeds to identify the ray to simulate the second process. This
continues until all n processes have been identified. Then the root makes one
final move where the following events take place: (i) It moves its local state to
k(gp). (ii) It sends a final broadcast where the node ready for simulating the
ith process will now move to x(q}) for all i : 1 < i < n (notice that there is at

15

most one such node for each). (iii) It checks that its clock is equal to 0 (the
simulation of the rule has not taken any time).

true, 7, {x} ,

K(qo 0

. true, sel?, () true, ??ackl, true, lcheck!, 0
4;
true, ?7ackl, true, 7?ready?,)
qdeadlock q:—{—l
X z = 0,!!done”,
Qnt1 r(q0)

Figure 4: Ray selection: root node

Simulating Timed Transitions. This is done in a straightforward manner
by letting time pass in 7 by the same amount as in N.

Putting together the different phases, we obtain a complete simulation of
a TN with two clocks per node. Since reachability of a given control location
(from an arbitrary initial configuration) is undecidable for TN, we deduce the
following negative result.

Theorem 3. TAHN—Reach (STAR(2),1) is undecidable.

4.8. Cliques and Nodes with Two Clocks

We now show that the reachability problem for the clique topology is un-
decidable if each node manipulates two clocks. For this purpose, we build a
protocol P with nbclocks(P) = 2 which will simulate N on connectivity graphs
belonging to the clique topology. In a similar manner to the case of star topolo-
gies, the simulation consists of two phases.

Initialization Phase. The purpose of the initialization phase it to choose a
node that will simulate the controller. This choice is done non-deterministically
through a protocol that is initialized by a broadcast message. Notice that this
protocol exists in all the nodes since they run the same pre-defined protocol.
The first node which will perform the broadcast will become the controller (from
now on we refer to this node as the controller node). When the controller node
performs the above broadcast it moves to the state x(g“"), while all the other

nodes will move to x(gpre.).

16

k(i)

true, 7?7sell,) true, ?7?check!, 0

true, lack?,

true, ?7checkl,

gi(x1 x),check], R;i(x1 ¢)

true, ??ready?, ()

true, lready?, 0

true, ??done”,)
#(q;)

Figure 5: Ray selection: internal node

gi(xa < x), ?7check], R;i(x2 < x)

qok

true, ready’, 0

Figure 6: Ray selection: leaf node

17

Simulating Discrete Transitions. Below, we show how a rule of the form of
the previous sub-section is simulated. In a similar manner to the case of stars,
the controller node first resets its clock to 0. The simulation again consists of
different phases, where in each phase the controller node tries to identify a node
that can play the role of process i for 1 < i < n. To find the first process it sends
a broadcast. A node that receives the broadcast, whose local state is ¢, and
whose clocks (z1 and z3) satisfy the guard g1, may decide to ignore the message
or try to become the node that simulates the first process in the rule. In the
latter case, the node declares itself ready for the next step by broadcasting an
acknowledgement. At the same time, it moves to new local state and waits for a
last acknowledgement from the controller node (described below) after which it
will move to local state k(g}). To prevent multiple nodes from playing the role
of the first process, the controller node enters an error state on reception of an
acknowledgement from more than one node. The controller node now proceeds
to identify the node to simulate the second process. This continues until all
n processes have been identified. Then the controller node performs the same
three steps as the ones in the final phase of the simulation described above for
stars.

By exploiting undecidability of control state reachability for Timed Net-
works, we obtain the following theorem.

Theorem 4. TAHN—Reach (CLIQUE,2) is undecidable.

4.4. Bounded Path Topologies

Using the result of Theorem 3 we now show that the undecidability proof
for the reachability problem can be extended to bounded path topologies. The
result uses a reduction to the two-star case, thus we need to consider topologies
in which the simple paths can have 5 nodes in order to be able to rebuild stars
with rays of depth 2.

For such a reduction, we need a preliminary protocol that discovers a two-
star topology in a graph of arbitrary shape but simple paths of (at most) five
nodes. The discovery protocol first selects root, internal and leaf candidates
and then verifies that they are connected in the desired way by sending all
other nodes in their vicinities to a special null state.

The discovery protocol is defined as P with nbclocks(P) = 1 with ¢ € Q
as initial state. We denote by x the clock used by P. We first define three
transitions labelled with empty event that non-deterministically select the role
of a each node: the root (control state gg), an internal node (control state rg)
or a leaf (control state sg) of the star topology. These three rules have then
following form:

qinitaJ: =0 ;> ®7QO
q’mitvx =0 T} Q)er

qinit7$ =0 T; ®780

18

true, 773, 0
null do

x = 0,!!7oot,

z = 0,!lendroot, §

true, 773,)
null

x =0,end,

qr

Figure 7: Discovery protocol: node chosen as the root

The behaviour of the root node (state qp) is given in Figure 7. It broadcasts
message root to notify its neighbours that it is the root. A node in state gq
moves to an error state if it receives notifications/requests from other nodes.
This protocol ensures that all the nodes in state gy connected to the root move
to an error state (remember that communication is synchronous). On reception
of a message of type root, a node in state ry runs the protocol in Figure 8.
Specifically, it first reacts by sending ackroot. This message is needed to send
all of its neighbours in states derived from ry in the null error state. In fact
if two adjacent nodes in state o receive a message root, the first one sending
ackroot will send the other one in the state null. The ackroot message is also
needed to ensure that an internal node is never connected to two different root
nodes. On reception of a message of type endroot from the root, the considered
node moves to state (. By the above described properties, when a node reaches
state r{, then it is connected to at most one root node, and it is not connected
to any node which was previously in state ry and which is not in state null. At
this point several leaf nodes can still be connected to nodes in state r. The
last part of the protocol deals with this case.

Figures 9 and 10 show the handshaking protocol between leaf and internal
nodes. A node in state sy sends a message leaf to its adjacent nodes. An
internal node can react to the message only in state r(, otherwise it goes to an
error state. Furthermore, a leaf node that receives the leaf notification moves
to an error state. By construction, the following properties then hold.

19

true, 775\ {root},
null To

x = 0,7?root,)

true, 773, 0
nu

x = 0,ackroot, ()

true, 772\ {endroot},
null

x =0, ??endroot,
/

To

Figure 8: Discovery protocol: node chosen as an internal node (communication with the root)

true, 775\ {ackroot},
null

x = 0,eaf,(

x = 0,??ackleaf,(

true,??%, ()
null

x = 0,lendleaf, ()

SF

Figure 9: Discovery protocol: node chosen as a leaf

20

true, 7?2\ {leaf}, 0 ,
null)

z=0,7eaf,(

true, 773, 0
nu

z = 0,ackleaf,
true, 773\ {endleaf},

null

x =0,??endleaf,

true, 77% \ {end},
null

x=0,7%end,

TF

Figure 10: Discovery protocol: node chosen as an internal one (communication with the leaf)

Proposition 1. In a« TAHN T = (G, P) with G € BOUNDED(5), all configura-
tions v = (G, Q, X) reachable in T satisfy the following properties:

e for all nodes v € V such that Q(v) = qr, for all v’ € V such that v ~ v/,
we have Q(v') =rp or Q(v') = null,

e for allv € V such that Q(v) = rp, there exists two nodes vy,vy € V' such
that v ~ vy, v ~ vy and Q(v1) = qr and Q(va) = sp and for all nodes
v € V\{v1,va2}, v/ ~ v implies Q(v") = null,

o for allv € V such that Q(v) = s, there exists at most one vertex v’ € V
such that v ~ v" and Q(v') # null and furthermore it is such that Q(v') =

TE.

In other words if v is a configuration reachable in a TAHN 7 = (G, P) with
G € BOUNDED(5) then all the nodes in the state gp can be seen as the root
node of a star of depth 2 where the internal nodes are in state rp, the leaves
are in state sg, and all the other nodes connected to these nodes are in state
null and will not take part to the further communications. Hence from g
using the protocol proposed in the proof of Theorem 3, we can now simulate
the behaviour of a TN as if we were in a star of depth 2. Indeed, combining the
above described discovery protocol and the undecidability results for two-star
topology, we obtain the following theorem.

Theorem 5. TAHN—Reach (BOUNDED(5), 1) is undecidable.

Proof. We reduce reachability of a TN N with two clocks. Specifically,
we define a new protocol P’ with a single clock that combines the discovery

21

protocol and the simulation protocol described in the proof of Theorem 3. The
final (non-null) states of the discovery protocol (namely ¢r, rr, and sg) become
the initial states of the simulation protocol. The following properties then hold:

e From Theorem 3, we know that there exists a protocol P and a TAHN
T = (G, P) with G € STAR(2) where it is possible to correctly simulate a
TN N.

e From Proposition 1, we know that any star of depth 2 can be obtained
with our pre-protocol. Furthermore, the protocol which uses a single clock
guarantees the existence of an initial configuration from which we can mark
(using states qp, rr, and sp) a subgraph in STAR(2) when the graphs of
the initial configurations belongs to BOUNDED(5).

Combining the two properties, we deduce that the there exists a protocol P’
using a single clock and a TAHN 7' = (G’, P’) with G’ € BOUNDED(5) which
can correctly simulate a A" with two clocks per node. O

5. Decidability with Dense Time

In the previous sections, we have shown that TAHN—Reach (STAR(2),1) is
undecidable. We consider here two other topologies for which reachability be-
comes decidable when nodes have a single clock, namely the toplogies STAR(1)
and CLIQUE. For this we mix the technique, proposed in [2], to prove that
the reachability problem is decidable in Timed Networks where each process is
equipped with a single clock (see Theorem 2) and the one, used in [12], to show
that, for TAHN with no clock and restricted to cliques, the reachability problem
is decidable (see Theorem 1).

Our proof will be based on the following steps:

1. Define a symbolic way to represent graphs and their associated configura-
tions.

2. Exhibit a well-quasi-ordering over the symbolic configurations which cor-
responds to the inverse of set inclusion on the associated concrete config-
urations.

3. Show that it is possible to compute symbolically the predecessors of a
symbolic configuration.

4. Give an iterative method to compute all the elements from which a given
symbolic configuration can be reached. Termination is ensured by the
well-quasi-ordering of symbolic configurations.

5.1. Decidability of TAHN—Reach (CLIQUE, 1)
In the sequel, we fix a protocol P = (Q, X, ¥, R, ¢"*).

22

5.1.1. Symbolic representation of configurations.

We recall that a TAHN is composed both by a connectivity graph G = (V, E)
and the protocol P and that the configurations of such a TAHN are of the form
(Q,X) where Q : V +— Q and X : V + [X — R2Y] is a function that assigns
to each node a clock valuation. We will now introduce a way to represent
symbolically connectivity graphs and associated configurations. Note that in
this part, we focus on TAHN whose connectivity graphs are cliques, hence we
only need to take into account the number of nodes in the graphs (the edges
can indeed be deduced from this information). The symbolic representation
we propose is very similar to the one from [2] used for the analysis of Timed
Networks, the main differences being that in our model we do not have a special
process playing the role of controller, and the discrete symbolic predecessor
relation is different, since we do not deal with rendez-vous communication but
with broadcast.

In what follows, we denote by maz the maximal constant occurring in the
guards of P. Furthermore for a quasi-order C, we use the notation a = b
whenever @ C b and b C a (resp. =’ for a quasi-order C’, and, =; for ;).
A symbolic configuration ¢ for the protocol P is a tuple (m, Qsymb ysymb E)
where:

e 7 is a natural number so that {1,...,m} is a set of indices for the processes
present in the network;

e Qv [1 ... m} > Q maps indices to protocol states;

o Xsvmb . L1 ... m} — {0,...,maxr} maps process indices to a natural
number less or equal than the constant max;

e L is a total preorder on the set {1,...,m} U{L, T} such that:

— 1 and T are respectively the minimal and maximal elements of C
with | # T;

— for j € {1,...,m}, if X*¥™b(j) = max then j = L or j = T;

— for j € {1,...,m},if j = T then X*¥™b(j) = max.

We denote by Sp the set of symbolic configurations for P. The intuition be-
hind a symbolic configuration ¢ = (m, Qsymb ysymb Q) is the following: it
corresponds to a set of clique graphs and associated configurations where at
least m processes are involved, and each of this m process is given an index
§ € {1,...,m} such that Q*¥™b(j) is the state of the process, X'*¥™?() is either
the integral part of the clock value or maz, and, the relation T provides an
ordering for the processes corresponding to the ordering of the fractional part of
their respective clock values. Finally, if j = 1, this means that the clock value
of process j is at most maz and its fractional part is equal to 0, and, if j = T,
then the clock value of process j is strictly greater than maz.

Note that the couple (X*¥™" C) corresponds exactly to the clock regions for
the m clocks represented in the abstract configuration . This region construc-
tion was originally introduced in [5] for the analysis of timed automaton since

23

it allows to get rid of the precise value of the clocks by keeping an abstraction
over the possible different values. It was then reused in [2] in the context of
timed networks equipped with a single clock. In this latter work, the authors
show how to adapt a quasi order over such abstract configurations, since we
need the same tool, we adopt in this work the same presentation for abstract
configurations.

As done in [2] for the case of Timed Networks, we formalize the previous
intuition by providing a formal definition of the set [¢] of graphs and concrete
configurations represented by the symbolic configuration . We consider a graph
G = (V,E) in CLIQUE and a configuration v = (9, X) of the TAHN (G, P) and
a symbolic configuration ¢ = (m, Q*¥™b, xsvmb) of P. We have (G,7) € [¢]
if and only if there exists an injective function h : {1,...,m} — V such that for
all 4,5/ € {1,...,m}:

o Q(h(j)) = Q¥ (j);
e min(maz, | X(h(j))]) = XY™ (j) (where |X(h(j))] denotes the integral
part of X'(h(7)));

e j = L if and only if X(h(j)) < maz and frac(X(h(j))) = 0 (where
frac(X(h(j))) denotes the fractional part of X' (h(j)));

e j =T if and only if X(h(j)) > maz;

o if j # T and j/ # T then frac(X(h(j))) < frac(X(h(j"))) if and only if
JEJ.
When it exists, such an injective function h will be called a mapping associated
to ((G,7),[¢])- Note that in the above definition, we do not require the number
of nodes in G and the number of processes in ¢ to be the same, but only that

each process of ¢ can be matched with a process of the TAHN (G, P) in the
configuration . For a set of symbolic configurations ® C Sp, we denote by [®]

the set [J,cq[]-
We will now equip the set of symbolic configurations Sp with a quasi-order

=. Given two symbolic configurations @1 = (ml, Qiymb, Xfymb, E1) and pg =

(mg, Q;ymb7 X;ymb, C»), we have 1 =< o if and only if there exists an injective

mapping g : {1,...,m} — {1,...,ma} such that for all 5,5 € {1,...,m;}:

o Q(g()) = Q)

X" (9(7) = A7 ()

9(j) =2 L if and only if j =1 L;

9(j) =2 T if and only if j = T;
e g(j) E2 g(4') if and only if j Cq 5’

We have then the following proposition concerning this order.

24

Proposition 2.

1. Given 1,92 € Sp, we have w1 = w2 if and only if [p2] C [p1].
2. (Sp,R) is a well-quasi-order.

Proof. We will show the first point. Let ¢ = (ml7 Qiymb, Xfymb, E1) and

Py = (m27 Q;ymb, X;ymb, Ez) be two symbolic configurations in Sp.

Suppose that ¢1 < @9 and let ¢ : {1,...,m1} — {1,...,ma} be the cor-
responding mapping associated to the definition of the quasi-order <. We
then take (G,v) € [p2] with G = (V, E) in CLIQUE and v = (Q,X) and let
h:{l,...,ma} — V be the injective function associated to ((G,~), [¢2])- It is

then clear that the composed function hog: {1,...,m1} — V is an injective
function matching the condition for (G,v) € [¢1]. From this we deduce that
[pa] € [in]-

We assume that [ps] C [¢1]. We consider the graph G = ({v1,...,0m,}, E)
in CLIQUE and we build the configuration v = (Q, &) of the TAHN (G, P) in
order that it verifies Q(v;) = @2(4) for all i € {1,...,ma} and X verifies for all
i, € {1,...,mo} the following points:

e if i =5 T then X(v;) = maz + 1;

e if i #, T then [X(v;)] = XY™ (3);
o if i =5 1 then frac(X(v;)) = 0;

o if 4 #5 L then frac(X(v;)) > 0;

o if i #£, T and ¢/ #Z2 T and @ Ty ¢ and i =5 ¢ then frac(X(v;)) =
frac(X(vir)));

e if i £, T and ¢/ #Z2 T and ¢ Ty ¢ and @ Z5 ¢ then frac(X(v;)) <
frac(X (vir))).

We consider then the bijective function hs : {1,...,ma} — V such that
ho(i) = wv; for all ¢ € {1,...,ma}. It is clear that hsy satisfies the different
conditions of a mapping associated to ((G,7), [¢2]). Hence (G,v) € [y2] and
since [w2] C [e1], we also have (G,7) € [p1]. Let hy : {1,....,m1} — V
be the injective mapping associated to ((G,7v),[¢1]). We consider now the
composed function hy ' ohy : {1,...,m1} ~ {1,...,ma}. On the way we build
the pair (G, 7) and the function he and by definition of the mapping associated to
((G,7), [¢1]), one can easily deduce that the mapping g = hy * oh; is effectively
injective and satisfies the conditions required in the definition of the quasi-order
= and hence this reasoning allows to obtain ¢; <X ¢s.

For what concerns the proof that (Sp, =) is a well-quasi-order, it can be
found in [2], where quasi identical symbolic configurations are used (and the
same quasi-order is defined), the only difference being that, in our case, we do
not have a controller state in the symbolic configurations. O

25

5.1.2. Computing the symbolic predecessors.

We describe next how to compute symbolically the set of predecessors of
the graphs and configurations described by a symbolic configuration. For a
symbolic configuration ¢ € Sp, we will see how to build a finite set of symbolic
configurations corresponding to the union of the two following sets:

preg(w) = {(G,7) |G € CLIQUE and v € Cg,py and
I € Cap) st. (G,7) € [¢] and v =>(G,p).a ¥’}
{(G,7) | G € CLIQUE and ~ € C(¢, py and
I € Cia,py st (G,7) € [¢] and v =>,p).c ¥’}

pre,()

Hence pre () characterizes the symbolic predecessors for the discrete transition
relation and pre,(¢) does the same for the timed transition relation. We will
in fact show that it is possible to build a finite set of symbolic configurations ®
such that

[®] = prey(p) U pre,(¢)

First we begin by the predecessors obtained by considering the discrete
transition relation. Following the idea used in [2] for Timed Networks, we
begin with seeing how to test whether a guard is satisfied by the clock value
of a process in the symbolic configuration. For a guard g € G(X) (we recall
that |X| = 1) in which the maximal constant is maz, a symbolic configuration
p= (m, Qsymb ysymb, E) and a natural number j € {1,...,m}, we define the
relation (¢, j) E ¢ inductively as follows:

o (p,j) Ek<xforke{0,..., mar} iff k < XY"(4);

(p,7) E k < x for k € {0,...,maz} iff either k& < X*Y"(5) or (k =
xsymb(j)and L C jand j # L);

(0,5) E k > x for k € {0,...,maz} iff either k > XY™°(j) or (k =
xsymb(j) and j = L);

(0,7) E k> for ke{0,...,max} iff k > X3Y™0(j);

(p,7) Ek=uafor ke€{0,...,max} iff k = X¥"(j) and j = L;

(,7) E 91 A g2 iff (¢,5) | g1 and (v,7) = g1

for what concerns the negation, we assume that there are pushed inwards
in the standard way before applying the definition.

Adapting the proof proposed in [2] for a similar result, we can deduce the
following lemma about the satisfiability relation = on symbolic configurations.

Lemma 1. Let ¢ = (m, stmb,Xsymb,E) be a symbolic configuration, G €
CLIQUE be a connectivity clique and v = (Q,X) be a concrete configuration
such that (G,7) € [¢] and let g be a guard in G(X) (for which the mazimal
appearing constant is mazx). Then for any mapping h associated to ((G,7), [¢])

and j € {1,...,m}, we have that (v,j) = g if and only if X(h(j)) E g.

26

We will now show, for each rule r € R of P and each symbolic configu-
ration ¢ € Sp, how to compute the set Pre(r,¢) of symbolic configurations
corresponding to the symbolic predecessors of ¢ with respect to the rule r. Let

= (q, g R, q’) be a rule of the protocol P and ¢ = (m, Q¥™?, xsvmb)
be a symbolic configuration. We now provide the conditions for a symbolic con-
figuration ¢y = (mg, ;ymb,é\,’;ymb, Eg) to belong to the set Pre(r,). This

definition is done by a case analysis on the message labeling the rule r. We
have @9 € Pre(r, ¢) iff m < my < m + 1 and one of the following conditions is
satisfied:

1. e =!la and there exists j € {1,...,ma} such that, if my = m + 1, then
j =m+ 1, and such that stmb() = q and Xsymb(/) = g and such that
the followmg conditions are satisfied:

e if my = m, then Q*¥™b(j) = ¢’ and
— if R = () then X*¥™(j) = X5¥"(j) and j = L iff j =, L, and,
j=Tiff j =, T;
— if R# () then X*¥"(j) =0 and j = L
e for all i € {1,...,ma} such that i # j we have:

o : : q",q ?a q"
either, there does not exists in R a rule ,g — R/, such

that Q5™ (i) = ¢’ and X5Y""(i) |= ¢, then we have stmb() =
Qsvmb(§) and X3V (i) = X*v™mb(i), and, i = L iff i =, L, and,
=T iff i =5 T,
— or, there exists in R a rule of the form (q” J e R, ’”) such
that Q3" (i) = ¢” and X3"(i) |= ¢’ and Q*¥™(i) = ¢ and:
% either R’ = @ and X*¥™ (i) = X3¥™ (i) and i = L iff i =, 1,
and, i =T iff i =, T;
* or, R' # () and X*¥"(i) =0 and i = L
o foralli,i € {1,....m},ifi % L and ¢/ # L, then i Co ¢’ iff i C 7',
2. e = 7 and there exists j € {1,...,ma} such that, if my = m + 1, then
j =m+ 1, and such that stmb(j) = q and Xsymb(/) = g and such that
the followmg conditions are satisfied:
e if my = m, then Q*¥™b(j) = ¢’ and
— if R = () then X*¥™(j) = X5¥""(j) and j = L iff j =, L, and,
j=Tiff j =, T;
— if R # () then X*¥"(j) =0 and j = L
e forallie {1,...,my} such that i # j, we have Q™" (i) = Q*¥™b(i)
and X5V"P(6) = xsvmb(i), and, i = L iff i =, L, and, i = T iff
) =9 T.
o foralli,i € {1,....m},ifi#£ L and i # L, theni Ty ¢’ iff ¢ T ¢,

27

The intuition behind the definition of the set Pre(r,) is that first we con-
sider only rules performing a broadcast or a local action, because the rules
labelled with receptions are performed together with a broadcast. Then for a

rule (q, g R,q) we need to ensure that, in the set of predecessors, the con-

trol state ¢ is present, for this reason, either we add a process to the symbolic
configuration (when my = m+ 1) which will perform the broadcast or the inter-
nal action, or, we consider that a process present in ¢ does this action (in that
case mg = m). It is useless to add additional receiver nodes in the symbolic
representation of configurations. They will produce redundant configurations.

In the case of a broadcast, we have to ensure that all the processes that could
react, have reacted to the broadcast message, whereas in the case of an empty
event, we need to ensure that the state of the other processes stays unchanged
in the symbolic configuration. Finally, in Pre(r, ¢), we have to include all the
possible symbolic clock mappings which satisfy the conditions of the fired rules,
as well as the associated possible reset of the second clocks.

Note that by definition of symbolic configurations, we know that there exists
a finite set of symbolic configurations of the form (m, Qsymb ysymb, Q) for a
fixed m, this allows us to deduce that Pre(r, ¢’) can be computed since it is finite.
Furthermore, by definition of pre(y) and by the way we build the set Pre(r, ¢),
we can show that the symbolic configuration J, . Pre(r,) represents symbol-
ically all the configuration in pre;(¢). In fact the previous construction covers
all the possible cases. This allows us to state the next result.

Lemma 2.

e Pre(r,p) is computable for all rules r € R.

o preg(¢) = [U,er Pre(r; ¢)]-

Ezample. We show an example of computation for the set Pre(r,). For this
purpose, we use the protocol given in Figure 1 of Section 3. We take the sym-
bolic configuration ¢ = ({1},{1 — ¢;},{1 — 2}, L =1C T) with a single pro-
cess whose associated state is ¢y and its associated symbolic clock value is 2

and we consider the rule r = (qm“, (x> 1) tmy 0, qg). Then in Pre(r,), we

have the symbolic configuration ({1,2},{1 + q4,2 — ¢} {1 — 2,2 — 2},
1L =1C2LC T). In fact, it is possible to have predecessors from the symbolic
configuration ¢ considering the rule r but, for this, we need to add a process
to the symbolic configurations, which will represent the process performing the
broadcast of mgz. Note that on the other hand, if we took the following sym-
bolic configuration ¢’ = ({1},{1 — qu},{1— 2}, L =1C T) instead of ¢, then
the set Pre(r,¢’) would have been empty. In fact, it is not possible to have
configurations with processes in state g4 and associated clock value equal to 2
after the transition r has been fired, because the broadcast of the message ms
would have sent all such processes in state gy (since we are considering clique
connectivity graphs exclusively).

28

For what concerns the set pre,(y), the rules of the systems are not taken
into account and hence in the case of TAHN computing this set is exactly the
same as in Timed Networks, we can consequently reuse the result proved in [2].

Lemma 3. [2] There exists a computable finite set of symbolic configurations
O such that [®] = pre,(¢).

Sketch of proof We can in fact characterize the symbolic configurations be-
longing to the set ®. For a configuration ¢ = (m, Qsymb ysymb, E) a configura-

tion g = (mz, symb ysvmt Eg) will belong to the set ® representing pre, ()

if it has the same number of process (i.e. m = my), the state mapping is the
same (i.e. Q;ymb = Q°¥"") and for what concerns X;ymb and the relation C,
over fractional part, they can be deduced from X*¥™" and C by iteratively mak-
ing a rotation in the order C and in the same time by decreasing the integral
part of a process whose fractional part is 0 (i.e. the number of this process is
equivalent to L). Since the details of this construction are exactly the same as

in Section 6.2 of [2], we do not provide them here. O

According to the two previous lemmas, for a symbolic configuration ¢ we
can compute a finite set of predecessor symbolic configurations of ¢. This is
summed up by the next lemma.

Lemma 4. There exists a computable finite set of symbolic configurations Pre(p)
such that [Pre(p)] = prey(¢) U pre,(¢).

5.1.3. Solving TAHN—Reach (CLIQUE, 1)

We now show how the facts that we have a well-quasi-order on the set of
symbolic configurations which is related to the inclusion of sets of configuration
(see Proposition 2) and that we can reason symbolically to compute the symbolic
predecessors are enough to solve TAHN—Reach (CLIQUE, 1).

For this purpose, we need one more tool to manipulate sets of symbolic
configurations. Given two sets of symbolic configurations ®,,P; C Sp, we
define the symbolic union of these two sets ®; L &5 as follows: ¢ € &1 U &y iff
(¢ € ®1) or (p € Py and there does not exist ¢’ € &1 such that ¢’ < ¢). Note
that there are more than one set respecting these conditions, but each time we
do the symbolic union we choose non-deterministically one of them.

From Proposition 2, we deduce the following lemma.

Lemma 5. [[(I)l (W ‘I)Qﬂ = [[q)l]] U [(I)g]]

Proof. Assume (G,7) € [®1 U ®2], then there exists ¢ € @1 L o such that
(G,7) € [¢], and since by definition of LI we have ¢ € &1 U ®q, we deduce that
(G,7) € [21] U [®2].

Assume now (G,) € [®1] U [®2], then there exists ¢ € &1 U P5 such that
(G,7) € [¢]- We consider then ¢’ € ®; L &5 such that ¢’ < ¢ (by definition of

29

U such a ¢’ exists). Then thanks to the first item of Proposition 2, we deduce
(G,7) € [¢']- Consequently (G,v) € [®1 U Po]. O

We show that if we compute iteratively the symbolic predecessors of a sym-
bolic configuration, then such a computation will converge after a finite number
of iterations. We define, for a symbolic configuration ¢ € Sp, the following
sequence of sets of symbolic configurations (’PZQ)ZEN:

o Py ={e};
. 73;"'1 = ’pr L Uw’EPZ’, Pre(¢’)

The next statement shows that the computation of the ’P; converges after
a finite number of steps and furthermore that the obtained set characterize all
the configurations from which it is possible to reach a configuration in [¢]. The
second point is quite obvious and the first point is obtained thanks to the fact
that (Sp, X) is a well-quasi-order as said by Proposition 2.

Lemma 6. There exists N € N such that 73; = Pg foralli> N.

Proof. We reason by contradiction and suppose that for all i € N, we have
735,“ # P,,. Since 73;‘*‘1 =P, U |_|@,e73; Pre(¢’), by definition of the operator LI,
this means that for all i € N, there exists ;11 such that @; 11 € I—lw’EP:', Pre(y’)

and for which there does not exist ¢ € Pl such that ¢” < @; 1. We consider
then the infinite sequence (p;);em {03 of symbolic configurations in Sp. By
construction, this infinite sequence is such that for all 7 > 1 there does not exist
i > 1 such that ¢ < j and ¢; X ¢;. This is a contradiction with the claim of
Proposition 2 which says that (Sp, <) is a well-quasi-order. O

In the sequel we will denote P, the set ”Pg defined by the previous lemma.
Note that a consequence of this lemma is that such a set is finite and from
Lemma 4, we know it can be effectively computed. Furthermore, we have also
the following result which states the completeness and soundness of the symbolic
reasoning.

Lemma 7.

1. For all (G,v) € [¢], if v is reachable in T = (G, P) from the initial
configuration o then (G,70) € [Py].

2. For all (G,7v) € [Py]. there exists a reachable configuration v in T =
(G, P) such that (G,~) € [¢].

Proof. Let (G,~) € [¢]. Suppose that « is reachable in 7 = (G, P) from the
initial configuration ~y. This means that there exists from~y, a finite path of the
form vo =7 71 =7 - =>7 7» in T with ~,, = . But thanks to Lemma 4,
fixing ¢, = @,we know that for all i € {0,...,n — 1}, there exists ¢; such that
@i € Pre(p;11) and (G,7;) € [e:]. Then using Lemma 5 and the definition of
P,, we deduce that (G, v) € [P,].

30

Similarly, if we suppose (G,70) € [P,], thanks to Lemma 4 and 5 and by
definition of P,, we know that there exists a finite path of the form vy =7
Y =7 -+ =7 Y, in T = (G, P) such that (G,~,) € [¢]. O

For a control state ¢ € @, we build the (finite) set of symbolic configurations
®, such that a symbolic configuration ¢ = (m, Q%™ X*¥™") belongs to
this set if and only if m = 1 and Q*¥™"(1) = ¢. And we define Py, as the
set Ug0€<1>q P,. Using the previous lemma, we can deduce that there exists a
TAHN T = (G, P) with G € CLIQUE such that ¢ is reachable in 7T iff we have

a symbolic configuration ¢ € Pg, such that ¢ = (mo, Q(S)ymbv‘)((fymbvng)

verifies the following points:
o Q™ (i) = g™t for all i € {1,...,mo};
o X3Py =0forallie{1,...,mo};
e i=o Lforallie{1,...,mp}.

Note that this last condition can be effectively tested on the set of symbolic
configurations Pg,_ which is finite and computable. Hence this allows us to
state the main result of this section.

Theorem 6. TAHN—Reach (CLIQUE, 1) is decidable.

5.2. Decidability of TAHN—Reach (STAR(1), 1)

A similar positive result can be obtained for TAHN with 1 clock restricted to
star connectivity graphs of depth 1. The only difference with the previous result
is that in a star of depth 1 we have to distinguish the root (the central node)
from the leaves. In fact, when the root performs a broadcast, it is transmitted
to all the leaf nodes, but when a leaf performs it, only the root can receive it.
However the previous proof can be easily adapted to this case. The main trick
consists in using symbolic configurations of the form (m, Qsymb_ ysymb 2)7 as
for the case of cliques, except that this time the index of the processes will go
from 0 to m and 0 will be the index of the central node. The rest of the proof
is then very similar to the previous construction; the bigger difference being in
the computation of symbolic discrete predecessors, where one need to make the
difference with a broadcast from the process 0 and one from the other processes.
This allows us to state our second decidability result for the reachability problem
restricted to protocols equipped with a single clock.

Theorem 7. TAHN—Reach (STAR(1),1) is decidable.

We point out the fact, that such a reasoning could not be adapted for star
topologies of depth strictly bigger than 1, because in that case we would need to
have a relation in the symbolic configurations to know which process is connected
to which other processes, and such a relation will break the possibility to have
a well-quasi-order on the symbolic configurations (as a matter of fact, we have
seen previously that the reachability problem is undecidable when considering
protocols with a single clocks and star topologies of depth 2).

31

6. Decidability with Discrete Time

In this section we consider the state reachability problem for Discrete Time
Ad Hoc Networks (DTAHN). In this model clocks range over the natural num-
bers instead of the reals. When using discrete time, it is enough to consider time
steps that advance the clocks one unit per time. Furthermore, we can restrict
the valuation of clocks to the finite range Q = {0, ..., u} where p = maz+1 and
max is the maximum constant used in the protocol rules. This follows from the
fact that, as soon as the clock associated to variable x reaches a value greater
than or equal to u, guards of the form x > ¢ [resp. = < ¢| remain enabled
[resp. disabled] forever. Therefore, beyond p we need not distinguish between
different values for the same clock [4].

Given a protocol P and a topology G = (V, E), a configuration ~ of the
associated DTAHN D is a pair (Q, X') defined as for TAHN except that the clock
valuation mapping is of the form X : V — [X — Q]. We denote by Cp the set of
configuration of D. Initial configurations are defined as for TAHN. In the sequel,
to simplify the handling of transition guards, without loss of generality we will
assume that guards occurring in rules of a protocol P = (Q, X, ¥, R, ¢"""*) have
form A cx x> ad A2 < b with az,b, € {0,...,max} for all 2 € X. This
normal form is well-defined since clocks have always an explicit lower bound
(which can be 0) and in case they do not have an explicit upper bound we
set it to the constant p. Since clock values range in {0,...,u}, the previous
restriction on guards does not affect the semantics. Furthermore, it is possible
to encode disjunctions and negations by adding multiple rules between the same
two states.

The semantics of the DTAHN D built over a protocol P is given by the
transition system (Cp,=p). The transition relation =>pC Cp X Cp is similar
to the one of TAHN for the discrete transition and by replacing the time step
by a discrete time step. For configurations v = (Q, X) and 7' = (Q', X’), we
write ¥ =>p 7/ iff these two configurations are in relation following the local or
broadcast rules defined for TAHN, or via a discrete time step defined as follows:
For all v € V and = € X, the following conditions are satisfied: Q(v") = Q(%),
X' (v)(x) = X(v)(x) + 1, it X(v)(z) < p X' (v)(x) = X(v)(x) = p, otherwise.

¢t 0 ¢t 0 gt 2 gt 2 qi,2 q3,0
qinit7 0 qz'nit7 0 qimt7 2 qimt7 2 qmit7 2 qimt7 2
q,3 q3,2 q1,3 3,2
:>D
qinit7 3 qinit7 3 qim't, 3 qa, 0

Figure 11: An example of discrete time execution

32

Ezxample.. On Figure 11, we present the example of a discrete time execution
for the DTAHN composed of the protocol given in Figure 1 and of the graph
represented in the Figure 11. As we will see later, it is often convenient to
represent the graph together with the configuration. Note that we have labelled
the node of the graph with the associated control states and clock value (the
protocol of Figure 1 is equipped of a single clock). This run corresponds to the
following step: a discrete time step of two units, then a broadcast of message
my then a discrete time steps of two units and finally a broadcast of message
mo . Note that we perform the second time step, some clocks get stucked to
the maximal value 3 as described by the operational semantics for DTAHN.

For a topology class Top and K > 0, DTAHN—Reach (7Top, K) denotes the
state reachability problem for the new model. We show next that state reach-
ability is decidable when restricting the topology to the class of bounded path
graphs BOUNDED(NV) for some N > 1.

In the sequel we consider a DTAHN D built over a protocol P. We first
introduce an ordering between the configurations with connectivity graph. For
this purpose, it is convenient to embed the connectivity graph G in the repre-
sentation of a configuration. Specifically, we consider extended configurations
defined by triples of the form v = (G, Q, X). Given two (extended) configura-
tions v = (G, Q,X) with G = (V, E) and v/ = (G', 9, X’) with G’ = (V', E’)
in Cp, we will write v < ~' iff there exists an injective function h : V > V'
such that: Yu,u' € V, (u,u’) € E if and only if (h(u),h(u')) € E’, and Yu € V,
Qu) = Q'(h(u)) and X(u) = X"(h(u)).

In the sequel we will restrict ourselves to configurations whose graphs belong
to BOUNDED(N) for some N > 1. We define C& as the set of configurations
{(G,9,X) € Cp | G € BOUNDED(N)} and (Cp, =) as the ordering over the
configurations of D. For a set of configuration S C Cp of the DTAHN D, we
denote Pre(S) the set {y € Cp | v =p 7/, v’ € S}. The following properties
then holds.

Proposition 3. The following properties hold:

(1) (CX, =) is a wqo for all N > 1.

(2) For v in Cp, we can algorithmically compute a finite set B such that 1 B =
Pre(t{+}).

Property (1) follows from the observation that < is the induced subgraph re-
lation for graphs with finitely many labels and from the wqo property of this
relation proved by Ding in [14]. Properties (2) follows from the results for un-
timed AHN in [11]. To extend the algorithm for computing a basis for Pre(1~')
described in [11] to discrete time steps we observe that, since the range of clocks
is restricted to the interval 2, we just need to collect all configurations obtained
by subtracting in the configuration 7’ the same constant value § > 0 s.t. the
resulting clock values remain all greater or equal than zero.

Ezxample. Consider a configuration of the protocol of Figure 1 containing a
single node whose associated control state is g5 and with clock value equal to 2.

33

CI472 qim?t72 Q472 qinit73

Figure 12: Example of predecessors

To compute predecessors for this configuration, we assume that we are working
over graph in BOUNDED(2). To reach gy, a process needs to receive a message
ms. Therefor we need to extend the configuration (ensuring we remain in the
topology BOUNDED(2)) with an additional node that corresponds to a process
from which this message has been broadcasted. The resulting configurations
are shown in Figure .

From proposition 3, we can apply the general results in [3] to decide state
reachability via a backward search algorithm working on upward closed sets of
extended configurations represented by their finite basis. The following theorem
then holds.

Theorem 8. DTAHN—Reach (BOUNDED(N), K) is decidable for N > 1, K > 0.

7. Related Work

In [20] German and Sistla propose a general framework for parameterized
verification of concurrent systems based on counting abstractions and reduc-
tions to Petri nets-like formalisms. The German-Sistla model is defined for fully
connected topologies, individual processes modelled via finite-state automata
and communication based on rendez-vous synchronization. Parameterized ver-
ification of concurrent systems in which the underlying communication topol-
ogy is modelled as a special class of graphs, e.g., rings, have been proposed in
[15, 16, 7, 6]. In [15] Emerson and Namjoshi provide small model properties
(cutoff properties) for a token-passing protocols in unidirectional rings that can
be applied to prove fragments of indexed CTL* properties. The results have
been extended by Aminof et al. in [6]. Decidability for token passing protocols
for arbitrary graphs have been studied in [7, 6].

Parameterized verification for broadcast communication has been studied
in [15, 17]. A forward, possibly non terminating, reachability algorithm has
been proposed in [15]. In [17] Esparza, Finkel and Mayr give a reduction of
the problem to coverability in an extension of Petri nets with transfer arcs.
Coverability is decidable in this model. The property can be proved by applying
the general results in [3, 19].

34

In [11, 12] the authors study decidability issues for parameterized verification
of a concurrent model with broadcast communication and communication topol-
ogy restricted by a graph, called AHN. The model is an untimed abstraction
that can be applied to specify protocols used for Ad Hoc Networks. Variations of
the model with node and link failures, asynchronous communication, and local
mailboxes has been studied in [10, 13, 9]. In [8] Clemente et al. give decidability
results for different classes of topologies for systems defined by communicating
automata with FIFO and bag channels.

Model checking for timed automata has been applied to verify protocols for
ad hoc networks with a fixed number of nodes in [18]. Models with a discrete
global clock and lazy exploration of configurations of fixed size has been consid-
ered in [24]. Formal specification languages for timed models of ad hoc networks
have been proposed, e.g., in [22]. In contrast to these works, we consider here
computability issues for verification of timed ad hoc networks with parametric
initial configurations.

Decidability of some cases is proved by resorting to an extension of Timed
Networks with Transfer. In the untimed case the combination of rendez-vous
and transfer is considered in a model called datanets, an untimed extension of
Petri nets in which processes have data taken from an ordered domain [21].

This paper extends with detailed proofs the preliminary work presented at
FORMATS ’11 [1].

8. Conclusions

We have studied local state reachability for Timed Ad Hoc Networks in
different classes of topologies and considering the number of clocks of each node
as a parameter. Fig. 13 shows a summary of our analysis. We also mention
decidability for DTAHN on cliques since, as for bounded paths, it derives from
an application of the theory of wsts. Undecidability for DTAHN on graphs with
bounded diameter follows instead from the result obtained in the untimed case
in [12].

DISCRETE BOUNDED DIAMETER(N,1) N>3

STAR(21) —— = BOUNDED(N.1) N5

STAR(1,1)

! CLIQUE(2)

CLIQUE(1)

DISCRETE BOUNDED(N,K) N>1 K>1
DISCRETE CLIQUE(N) N>1 UNDECIDABLE

DECIDABLE

Figure 13: Decidability and undecidability results for TAHN.

[1] P. A. Abdulla, G. Delzanno, O. Rezine, A. Sangnier, and Riccardo Traverso.
On the verification of timed ad hoc networks. In FORMATS, pages 256—
270, 2011.

35

2]

3]

[10]

P. A. Abdulla and B. Jonsson. Model checking of systems with many
identical timed processes. T'CS, 290(1):241-264, 2003.

P.A. Abdulla, K. Cerans, B. Jonsson, and Y.K. Tsay. General decidabil-
ity theorems for infinite-state systems. In LICS’96, pages 313-321. IEEE
Computer Society, 1996.

P.A. Abdulla, J. Deneux, and P. Mahata. Multi-clock timed networks. In
LICS’04, pages 345-354. IEEE Computer Society, 2004.

Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183-235, 1994.

B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model
checking of token-passing systems. In Verification, Model Checking, and
Abstract Interpretation - 15th International Conference, VMCAI 2014, San
Diego, CA, USA, January 19-21, 2014, Proceedings, pages 262-281, 2014.

E. M. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network
decomposition. In CONCUR 2004 - Concurrency Theory, 15th Interna-
tional Conference, London, UK, August 31 - September 3, 2004, Proceed-
ings, pages 276-291, 2004.

L. Clemente, F. Herbreteau, and G. Sutre. Decidable topologies for com-
municating automata with FIFO and bag channels. In CONCUR 2014
- Concurrency Theory - 25th International Conference, CONCUR 2014,
Rome, Italy, September 2-5, 2014. Proceedings, pages 281-296, 2014.

G. Delzanno, A. Sangnier, and R. Traverso. Parameterized verification
of broadcast networks of register automata. In Reachability Problems -
7th International Workshop, RP 2013, Uppsala, Sweden, September 24-26,
2013 Proceedings, pages 109-121, 2013.

G. Delzanno, A. Sangnier, R. Traverso, and G. Zavattaro. On the com-
plexity of parameterized reachability in reconfigurable broadcast networks.
In TARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012, Hy-
derabad, India, pages 289-300, 2012.

G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of
ad hoc networks. In CONCUR’10, volume 6269 of LNCS. Springer, 2010.

G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in
the parameterized verification of ad hoc networks. In FoSSaCS’11, volume
6604 of LNCS, pages 441-455. Springer, 2011.

G. Delzanno and R. Traverso. Decidability and complexity results for ver-
ification of asynchronous broadcast networks. In Language and Automata
Theory and Applications - Tth International Conference, LATA 2013, Bil-
bao, Spain, April 2-5, 2018. Proceedings, pages 238-249, 2013.

36

[14]

[15]

[23]

[24]

G. Ding. Subgraphs and well quasi ordering. J. of Graph Theory, 16(5):489—
502, 1992.

E. Allen Emerson and K. S. Namjoshi. On model checking for non-
deterministic infinite-state systems. In Thirteenth Annual IEEE Sympo-
stum on Logic in Computer Science, Indianapolis, Indiana, USA, June

21-24, 1998, pages 70-80, 1998.

E. Allen Emerson and K. S. Namjoshi. On reasoning about rings. Int. J.
Found. Comput. Sci., 14(4):527-550, 2003.

J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast pro-
tocols. In LICS’99, pages 352—-359. IEEE Computer Society, 1999.

A. Fehnker, L. van Hoesel, and A. Mader. Modelling and verification of
the LMAC protocol for wireless sensor networks. In IFM’07, volume 4591
of LNCS, pages 253-272. Springer, 2007.

A. Finkel and Ph. Schnoebelen. Well-structured transition systems every-
where! Theor. Comput. Sci., 256(1-2):63-92, 2001.

S. M. German and A. Prasad Sistla. Reasoning about systems with many
processes. J. ACM, 39(3):675-735, 1992.

R. Lazic, T. Newcomb, J. Ouaknine, A.-W. Roscoe, and J. Worrell. Nets
with tokens which carry data. Fund. Inf., 88(3):251-274, 2008.

M. Merro, F. F. Ballardin, and E. Sibilio. A timed calculus for wireless
systems. In Proc. of the 3rd Conference on Fundamentals of Software En-
gineering (FSEN’09), volume 5961 of LNCS, pages 228-243. Springer, 2010.

M. Saksena, O. Wibling, and B. Jonsson. Graph grammar modeling and
verification of Ad Hoc Routing Protocols. In TACAS’08, volume 4963 of
LNCS, pages 18-32. Springer, 2008.

A. Singh, C. R. Ramakrishnan, and S. A. Smolka. Query-based model
checking of ad hoc network protocols. In CONCUR’09, volume 5710 of
LNCS, pages 603—619. Springer, 2009.

37

Distributed local strategies in broadcast networks®

Nathalie Bertrand?!, Paulin Fournier?, and Arnaud Sangnier?

1 Inria Rennes Bretagne Atlantique

2 ENS Rennes, Univ Rennes 1
3 LIAFA, Univ Paris Diderot, Sorbonne Paris Cité, CNRS

—— Abstract

We study the problems of reaching a specific control state, or converging to a set of target states,
in networks with a parameterized number of identical processes communicating via broadcast.
To reflect the distributed aspect of such networks, we restrict our attention to executions in
which all the processes must follow the same local strategy that, given their past performed
actions and received messages, provides the next action to be performed. We show that the
reachability and target problems under such local strategies are NP-complete, assuming that the
set of receivers is chosen non-deterministically at each step. On the other hand, these problems
become undecidable when the communication topology is a clique. However, decidability can be
regained for reachability under the additional assumption that all processes are bound to receive
the broadcast messages.

1998 ACM Subject Classification F.3 Logics and Meanings of Programs, F.1.1 Models of Com-
putation

Keywords and phrases Broadcast Networks, Parameterized Verification, Local strategies

Digital Object ldentifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Parameterized models for distributed systems. Distributed systems are nowadays ubiquitous
and distribution is one of the main paradigms in the conception of computing systems.
Conceiving, analyzing, debugging and verifying such systems are tedious tasks which lately
received an increased interest from the formal methods community. Considering parametric
models with an unknown number of identical processes is a possible approach to tame
distributed systems in which all processes share the same code. It has the advantages to allow
one to establish the correctness of a system independently of the number of participants,
and to ease bugs detection by the possibility to adapt the number of processes on demand.

In their seminal paper on distributed models with many identical entities [14], German
and Sistla represent the behavior of a network by finite state machines interacting via ‘ren-
dezvous’ communications. Variants have then been proposed, to handle different commu-
nication means, like broadcast communication [11], token-passing [6, 2], message passing [5]
or shared memory [12]. In his nice survey on such parameterized models [10], Esparza
shows that minor changes, such as the presence or absence of a controller in the system,
can drastically modify the complexity of the verification problems. Another perspective for
parametric systems has been proposed by Bollig who studied their expressive power with
respect to logics over Message Sequence Charts [4].

* This work is partially supported by the ANR national research program ANR-14-CE28-0002 PACS.

© Nathalie Bertrand and Paulin Fournier and Arnaud Sangnier;
5v licensed under Creative Commons License CC-BY
Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1-15
Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

Local strategies in broadcast networks

Broadcast protocols. Among the various parametric models of networks, broadcast protocols,
originally studied by Esparza et al. [11], have later been analyzed under a new viewpoint,
leading to new insights on the verification problems. Specifically, a low level model to rep-
resent the main characteristics of ad-hoc networks has been proposed [8]: the network is
equipped with a communication topology and processes communicate via broadcast to their
neighbors. It was shown that, given a protocol represented by a finite state machine per-
forming internal actions, broadcasts and receptions of messages, the problem of deciding
whether there exists an initial communication topology from which one of the processes can
reach a specific control state is undecidable. The same holds for the target problem, which
asks whether all processes can converge to a set of target states. For both the reachability
and the target problems, decidability can however be regained, by considering communic-
ation topologies that can change non-deterministically at any moment [7]. Another option
to recover decidability of the reachability problem is to restrict the topologies to clique
graphs [9], yielding a model equivalent to broadcast protocols.
Local distributed strategies. In this paper, we consider the reachability and target problems
under a new perspective, which we believe could also be interesting for other ‘many identical
processes’ models. In such models, the protocol executed by each process is often described
by a finite state machine that can be non-deterministic. Therefore it may happen that two
processes behave differently, even if they have the same information on what has happened
so far in an execution. To forbid such non-truly distributed behaviors, we constrain processes
to take the same decisions in case they fired the same sequence of transitions so far. We
thus study the reachability and target problems in broadcast protocols restricted to local
strategies. Interestingly, the notably difficult distributed controller synthesis problem [15]
is relatively close to the problem of existence of a local strategy. Indeed a local strategy
corresponds to a local controller for the processes executing the protocol and whose role is
to resolve the non-deterministic choices.
Our contributions. First we show that the reachability and target problems under local
strategies in reconfigurable broadcast networks are NP-complete. To obtain the upper
bound, we prove that local strategies can be succinctly represented by a finite tree of poly-
nomial size in the size of the input protocol. This result is particularly interesting, because
deciding the existence of a local strategy is intrinsically difficult. Indeed, even with a fixed
number of processes, the locality constraint cannot be simply tested on the induced transition
system, and a priori local strategies may need unbounded memory. From our decidability
proofs, we derive an upper bound on the memory needed to implement the local strategies.
We also give cutoffs, i.e. upper bounds on the minimal number of processes needed to reach
or converge to target states. Second we show the two problems to be undecidable when
the communication topology is a clique. Moreover, the undecidability proof of the target
problem holds even if the locality assumption is dropped. However, the reachability prob-
lem under local strategies in clique is decidable (yet non-primitive recursive) for complete
protocols, i.e. when receptions are always possible from every state.

Due to lack of space, omitted details and proofs can be found in the companion research
report [3].

2 Networks of reconfigurable broadcast protocols
In this paper, given 4, j € N such that i < j, we let [i..j] = {k | i < k < j}. For a set F and

a natural £ > 0, let E¢ be the set of vectors v of size ¢ over E. For a vector v € E¢ and
i € [1..£], v[i] is the i-th component of v and |v| = ¢ its size. The notation Vg stands for

N. Bertrand and P. Fournier and A. Sangnier

the infinite set Jyen (o3 E* of all vectors over E. We will use the notation M(E) to denote
the set of multi-sets over E.

2.1 Syntax and semantics

We begin by presenting our model for networks of broadcast protocols. Following [8, 9, 7],
we assume that each process in the network executes the same (non-deterministic) broadcast
protocol given by a finite state machine where the actions are of three kinds: broadcast of
a message m (denoted by !lm), reception of a message m (denoted by ??m) and internal
action (denoted by €).

» Definition 1. A broadcast protocol is a tuple P = (Q, qo, X, A) with @ a finite set of control
states; go € @ the initial control state; ¥ a finite message alphabet and A C @ x ({!!m, 7?m |
m € X} U{e}) x Q a finite set of edges.

We denote by A(q) the set {(¢,e,¢') € A} U{(¢g,!!m,q") € A} containing broadcasts
and internal actions (called active actions) of P that start from state ¢. Furthermore, for
each message m € %, we denote by R,,,(q) the set {(g,??m,q’) € A} containing the edges
that start in state ¢ and can be taken on reception of message m. We say that a broadcast
protocol is complete if for every ¢ € @ and every m € X, R,,(q) # 0. Whether protocols
are complete or not may change the decidability status of the problems we consider (see
Section 4).

We now define the semantics associated with such a protocol. It is common to represent
the network topology by an undirected graph describing the communication links [7]. Since
the topology may change at any time (such an operation is called reconfiguration), we decide
here to simplify the notations by specifying, for each broadcast, a set of possible receivers that
is chosen non-deterministically. The semantics of a network built over a broadcast protocol
P =(Q,qo, %, A) is given by a transition system Tp = (I',T'g, =) where I' = Vg is the set of
configurations (represented by vectors over Q); I'op = V{4,} is the set of initial configurations
and —C T x N x A x 2V x T is the transition relation defined as follows: (v,p,d, R,v') €—

(also denoted by ~ LN ') iff |yl = |4/| and p € [1..]7]] and R C [1..]v]] \ {p} and one of
the following conditions holds:

Internal action: 6 = (y[p|,e,7[p]) and v'[p'] = ~[p'] for all p’ € [1..|]] \ {p} (the p-th
process performs an internal action).

Communication: ¢ = (y[p],!!m,~[p]) and (y[p'], ??m,~'[p']) € A for all p’ € R such
that R, (v[p']) # 0 , and /[p"] = ~[p”] for all p” € [1..]7]] \ (R U {p}) and for all
p”" € R such that R,,(y[p"]) = 0 (the p-th process broadcasts m to all the processes in
the reception set R).

Obviously, when an internal action is performed, the reception set R is not taken into
account. We point out the fact that the hypothesis |y| = |7/| implies that the number of pro-
cesses remains constant during an execution (there is no creation or deletion of processes).
Yet, Tp is an infinite state transition system since the number of possible initial configura-

tions is infinite. An ezecution of P is then a finite sequence of consecutive transitions in 7p

of the form 6 = ~, Po.b0.Ro, Y- Pede e, ve+1 and we denote by O[P] (or simply © when

P is clear from context) the set of all executions of P. Furthermore, we use nbproc(6) = |yo|
to represent the number of processes involved in the execution 6.

Local strategies in broadcast networks

2.2 Local strategies and clique executions

Our goal is to analyze executions of broadcast protocols under local strategies, where each
process performs the same choices of edges according to its past history (i.e. according to
the edges of the protocol it has fired so far).

A finite path in P is either the empty path, denoted by €, or a non-empty finite sequence
of edges dg - - - §¢ such that dy starts in go and for all ¢ € [1..£], §; starts in the state in which
d;—1 ends. For convenience, we say that e ends in state go. We write Path(P) for the set of
all finite paths in P.

For an execution 6 € ©[P], we define, for every p € [1..nbproc()], the past of process p
in 0 (also referred to as its history), written m,(6), as the finite path in P that stores the
sequences of edges of P taken by p along . We can now define local strategies which allow
us to focus on the executions in which each process performs the same choice according
to its past. A local strategy o for P is a pair (04,0,) of functions specifying, given a
history, the next active action to be taken, and the reception edge to choose when receiving
a message, respectively. Formally o, : Path(P) — (Q x ({!m | m € £} U {e}) x Q)
satisfies, for every p € Path(P) ending in q € @, either A(q) = 0 or o,(p) € A(q). Whereas
or : Path(P) x ¥ — (Q x {??m | m € ¥} x Q) satisfies, for every p € Path(P) ending in
q € Q and every m € X, either R,,(q) = 0 or o,.(p,m) € Ru(q).

Since our aim is to analyze executions where each process behaves according to the same
local strategy, we now provide the formal definition of such executions. Given a local strategy
o, we say that a path dg - - dy respects o if for all i € [0..£ — 1], we have §;11 = 04(d0...0;)
or 0;41 = 0,.(dp---0;,m) for some m € X. Following this, an execution 6 respects o if for
all p € [1..nbproc(0)], we have that m,(6) respects o (i.e. we have that each process behaves
as dictated by o). Finally we define ©, C © as the set of local executions (also called local
semantics), that is executions 6 respecting a local strategy.

We also consider another set of executions where we assume that every message is broad-

cast to all the processes of the network (apart from the emitter). Formally, an execution § =

Yo poSo B, pedeRe vet1 1s said to be a clique execution if Ry = [1,..., nbproc(6)]\ {pr}

for every k € [0..£]. We denote by ©¢ the set of clique executions (also called clique se-
mantics). Note that clique executions of broadcast networks have been studied in [9] and
that such networks correspond to broadcast protocols with no rendez-vous [11]. We will also
consider the intersection of these subsets of executions and write © ¢ for the set ©, N O
of clique executions which respect a local strategy.

2.3 \Verification problems

In this work we study the parameterized verification of the reachability and target properties
for broadcast protocols restricted to local strategies. The first one asks whether there exists
an execution respecting some local strategy and that eventually reaches a configuration
where a given control state appears, whereas the latter problem seeks for an execution
respecting some local strategy and that ends in a configuration where all the control states
belong to a given target set. We consider several variants of these problems depending on

whether we restrict to clique executions or not and to complete protocols or not.

5 Se.
For an execution 6 = g Po.00,Fo, M bede e, Yet1, we denote by End(6) = {ve11[p] |

p € [1..nbproc(6)]} the set of states that appear in the last configuration of . REACH[S],
the parameterized reachability problem for executions restricted to S € {£,C, LC} is defined
as follows:

Input: A broadcast protocol P = (Q, qo, X, A) and a control state g € Q.

N. Bertrand and P. Fournier and A. Sangnier

Output: Does there exist an execution 6 € Og such that gr € End(0)?
In previous works, the parameterized reachability problem has been studied without the
restriction to local strategies; in particular the reachability problem on unconstrained exe-
cutions is in PTIME [7] and REACH[C] is decidable and Non-Primitive Recursive (NPR) [9, 11]
(it is in fact Ackermann-complete [16]).

TARGET|S], the parameterized target problem for executions restricted to S € {£,C, LC}
is defined as follows:
Input: A broadcast protocol P = (Q, go, %, A) and a set of control states T C Q.
Output: Does there exist an execution 6 € Og such that End(#) C T?
It has been shown that a generalization of the target problem, without restriction to local
strategies, can be solved in NP [7]. In this work, we focus on executions under local strategies
and we obtain the results presented in the following table:

‘ REACH[L] ‘ REACH[LC] | Tarcer[c] | Tarcer[cC] |
NP - Undecidable [Thm. 9] NP - Undecidabl
-complete . -complete ndecidable
[Thm. 7] Decidable and NPR for complete [Thm. §] [Thm. 9]
protocols [Thm. 11]

Most of the problems listed in the above table are monotone: if, in a network of a given
size, an execution satisfying the reachability or target property exists, then, in any bigger
network, there also exists an execution satisfying the same property.

» Proposition 2. Let 6 be an execution in ©p [resp. Opc]. For every N > nbproc(f),
there exists 0" in O [resp. Orc] such that nbproc(0') = N and End(8) = End(¢’) [resp.
End(6) C End(¢’)/.

This monotonicity property allows us to look for cutoffs, i.e. minimal number of processes
such that a local execution with a given property exists. In this work, we provide upper-
bounds on these cutoffs for REACH[L] (Proposition 6) and TARGET[L] (Theorem 8.2). For
REACH[LC] restricted to complete protocols, given the complexity of the problem, such an
upper-bound would be non-primitive recursive and thus would not be of any practical use.

2.4 lllustrative example

7?7m lm

FAE)

€ 7?m .
m % € 'm m
v C@ \2) GT/ \"@/ @3 vem

£

Figure 1 Example of a broadcast protocol.

To illustrate the notions of local strategies and clique executions, we provide an example
of a broadcast protocol in Fig. 1. On this protocol no clique execution can reach state
qr: as soon as a process in gg sends message m, all the other processes in gy receive this
message, and move to g3, because of the clique topology. An example of a clique execution
is: (go, 40,90, 90) — (g1, 93, 43,q3) (where we omit the labels over —). However, there exists
a local execution reaching gr: (go,q0) — (¢1,90) — (¢r,q1). This execution respects a local
strategy since, from g with empty past, the first process chooses the edge broadcasting m

Local strategies in broadcast networks

with empty reception set and in the next step the second process, also with empty past,
performs the same action, broadcasting the message m to the first process. On the other
hand, no local strategy permits to reach ¢f. Indeed, intuitively, to reach ¢, in state gg
one process with empty past needs to go to ¢; and another one to gz, which is forbidden

by locality. Finally (g0, 40, 40) — (¢1,90,93) — (91,91,94) — (g3, 9z, gz) is a local execution
that targets the set T = {¢z}.

3 Verification problems for local executions

We begin with studying the parameterized reachability and target problems under local
executions, i.e. we seek for a local strategy ensuring either to reach a specific control state,
or to reach a configuration in which all the control states belong to a given set.

3.1 Solving Reach[/]

To obtain an NP-algorithm for REACH[L], we prove that there exists a local strategy to reach
a specific control state if and only if there is a local strategy which can be represented thanks
to a finite tree of polynomial size; the idea behind such a tree being that the paths in the tree
represent past histories and the edges outgoing a specific node represent the decisions of the
local strategy. The NP-algorithm will then consist in guessing such finite tree of polynomial
size and verifying if it satisfies some conditions needed to reach the specified control state.

Representing strategies with trees. We now define our tree representation of
strategies called strategy patterns, which are standard labelled trees with labels on the
edges. Intuitively a strategy pattern defines, for some of the paths in the associated pro-
tocol, the active action and receptions to perform.

A strategy pattern for a broadcast protocol P = (Q,qo, X, A) is a labelled tree T =
(N,no, E,A,lab) with N a finite set of nodes, ng € N the root, E C N x N the edge
relation and lab : E — A the edge-labelling function. Moreover T is such that if e --- ey is
a path in T, then lab(e1) - - - lab(eg) € Path(P), and for every node n € N: there is at most
one edge e = (n,n’) € E such that lab(e) is an active action; and, for each message m, there
is at most one edge e = (n,n’) € E such that lab(e) is a reception of m.

Since all labels of edges outgoing a node share a common source state (due to the
hypothesis on labelling of paths), the labelling function lab can be consistently extended to
nodes by letting lab(ng) = ¢ and lab(n) = ¢ for any (n’,n) € E with lab((n/,n)) = (¢, a, q).

The strategy pattern represented in Fig. 2, for the broadcast protocol from Fig. 1, illus-
trates that strategy patterns somehow correspond to under-specified local strategies. For
example, from node ny (labelled by ¢1) no reception of message m is specified, and from
node ns (labelled by ¢4) no reception and no active action are specified.

?? 1
(q37 cim, Q4) @ (q4,..m,q3) @

()
(q1,6,q1) (q1,7?m, QF)

Figure 2 A strategy pattern for the broadcast protocol depicted Fig. 1.

N. Bertrand and P. Fournier and A. Sangnier

More generally, given P a broadcast protocol, and T a strategy pattern for P with edge-
labelling function lab, a local strategy o = (04,0,) for P is said to follow T if for every
path e ---ep in T, the path p = lab(e1) - - - lab(eg) in P respects o. Notice that any strategy
pattern admits at least one local strategy that follows it.

Reasoning on strategy patterns. We now show that one can test directly on a
strategy pattern whether the local strategies following it can yield an execution reaching a
specific control state. An admissible strategy pattern for P = (Q, qo, 2, A) is a pair (T, <)
where T' = (N, ng, E, A, lab) is a strategy pattern for P and <C N x N is a strict total order
on the nodes of T such that:

(1) for all (n,n') € E we have n < n';
(2) foralle = (n,n') € E, if lab(e) = (lab(n), ??m, lab(n’)) for some m € ¥, then there exists
e1 = (n1,n}) in E such that n} < n' and lab(e;) = (lab(ny), !!m, lab(n})).

In words, (1) states that < respects the natural order on the tree and (2) that every node
corresponding to a reception of m should be preceded by a node corresponding to a broadcast
of m.

The example of strategy pattern on Fig. 2 is admissible with the order n; < n; if ¢ < 7,
whereas for any order including n3 < n4 it is not admissible (a broadcast of m should precede
ns). In general, given a strategy pattern T and a strict total order <, checking whether
(T, <) is admissible can be done in polynomial time (in the size of the pattern).

In order to state the relation between admissible strategy patterns and local strategies,
we define lab(T') = {lab(n) | n € N} as the set of control states labelling nodes of T and
Occur(0) = {vi[p] | i € [0..£+1] and p € [1..nbproc(0)]} as the set of states that appear along
an execution § = vy — -+ — yp4+1. The next proposition tells us that admissible strategy
patterns are necessary and sufficient to represent the sets of states that can be reached under
local strategies.

» Proposition 3. For all Q' C Q, there exists an admissible strategy pattern (T, <) such
that lab(T) = Q' iff there exists a local strategy o and an execution 0 such that 6 respects o
and Q" = Occur(0), furthermore o follows T.

Minimizing admissible strategy patterns. For (T, <) an admissible strategy pat-
tern, we denote by last(T, <) the maximal node w.r.t. < and we say that (T, <) is gp-
admissible if lab(last(T, <)) = gr. We now show that there exist polynomial size witnesses
of gr-admissible strategy patterns. The idea is to keep only relevant edges that either lead
to a node labelled by ¢z or that permit a broadcast of a new message. Intuitively, a min-
imal strategy pattern guarantees that (1) there is a unique node labelled with ¢, (2) in
every subtree there is either a node labelled by gz or a broadcast of a new message (i.e. a
broadcast of a message that has not been seen previously with respect to the order <), and
(3) a path starting and ending in two different nodes labelled by the same state, cannot be
compressed without losing a new broadcast or a path towards ¢ (by compressing we mean
replacing the first node on the path by the last one). These hypotheses allow us to seek only
for gp-admissible strategy patterns of polynomial size.

» Proposition 4. If there exists a qp-admissible strategy pattern for P, then there is one of
size at most (2|X| + 1) - (|Q| — 1) and of height at most (|| +1) - |Q)].

By Proposition 3, there exists an execution 6 € ©, such that gz € Occur(0) iff there exists
a gp-admissible strategy pattern and thanks to Proposition 4 it suffices to look only for ¢p-
admissible strategy patterns of size polynomial in the size of the broadcast protocol. A non-

Local strategies in broadcast networks

deterministic polynomial time algorithm for REACH[L] consists then in guessing a strategy
pattern of polynomial size and an order and then verifying whether it is ¢p-admissible.

» Theorem 5. REACH/L] is in NP.

We can furthermore provide bounds on the minimal number of processes and on the
memory needed to implement local strategies. Given a gp-admissible strategy pattern one
can define an execution following the pattern such that each reception edge of the pattern
is taken exactly once and active actions may be taken multiple times but in a row. Such an
execution needs at most one process per reception edge. Together with the bound on the
size of the minimal strategy patterns (see Proposition 4), this yields a cutoff property on the
minimal size of network to reach the final state. Moreover the past history of every process
in this execution is bounded by the depth of the tree, hence we obtain an upper bound on
the size of the memory needed by each process for REACH[L].

» Proposition 6. If there exists an execution 0 € ©p such that g € Occur(d), then there
exists an execution §' € O such that gr € Occur(0') and nbproc(¢’) < (2|1X|+1) - (|Q| — 1)
and |mp,(0")] < (X + 1) - |Q] for every p € [1..nbproc(6)].

e ?72¢2 274k

724E

qk

277201 2722 220k
Figure 3 Encoding a 3-SAT formula into a broadcast protocol.

By reducing 3-SAT, one can furthermore show REACH[L] to be NP-hard. Let ¢ =
Ai<ici (63 VEVES) be a 3-SAT formula such that € € {z1,—z1, ..., z,, ~2,} forall i € [1.A]
and j € {1,2,3}. We build from ¢ the broadcast protocol P depicted at Fig. 3. Under this
construction, ¢ is satisfiable iff there is an execution § € ©, such that g € Occur(0).
The local strategy hypothesis ensures that even if several processes broadcast a message
corresponding to the same variable, all of them must take the same decision so that there
cannot be any execution during which both x; and —x; are broadcast. It is then clear that
control state ¢, can be reached if and only if each clause is satisfied by the set of broadcast
messages. Together with Theorem 5, we obtain the precise complexity of REACH[L].

» Theorem 7. REACH/L] is NP-complete.

3.2 Solving Target[L]

Admissible strategy patterns can also be used to obtain an NP-algorithm for TARGET[L].
As we have seen, given an admissible strategy pattern, one can build an execution where
the processes visit all the control states present in the pattern. When considering the target
problem, one also needs to ensure that the processes can afterwards be directed to the target
set. To guarantee this, it is possible to extend admissible strategy patterns with another
order on the nodes which ensures that (a) from any node there exists a path leading to
the target set and (b) whenever on this path a reception is performed, the corresponding
message can be broadcast by a process that will only later on be able to reach the target.
We formalize now this idea. For T C @ a set of states, a T-coadmissible strategy pattern
for P = (Q,q0,%,A) is a pair (T, <1) where T = (N,ng, FE, A, lab) is a strategy pattern for

N. Bertrand and P. Fournier and A. Sangnier

P and <« € N x N is a strict total order on the nodes T such that for every node n € N
with lab(n) ¢ ¥ there exists an edge e = (n,n’) € E with n <n’ and either:

lab(e) = (lab(n), e, lab(n’)) or,

lab(e) = (lab(n),!!m, lab(n’)) or,

lab(e) = (lab(n),??m,lab(n’)) and there exists an edge e; = (n1,n}) € E such that
n<ini, n <4n} and lab(er) = (q1,!'m, q}).

Intuitively the order < in a T-coadmissible strategy pattern corresponds to the order in
which processes must move along the tree towards the target; the conditions express that
any node with label not in ¥ has an outgoing edge that is feasible. In particular, a reception
of m is only feasible before all edges carrying the corresponding broadcast are disabled.

A strategy pattern T equipped with two orderings < and < is said to be €-biadmissible
whenever (T, <) is admissible and (7, <) is T-coadmissible. To illustrate the construction

(g3, 77m, q4) m (qa,""'m, qz) @
>/ ’

@ Ty
(qeq) N/ (q1,7?m,qx) Q

Figure 4 A T-coadmissible strategy pattern on the example protocol of Fig. 1.

of T-coadmissble patterns, we give in Fig. 4 an example pattern, that, equipped with the

natural order n; <n; iff i < j, is T-coadmissible for T = {¢gz}. Indeed all leaves are labelled

with a target state, and the broadcast edge ns M ng allows all processes to take

the corresponding reception edges. This T-coadmissible pattern is in particular obtained
from the execution (qo,q0,q0) — (q1,93,9) — (q1,43,9) — (45,94, q1) — (¢z,q4, 1) —
(g=, g%, q<). Notice that < is not an admissible order, because ny <1 ns, however there are
admissible orders for this pattern, for example the order ng < ns < n3 < ng <Ny < ns < ng.

As for REACH[L], one can show polynomial size witnesses of ¥-biadmissible strategy
patterns exist, yielding an NP-algorithm for TARGET[L]. Also, the size of minimal ¥-
biadmissible strategy patterns gives here also a cutoff on the number of processes needed to
satisfy the target condition, as well as an upper bound on the memory size.

» Theorem 8. 1. TARGET/L] is NP-complete.

2. If there exists an execution 6 € O, such that End(0) C X, then there exists an execution
0’ € O such that End(0') C T and nbproc(0') < 162|-|1Q| +4|%| - (|Q| — |Z] + 1) and
|mp(0")] < 4[%] - Q[+ 2(|Q] — |T]) + 1 for every p < nbproc(0').

» Remark. The NP-hardness derives from the fact that the target problem is harder than
the reachability problem. To reduce REACH|L] to TARGET[L], one can add the broadcast of
a new message from gp, and its reception from any state to qg.

Another consequence of this simple reduction is that TARGET[L] in NP yields another
proof that REACH[L] is in NP, yet the two proofs of NP-membership allowed us to give an
incremental presentation, starting with admissible strategy patterns, and proceeding with
co-admissible strategy patterns.

10

Local strategies in broadcast networks

4 Verification problems for local clique executions

4.1 Undecidability of Reach[£C] and Target[L(]

REACH[LC] and TARGET[LC] happen to be undecidable and for the latter, even in the
case of complete protocols. The proofs of these two results are based on a reduction from
the halting problem of a two counter Minsky machine (a finite program equipped with two
integer variables which can be incremented, decremented and tested to zero). The main idea
consists in both cases in isolating some processes to simulate the behavior of the machine
while the other processes encode the values of the counters.

Thanks to the clique semantics we can in fact isolate one process. This is achieved by
setting the first transition to be the broadcast of a message start whose reception makes all
the other process change their state. Hence, thanks to the clique semantics, there is only one
process that sends the message start, such process, called the controller, will be in charge
of simulating the transitions of the Minsky machine. The clique semantics is also used to
correctly simulate the increment and decrement of counters. For instance to increment a
counter, the controller asks whether a process simulating the counter can be moved from
state 0 to state 1 and if it is possible, relying on the clique topology only one such process
changes its state (the value of the counter is then the number of processes in state 1). In
fact, all the processes will receive the request, but the first one answering it, will force the
other processes to come back to their original state, ensuring that only one process will move
from state 0 to 1.

The main difficulty is that broadcast protocols (even under the clique semantics) cannot
test the absence of processes in a certain state (which would be needed to simulate a test to 0
of one of the counters). Here is how we overcome this issue for TARGET[LC]: the controller,
when simulating a zero-test, sends all the processes with value 1 into a sink error state and
the target problem allows to check for the reachability of a configuration with no process
in this error state (and thus to test whether the controller has ‘cheated’, i.e. has taken a
zero-test transition whereas the value of the associated counter was not 0). We point out
that in this case, restricting to local executions is not necessary, we get in fact as well that
TARGET[C] is undecidable.

For REACH[LC], the reduction is more tricky since we cannot rely on a target set of states
to check that zero-test were faithfully simulated. Here in fact we will use two controllers.
Basically, before sending a start message, some processes will be able to go to a waiting state
(thanks to an internal transition) from which they can become controller and in which they
will not receive any messages (this is where the protocol needs to be incomplete). Then we
will use the locality hypothesis to ensure that two different controllers will simulate exactly
the same run of the Minsky machine twice and with exactly the same number of processes
encoding the counters. Restricting to local strategies guarantees the two runs to be identical,
and the correctness derives from the fact that if in the first simulation the controller ‘cheats’
while performing a zero-test (and sending as before some processes encoding a counter
value into a sink state), then in the second simulation, the number of processes encoding
the counters will be smaller (due to the processes blocked in the sink state), so that the
simulation will fail (because there will not be enough processes to simulate faithfully the
counter values).

» Theorem 9. REACH/LC] is undecidable and TARGET[LC] restricted to complete protocol
is undecidable.

The undecidability proof for REACH[LC(] strongly relies on the protocol being incomplete.

N. Bertrand and P. Fournier and A. Sangnier

Indeed, in the absence of specified receptions, the processes ignore broadcast messages and
keep the same history, thus allowing to perform twice the same simulation of the run.
In contrast, for complete protocols, all the processes are aware of all broadcast messages,
therefore one cannot force the two runs to be identical. In fact, the reachability problem is
decidable for complete protocols, as we shall see in the next section.

4.2 Decidability of Reach[£(] for complete protocols

To prove the decidability of REACH[LC] for complete protocols, we abstract the behavior of
a protocol under local clique semantics by counting the possible number of different histories
in each control state.

We identify two cases when the history of processes can differ (under local clique se-
mantics): (1) When a process p performs a broadcast, its history is unique for ever (since
all the other processes must receive the emitted message); (2) A set of processes sharing the
same history can be split when some of them perform a sequence of internal actions and the
others perform only a prefix of that sequence.

From a complete broadcast protocol P = (Q, o, 2, A) we build an abstract transition
system TAC = (A, \g,=) where configurations count the number of different histories in
each control state. More precisely the set of abstract configurations is A = M(Q x {m, s} x
{Mok, no}) x {e,11}. Abstract configurations are thus pairs where the first element is a
multiset and the second element is a flag in {e,!!}. The latter indicates the type of the next
actions to be simulated (sequence of internal actions or broadcast): it prevents to simulate
consecutively two incoherent sequences of internal actions (with respect to the local strategy
hypothesis). For the former, an element (g, s, !!,;) in the multiset represents a single process
(flag s) in state ¢ with a unique history which is allowed to perform a broadcast (flag !,x).
An element (g, m,!!,,) represents many processes (flag m) in state g, all sharing the same
unique history and none of them is allowed to perform a broadcast (flag !l,,,). The initial
abstract configuration g is then ({{(go,m,!!or)}},€). In the sequel we will write HM for
the set M(Q x {m,s} x {!l,x,":6}) of history multisets, so that A = HM x {e,!!}, and
typical elements of HM are denoted M, M/, etc.

In order to provide the definition of the abstract transition relation =, we need to
introduce new notions, and notations. An e-path p in P from ¢ to ¢ is either the empty
path (and in that case ¢ = ¢’) or it is a non-empty finite path dy - - - ,, that starts in ¢, ends
in ¢’ and such that all the §;’s are internal transitions.

An e-path p in P is said to be a prefiz of an e-path p’ if p # p’ and either p is the empty
path or p =g+ 6, and p' = dg -+ 00pna1 .. 0nim for some m > 0. Since we will handle
multisets, let us give some convenient notations. Given FE a set, and M a multiset over E, we
write M(e) for the number of occurrences of element e € E in M. Moreover, card(M) stands
for the cardinality of M: card(M) = ° .5 M(e). Last, we will write @ for the addition on
multisets: M @ M’ is such that for all e € E, (M & M')(e) = M(e) + M/ (e).

The abstract transition relation =€ A x A is composed of two transitions relations: one
simulates the broadcast of messages and the other one sequences of internal transitions.
This will guarantee an alternation between abstract configurations flagged with € and the
ones flagged with !l. Let us first define =y C (HM x {!}) x (HM x {e}) which simulates
a broadcast. We have (M,!l) =y (M, ¢) iff there exists (q1,!!m,q2) € A and fl; € {s,m}
such that

1. M(q1, f1;,"Nor) >0

11

12

Local strategies in broadcast networks

2. there exists a family of functions G indexed by (¢, f1,b) € Q x {m, s} x {!lox, N0}, such
that Gy ap : [1..M(q, f1,0)] — HM, and:

M’ = Haz s Mok}t @ @ @ G(‘Lﬂab) (4)

{(q.f1,)M(q,f1,b)#0} i€[1..M(q,f1,b)]

and such that for each (g, fl,b) verifying M(q, fI,b) # 0, for all i € [1.M(q, fI,b)], the
following conditions are satisfied:

a. if fl; =s, card(Gq, g, 1,,)(1)) = 0 and if fl;, = m, then there exists ¢’ € @ such that
Glgriy o) (1) = (¢, f11, 'ox) }} and such that (g, ??m,¢') € 4;
b. if (q,f1,b) # (q1,fl;,"k) or i # 1, then there exists ¢' € @ such that G(g a4 (i) =

{{(¢, fi,"or) }} and such that (¢, ??m,q¢’) € A.

Intuitively to provide the broadcast, we need to find a process which is ‘allowed’ to perform
a broadcast and which is hence associated with an element (g1, fl;, o) in M. The transition
(q1,"'m, g2) tells us which broadcast is simulated. Then the functions G4) associate with
each element of the multiset M of the form (g, fI,b) a single element which can be reached
thanks to a reception of the message m. Of course this might not hold for an element of
the shape (q1,s,!lor) if it is the one chosen to do the broadcast since it represents a single
process, and hence this element moves to g2. Note however that if fl; = m, then (g1, m,!!,%)
represents many processes, hence the one which performs the broadcast is isolated, but the
many other ones have to be treated for reception of the message. Note also that we use here
the fact that since an element (¢, m,b) represents many processes with the same history, all
these processes will behave the same way on reception of the message m.

We now define =.C (HM x {e}) x (HM x {!!}) which simulates the firing of sequences
of e-transitions. We have (M, ¢) =, (M',!!) iff there exists a family of functions F' indexed
by (¢, f1,b) € Q x {m,s} x {!lo, "o}, such that Fig a4 : [1..M(q, f,0)] = HM, and

M’ = b D Fuan

{(q.f1,b) M(q,f1,b)#0} i€[1..M(q.f1,b)]
and such that for each (g, f1,b) verifying M(q, f1,b) # 0, for all ¢ € [1..M(q, fI,b)], we have:

1. card(Fiq.a)(i)) > 1 and if fl =s, card(Fq a4 (1) = 1;

2. If Fg) ()(d, I,) # 0, then fi' = fi
3. There exists a pair (g, fl;) € Q x {m,s} such that:

Flann @) (qu, flu, Mor) =1
for all (¢', fI') # (a1, flu) Fia,n0)(0)(ds ', k) = 03
There exists a e-path py from ¢ to qn.
4. For all (¢, fI') such that F(, p)(i)(¢, fI',1ne) = k > 0, there exists k different e-paths
(strict) prefix of py from ¢ to ¢’.

Intuitively the functions F, g5) associate with each element (g, f1,b) of the multiset M a set
of elements that can be reached via internal transitions. We recall that each such element
represents a set (or a singleton if fl = s) of processes sharing the same history. Condition 1.
states that if there are multiple processes (fl = m) then they can be matched to more states
in the protocol, but if it is single (fl = s) it should be matched by an unique state. Condition
2. expresses that if an element in M represents many processes, then all its images represent
as well many processes. Conditions 3. and 4. deal with the locality assumption. Precisely,
condition 3. states that among all the elements of M’ associated with an element of M, one

N. Bertrand and P. Fournier and A. Sangnier

and only one should be at the end of a e-path, and only one process associated with this
element will be allowed to perform a broadcast. This justifies the use of the flag !!,x. Last,
condition 4. concerns all the other elements associated to this element of M: their flag is
set to !, (they cannot perform a broadcast, because the local strategy will force them to
take an internal transition), and their state should be on the previously mentioned e-path.

As announced, we define the abstract transitive relation by ===-. U =;. Note that by
definition we have a strict alternation of transitions of the type =. and of the type =1. An
abstract local cliqgue execution of P is then a finite sequence of consecutive transitions in T7§C
of the shape £ = A\g = A1 -+ = Agy1. As for concrete executions, if Apr1 = Myy1,tor1)
we denote by End(§) = {¢ | 3fl € {m,s}.3b € {lok, o} -Met1(g, fl,0) > 0} the set of states
that appear in the end configuration of .

As an example, a possible abstract execution of the broadcast protocol from Fig. 1 is:
({({(@0,m, M)} },€) = ({{(gor M, 1), (g2, M, 1), (g2, m, i)},). This single-step exe-
cution represents that among the processes in gg, some processes will take an internal action
to g2 and loop there with another internal action (they are represented by the element
(g2, m,!!,x)), others will only move to ¢ taking a single internal action (they are repres-
ented by (g2, m,!,,)), and finally some processes will stay in go (they are represented by
(go,m,!1,,,)); note that these processes are not able to perform a broadcast, because due to
the local strategy hypothesis, they committed to firing the internal action leading to go.

Another example of an abstract execution is: ({{(go, m,!lox)}},€) = ({{(go,m, "or)}}, 1)
= ({{(q1,8,Mor)s (g3, m, o)} },6) = ({{(q1,8,"ok), (g3, m, !,0), (g3, m, o) } },€). Here in
the first step, no process performs internal actions, in the second step one of the processes
in go broadcasts m, moves to ¢; and we know that no other process will ever share the same
history, it is hence represented by (g1, s, !!,x); then all the other processes with the same his-
tory represented by (go, m,!l,;) must receive m and move to g3, they are hence represented
by (g3, m,!!,;). The last step represents that some processes perform the internal action
loop on g3.

The definition of the abstract transition system 7;§C ensures a correspondence between
abstract local clique executions and local clique executions in P. Formally:

» Lemma 10. Let qp € Q. There exists an abstract local clique execution & of P such that
qr € End(&) iff there exists a local clique execution 6 € ©cc such that g € End(6).

Given the abstract transition system '7'7§C, in order to show that REACH[LC] is decidable,
we then rely on the theory of well-structured transition systems [1, 13]. Indeed, the natural
order on abstract configurations is a well-quasi-order compatible with the transition relation
= of 7;56 (bigger abstract configurations simulate smaller ones) and one can compute pre-
decessors of upward-closed sets of configurations. This allows us to conclude that, in 7}?6,
the set of all predecessors of a configuration where qr appears is effectively computable, so
that we can decide whether qp is reachable in TPLC, hence, thanks to the previous lemma,
in P.

We also show that REACH[LC] is non-primitive recursive thanks to a PTIME reduction
from REACH|C] (which is Ackermann-complete [16]) to REACH[LC]. We exploit the fact that
the only difference between the semantics C and LC is that in the latter, processes with the
same history take the same decision. We simulate this in C with a gadget which assigns a
different history to each individual process at the beginning of the protocol making hence
the reachability problem for C equivalent to the one with £C semantics.

» Theorem 11. REACH/LC] restricted to complete protocols is decidable and NPR.

13

14

Local strategies in broadcast networks

5 Conclusion

We considered reconfigurable broadcast networks under local strategies that rule out execu-
tions in which processes with identical local history behave differently. Under this natural
assumption for distributed protocols, the reachability and target problems are NP-complete.
Moreover, we gave polynomial bounds on the cutoff and on the memory needed by strategies.
When the communication topology is a clique, both problems become undecidable. Decid-
ability is recovered for reachability if we further assume that protocols are complete.

To the best of our knowledge, this is the first attempt to take into account the local
viewpoint of the processes in parameterized distributed systems. It could be interesting to
study how the method we propose in this work can be adapted to parameterized networks
equipped with other means of communication (such as rendez-vous [14] or shared memory
[12]). In the future we also plan to deal with properties beyond simple reachability objectives,
as for example linear or branching time properties.

—— References

1 Parosh A. Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. Algorithmic analysis
of programs with well quasi-ordered domains. Inf. Comput., 160(1-2):109-127, 2000.

2 Benjamin Aminof, Swen Jacobs, Ayrat Khalimov, and Sasha Rubin. Parameterized model
checking of token-passing systems. In Proc. of VMCAI’1}, volume 8318 of LNCS, pages
262-281, 2014.

3 Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Distributed local
strategies in broadcast networks. Research report, HAL, CNRS, France, July 2015.
https://hal.inria.fr /hal-01170796.

4 Benedikt Bollig. Logic for communicating automata with parameterized topology. In Proc.
of CSL-LICS’14, page 18. ACM, 2014.

5 Benedikt Bollig, Paul Gastin, and Jana Schubert. Parameterized verification of commu-
nicating automata under context bounds. In Proc. of RP’14, volume 8762 of LNCS, pages
45-57, 2014.

6 Edmund M. Clarke, Muralidhar Talupur, Tayssir Touili, and Helmut Veith. Verification by
network decomposition. In Proc. of CONCUR’04, volume 3170 of LNCS, pages 276-291,
2004.

7 Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, and Gianluigi Zavattaro. On the
complexity of parameterized reachability in reconfigurable broadcast networks. In Proc. of
FSTTCS’12, volume 18 of LIPIcs, pages 289-300. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2012.

8 Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized verification of
ad hoc networks. In Proc. of CONCUR’10, volume 6269 of LNCS, pages 313—-327. Springer,
2010.

9 Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. On the power of cliques in
the parameterized verification of ad hoc networks. In Proc. of FoSSaCS’11, volume 6604
of LNCS, pages 441-455. Springer, 2011.

10 Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verification
(invited talk). In Proc. of STACS’14, volume 25 of LIPIcs, pages 1-10. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2014.

11 Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast protocols.
In Proc. of LICS’99, pages 352-359. IEEE Computer Society, 1999.

N. Bertrand and P. Fournier and A. Sangnier

12

13

14

15

16

Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of asyn-
chronous shared-memory systems. In Proc. of CAV’13, volume 8044 of LNCS, pages 124—
140, 2013.

Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63-92, 2001.

Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes.
J. ACM, 39(3):675-735, 1992.

Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize. In
Proc. of FOCS’90, pages 746-757. IEEE Computer Society, 1990.

Sylvain Schmitz and Philippe Schnoebelen. The power of well-structured systems. In Proc.
of CONCUR’13, volume 8052 of LNCS, pages 5-24. Springer, 2013.

15

Reachability in Networks of Register Protocols
under Stochastic Schedulers*'

Patricia Bouyer!, Nicolas Markey!, Mickael Randour*?,
Arnaud Sangnier3, and Daniel Stan®

1 LSV — CNRS, ENS Cachan & University Paris-Saclay — France

2 Computer Science Department — Université Libre de Bruxelles — Belgium
3 IRIF — University Paris Diderot & CNRS — France

——— Abstract

We study the almost-sure reachability problem in a distributed system obtained as the asyn-
chronous composition of N copies (called processes) of the same automaton (called protocol),
that can communicate via a shared register with finite domain. The automaton has two types of
transitions: write-transitions update the value of the register, while read-transitions move to a
new state depending on the content of the register. Non-determinism is resolved by a stochastic
scheduler. Given a protocol, we focus on almost-sure reachability of a target state by one of the
processes. The answer to this problem naturally depends on the number N of processes. How-
ever, we prove that our setting has a cut-off property: the answer to the almost-sure reachability
problem is constant when N is large enough; we then develop an EXPSPACE algorithm deciding
whether this constant answer is positive or negative.

1998 ACM Subject Classification F.1.1 Models of Computation, F.3.1 Specifying and Verifying
and Reasoning about Programs, C.2.2 Network Protocols

Keywords and phrases Networks of Processes, Parametrized Systems, Stochastic Scheduler,
Almost-sure Reachability, Cut-Off Property

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Verification of systems with many identical processes. It is a classical pattern in distributed
systems to have a large number of identical components running concurrently (a.k.a. networks
of processes). In order to verify the correctness of such systems, a naive option consists
in fixing an upper bound on the number of processes, and applying classical verification
techniques on the resulting system. This has several drawbacks, and in particular it gives
no information whatsoever about larger systems. Another option is to use parameterized-
verification techniques, taking as a parameter the number of copies of the protocol in the
system being considered. In such a setting, the natural question is to find and characterize,
if it exists, an infinite set of parameter values for which the system is correct. Not only the
latter approach is more general, but it might also turn out to be easier and more efficient,
since it involves orthogonal techniques.

* A full version of the paper is available on Arxiv [7]

t This work has been partly supported by ERC Starting grant EQuallS (FP7-308087) and by European
FET project Cassting (FP7-601148) by the ANR research program PACS (ANR-14-CE28-0002).

¥ F.R.S.-FNRS Postdoctoral Researcher.

© Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan;
Bv licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1-23:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

23:2

Reachability in Networks of Register Protocols under Stochastic Schedulers

Different means of communication lead to different models. A seminal paper on para-
meterized verification of such distributed systems is the work of German and Sistla [17].
In this work, the authors consider networks of processes all following the same finite-state
automaton; the communication between processes is performed thanks to rendez-vous com-
munication. Various related settings have been proposed and studied since then, which
mainly differ by the way the processes communicate. Among those, let us mention broadcast
communication [15, 10], token-passing [8, 2], message passing [6], shared register with ring
topologies [1], or shared memory [16]. In his nice survey on such parameterized models [14],
Esparza shows that minor changes in the setting, such as the presence of a controller in the
system, might drastically change the complexity of the verification problems. The relative
expressiveness of some of those models has been studied recently in [3], yielding several
reductions of the verification problems for some of those classes of models.

Asynchronous shared-memory systems. We consider a communication model where the
processes asynchronously access a shared register, and where read and write operations on this
register are performed non-atomically. A similar model has been proposed by Hague in [18],
where the behavior of processes is defined by a pushdown automaton. The complexity of some
reachability and liveness problems for shared-memory models have then been established
in [16] and [11], respectively. These works consider networks in which a specific process, called
the leader, runs a different program, and address the problem whether, for some number
of processes, the leader can satisfy a given reachability or liveness property. In the case
where there is no leader, and where processes are finite-state, the parameterized control-state
reachability problem (asking whether one of the processes can reach a given control state) can
be solved in polynomial time, by adapting the approach of [9] for lossy broadcast protocols.

Fairness and cut-off properties. In this work, we further insert fairness assumptions in the
model of parameterized networks with asynchronous shared memory, and consider reachability
problems in this setting. There are different ways to include fairness in parameterized models.
One approach is to enforce fairness expressed as a temporal-logic properties on the executions
(e.g., any action that is available infinitely often must be performed infinitely often); this is
the option chosen for parameterized networks with rendez-vous [17] and for systems with
disjunctive guards (where processes can query the states of other processes) in [4]. We follow
another choice, by equipping our networks with a stochastic scheduler that, at each step of the
execution, assigns the same probability to the available actions of all the processes. From a
high-level perspective, both forms of fairness are similar. However, expressing fairness via
temporal logic allows for very regular patterns (e.g., round-robin execution of the processes),
whereas the stochastic approach leads to consider all possible interleavings with probability 1.
Under this stochastic scheduler assumption, we focus on almost-sure reachability of a given
control state by any of the processes of the system. More specifically, as in [4], we are
interested in determining the existence of a cut-off, i.e., an integer k such that networks
with more than k processes almost-surely reach the target state. Deciding the existence
and computing such cut-offs is important for at least two aspects: first, it ensures that the
system is correct for arbitrarily large networks; second, if we are able to derive a bound on
the cut-off, then using classical verification techniques we can find the exact value of the
cut-off and exactly characterize the sizes of the networks for which the behavior is correct.

Our contributions. We prove that for finite-state asynchronous shared-memory protocols
with a stochastic scheduler, and for almost-sure reachability of some control state by some
process of the network, there always exists a positive or negative cut-off; positive cut-offs are
those above which the target state is reached with probability 1, while negative cut-offs are
those above which the target state is reached with probability strictly less than 1. Notice

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan

that both cut-offs are not complement of one another, so that our result is not trivial.

We then prove that the “sign” (positive or negative) of a cut-off can be decided in
EXPSPACE, and that this problem is PSPACE-hard. Finally, we provide lower and upper
bounds on the values of the cut-offs, exhibiting in particular protocols with exponential
(negative) cut-off. Notice how these results contrast with classical results in related areas: in
the absence of fairness, reachability can be decided in polynomial time, and in most settings,
when cut-offs exist, they generally have polynomial size [4, 13, 12].

2 Presentation of the model and of the considered problem

2.1 Preliminaries.

Let S be a finite set. A multiset over S is a mapping p: S — N. The cardinality of a
multiset p is |pu| = > g p(s). The support 7z of p is the subset v C S s.t. for all s € S,
it holds s € v if, and only if, u(s) > 0. For k € N, we write N¥ for the set of multisets of
cardinality k over S, and N° for the set of all multisets over S. For any s € S and k € N,
we write s¥ for the multiset where s*(s) = k and s¥(s’) = 0 for all s’ # s. We may write s
instead of s! when no ambiguity may arise. A multiset p is included in a multiset p/, written
w o/, if u(s) < p/(s) for all s € . Given two multisets p and g/, their union pu @ p’ is
still a multiset s.t. (u @ p')(s) = u(s) + p'(s) for all s € S. Assuming p C p/, the difference
@ © pis still a multiset s.t. (p' © p)(s) = w'(s) — p(s).

A quasi-order (A, <) is a well quasi-order (wqo for short) if for every infinite sequence
of elements ai,as,... in A, there exist two indices ¢ < j such that a; < a;. For instance,
for n > 0, (N™ <) (with lexicographic order) is a wqo. Given a set A with an ordering =<
and a subset B C A, the set B is said to be upward closed in A if for all a; € B and
ag € A, in case a1 = ag, then as € B. The upward-closure of a set B (for the ordering <),
denoted by 1< (B) (or sometimes 1(B) when the ordering is clear from the context), is the
set {a € A|3be Bst. b=a}. If (A, =) is a wqo and B is an upward closed set in A, there
exists a finite set of minimal elements {by,...,bx} such that B = 1{by,...,bg}.

2.2 Register protocols and associated distributed system.

We focus on systems that are defined as the (asynchronous) product of several copies of the
same protocol. Each copy communicates with the others through a single register that can
store values from a finite alphabet.

» Definition 1. A register protocol is given by P = (Q, D, qo, T)

@ is a finite set of control locations;

D is a finite alphabet of data for the shared register;

go € @ is an initial location;

TCQx{R,W} x D x (Q is the set of transitions of the protocol. Here R means read

the content of the shared register, while W means write in the register.
In order to avoid deadlocks, it is required that each location has at least one outgoing
transition. We also require that whenever some R-transition (¢, R, d, ¢") appears in T, then
for all d € D, there exists at least one g4 € @ such that (¢, R,d,qq) € T. The size of the
protocol P is given by |Q| + |T.

» Example l.a. Figure 1 displays a small register protocol with four locations, over an
alphabet of data D = {0,1,2}. In this figure (and in the sequel), omitted R-transitions
(e.g., transitions R(1) and R(2) from qo) are assumed to be self-loops. When the register

23:3

CVIT 2016

23:4

Reachability in Networks of Register Protocols under Stochastic Schedulers

contains 0, this protocol may move from initial location qo to location q1. From there it can
write 1 in the register, and then move to qa. From qo, as long as the register contains 1, the
process can either stay in qo (with the omitted self-loop R(1)), or write 2 in the register and
Jump back to qi. It is easily seen that if this process executes alone, it cannot reach state qy.

We now present the semantics of distributed systems associated with our register protocols.
We consider the asynchronous composition of several copies of the protocol (the number
of copies is not fixed a priori and can be seen as a parameter). We are interested in the
behavior of such a composition under a fair scheduler. Such distributed systems involve two
sources of non-determinism: first, register protocols may be non-deterministic; second, in
any configuration, all protocols have at least one available transition, and non-determinism
arises from the asynchronous semantics. In the semantics associated with a register protocol,
non-determinism will be solved by a randomized scheduler, whose role is to select at each
step which process will perform a transition, and which transition it will perform among the
available ones. Because we will consider qualitative objectives (almost-sure reachability),
the exact probability distributions will not really matter, and we will pick the uniform one
(arbitrary choice). Note that we assume non-atomic read/write operations on the register, as
in [18, 16, 11]. More precisely, when one process performs a transition, then all the processes
that are in the same state are allowed to also perform the same transition just after, in fact
write are always possible, and if a process performs a read of a specific value, since this read
does not alter the value of the register, all processes in the same state can perform the same
read (until one process performs a write). We will see later that dropping this hypothesis
has a consequence on our results. We now give the formal definition of such a system.

The configurations of the distributed system built on register protocol P = (Q, D,
qo, T) belong to the set I' = N@ x D. The first component of a configuration is a multiset
characterizing the number of processes in each state of (), whereas the second component
provides the content of the register. For a configuration v = (u, d), we denote by st(y) the
multiset x in N? and by data() the data d in D. We overload the operators defined over
multisets; in particular, for a multiset 0 over @), we write v @ ¢ for the configuration (1 ® 0, d).
Similarly, we write 7 for the support of st(7).

A configuration v = (i, d’) is a successor of a configuration v = (u,d) if, and only if,
there is a transition (g, op,d”,q’) € T such that u(q) >0, ' = p© q¢® ¢ and either op = R
and d=d =d",orop=W and d = d”. In that case, we write v — v'. Note that since
u(q) > 0and ¢/ = p & q® ¢, we have necessarily |p| = |¢/|. In our system, we assume
that there is no creation or deletion of processes during an execution, hence the size of
configurations (i.e., |st(y)|) remains constant along transitions. We write I'y, for the set of
configurations of size k. For any configuration v € Iy, we denote by Post(y) C I'y the set of
successors of v, and point out that such a set is finite and non-empty.

Now, the distributed system Sp associated with a register protocol P is a discrete-time
Markov chain (I', Pr) where Pr: I' x I" — [0, 1] is the transition probability matrix defined
as follows: for all v and +' € T', we have Pr(v,v') = IF’TM if y =+, and Pr(v,7') =0
otherwise. Note that Pr is well defined: by the restriction imposed on the transition

w(1) w(2) W(2)

VRN
». R(0) @ R, P R(2) @

Figure 1 Example of a register protocol with D = {0, 1,2}.

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan

relation T of the protocol, we have 0 < |Post(y)| < oo for all configuration v, and hence we
also get X cr Pr(7,7') = 1. For a fixed integer k, we define the distributed system of size k
associated with P as the finite-state discrete-time Markov chain 87’% = (T'k, Pry), where Pry,
is the restriction of Pr to I'y, x T'y.

We are interested in analyzing the behavior of the distributed system for a large number of
participants. More precisely, we are interested in determining whether almost-sure reachability
of a specific control state holds when the number of processes involved is large. We are
therefore seeking a cut-off property, which we formalize in the following.

A finite path in the system Sp is a finite sequence of configurations v9 — 71... = V.
In such a case, we say that the path starts in 7y and ends in 7;. We furthermore write
v —* 4" if, and only if, there exists a path that starts in and ends in 4'. Given a location ¢y,
we denote by [Ogy] the set of paths of the form vy — 71 ... — v, for which there is i € [0; k]
such that st(v;)(gs) > 0. Given a configuration v, we denote by P(v, [Ogy]) the probability
that some paths starting in v belong to [0gs] in Sp. This probability is well-defined since
the set of such paths is measurable (see e.g., [5]). Given a register protocol P = (Q, D,
¢o,T'), an initial register value dy, and a target location ¢y € @, we say that ¢ is almost-surely
reachable for k processes if P((gk, do), [Oqs]) = 1.

» Example 1.b. Consider again the protocol depicted in Fig. 1, with initial register content 0.
As we explained already, for k = 1, the final state is not reachable at all, for any scheduler
(here as k =1, the scheduler only has to solve non-determinism in the protocol).

When k = 2, one easily sees that the final state is reachable: it suffices that both processes
go to qo together, from where one process may write value 2 in the register, which the
other process can read and go to qr. Notice that this does not ensure that gy is reachable
almost-surely for this k (and actually, it is not; see Example 1.c).

We aim here at finding cut-offs for almost-sure reachability, i.e., we seek the existence of
a threshold such that almost-sure reachability (or its negation) holds for all larger values.

» Definition 2. Fix a protocol P = (Q, D, qo,T), do € D, and g5 € Q). An integer k € Nisa
cut-off for almost-sure reachability (shortly a cut-off) for P, dy and ¢ if one of the following
two properties holds:

for all h > k, we have P((qf, do), [0gs]) = 1. In this case k is a positive cut-off;

for all h > k, we have P((qf, do), [0gqs]) < 1. Then k is a negative cut-off.
An integer k is a tight cut-off if it is a cut-off and k& — 1 is not.

Notice that from the definition, cut-offs need not exist for a given distributed system.
Our main result precisely states that cut-offs do always exist, and that we can decide their
nature.

» Theorem 3. For any protocol P, any initial register value do and any target location gy,
there always exists a cut-off for almost-sure reachability, whose value is at most doubly-
exponential in the size of P. Whether it is a positive or a negative cut-off can be decided in
EXPSPACE, and is PSPACE-hard.

» Remark. When dropping the condition on non-atomic read/write operations , and allowing
transitions with atomic read/write operations (i.e. one process is ensured to perform a read
and a write operation without to be interrupted by another process), the existence of a
cut-off (Theorem 3) is not ensured. This is demonstrated with the protocol of Fig. 2 : one
easily checks (e.g., inductively on the number of processes, since processes that end up in go
play no role anymore) that state ¢ is reached with probability 1 if, and only if, the number
of processes is odd.

23:5

CVIT 2016

23:6 Reachability in Networks of Register Protocols under Stochastic Schedulers

R(0)) R(1)
w(1) W/V

(0)
R(2);W (0

Figure 2 Example of a register protocol with atomic read/write operations.

-
-

’ W(Q) S e

R(l (n— 2) (n— 1)

Figure 3 A “filter” protocol F,, for n > 0.

3 Properties of register protocols

3.1 Example of a register protocol

We illustrate our model with a family of register protocols (F7),,, depicted in Fig. 3. For a
fixed n, protocol F, has n + 1 states and n different data; intuitively, in order to move
from s; to s;41, two processes are needed: one writes ¢ in the register and goes back to sg,
and the second process can proceed to s; 11 by reading 7. Since backward transitions to sy are
always possible and since states can always exit sg by writing a 0 and reading it afterwards,
no deadlock can ever occur so the main question remains to determine if s,, is reachable by
one of the processes as we increase the number of initial processes. As shown in Lemma 4,
the answer is positive: JF,, has a tight linear positive cut-off; it actually behaves like a “filter”,
that can test if at least n processes are running together. We exploit this property later in
Section 4.4.

» Lemma 4. Fizn € N. The “filter” protocol F,,, depicted in Fig. 3, with initial register
value 0 and target location s,, has a tight positive cut-off equal to n.

3.2 Basic results

In this section, we consider a register protocol P = (Q, D, qo, T'), its associated distributed
system Sp = (I', Pr), an initial register value dy € D and a target state g5 € Q. We define a
partial order < over the set T' of configurations as follows: (u,d) < (u/,d’) if, and only if,
d=d and p =/ and pu C /. Note that with respect to the classical order over multisets,
we require here that the supports of p and u' be the same (we add in fact a finite information
to hold for the comparison). We know from Dickson’s lemma that (N, C) is a wqo and since
Q, D and the supports of multisets in N? are finite, we can deduce the following lemma.

» Lemma 5. (T, <) is a wqo.

We will give some properties of register protocols, but first we introduce some further
notations. Given a set of configuration A CT', we define Pre*(A) and Post™(A) as follows:

Pre"(A)={yeT | € Ay —=>*+} Post*(A)={+" €T |Iy e Ay =* 4}

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan

We also define the set [gf] of configurations we aim to reach as {y € I" | st(y)(qs) > 0}.
It holds that v € Pre*([¢s]) if, and only if, there exists a path in [Qgs] starting in ~.

As already mentioned, when (i, d) — (¢, d’) in Sp, then |u| = |¢/], i.e., the multisets u
and g/ have the same cardinality. This implies that given k > 0, the set Post™({(¢¥,do)}) is
finite (remember that @ and D are finite). As a consequence, for a fixed k, checking whether
P({gk,do),[0gs]) = 1 can be easily achieved by analyzing the finite-state discrete-time
Markov chain S [5].

» Lemma 6. Let k > 0. We have P((q},do), [Ogr]) = 1 if, and only if, Post™({{qk,do)}) C
Pre”([gy])-

The difficulty here precisely lies in finding such a k£ and in proving that, once we
have found one correct value for k, all larger values are correct as well (to get the cut-off
property). Characteristics of register protocols provide us with some tools to solve this
problem. We base our analysis on reasoning on the set of configurations reachable from
initial configurations in 1{{go,do)} (the upward closure of {({qo,dp)} w.r.t. <), remember
that since the order (I', <) requires equality of support for elements to be comparable, we
have that 1{(qo,do)} = UkeN\{O}{@(’f, dp)}. We begin by showing that this set of reachable
configurations and the set of configurations from which [g¢;] is reachable are both upward-
closed. Thanks to Lemma 5, they can be represented as upward closures of finite sets.
To show that Post™(1{{(qo,do)}) is upward-closed, we prove that register protocols enjoy the
following monotonicity property. A similar property is given in [11] and derives from the
non-atomicity of operations.

» Lemma 7. Let v1, 2, and 74 be configurations in T'. If v1 —* v2 and vo < v, then there
exists v; € T such that v; —* 7% and v1 < ;.

We point out that Pre*([gr]) is clearly upward-closed, since if [g¢] can be reached from
some configuration ~, it can also be reached by a larger configuration by keeping the extra
copies idle. As a corollary:

» Lemma 8. Post™(1{(qo,do)}) and Pre*([q¢]) are upward-closed sets in (I', <).

3.3 Existence of a cut-off

From Lemma 8, and from the fact that (T, <) is a wqo, there must exist two finite sequences
of configurations (0;)1<i<n and (1;)1<i<m such that Post* (1{(go,do)}) = 1{61,...,60,} and
Pre*([gr]) = Mm,-...nm}. By analyzing these two sequences, we now prove that any
register protocol has a cut-off (for any initial register value and any target location).

We let A; A’ C T be two upward-closed sets (for <). We say that A is included in A’
modulo single-state incrementation whenever for every v € A, for every g € 7, there is some
k € N such that v @ ¢* € A’. Note that this condition can be checked using only comparisons
between minimal elements of A and A’. In particular, we have the following lemma.

» Lemma 9. Post™(1{(qo,do)}) is included in Pre*([qf]) modulo single-state incrementation
if, and only if, for all i € [1;n], and for all q € 0;, there exists j € [1;m] such that
data(0;) = data(n;) and 0; = n; and st(n;)(¢') < st(0:;)(¢') for all ¢ € Q\ {g}.

Using the previous characterization of inclusion modulo single-state incrementation for
Post™ (1{(qo, do) }) and Pre*([qs]) together with the result of Lemma 6, we are able to provide
a first characterization of the existence of a negative cut-off.

23:7

CVIT 2016

23:8

Reachability in Networks of Register Protocols under Stochastic Schedulers

» Lemma 10. If Post™(1{(qo,do)}) is not included in Pre*([qs]) modulo single-state incre-
mentation, then maxi<;<n(|st(6;)]) is a negative cut-off.

We now prove that if the condition of Lemma 10 fails to hold, then there is a positive
cut-off.In order to make our claim precise, for every i € [1;n] and for any ¢ € 0;, we let

di,q = max{(|st(n;)(q) — st(0:)(q)]) | 1 < j < m and 0; =7}

» Lemma 11. If Post™(1{(qo,do)}) is included in Pre*([qs]) modulo single-state increment-
ation, then maxi<i<n(|st(6:)| + X_, 5 di,q) 15 a positive cut-off.

The last two lemmas entail our first result:

» Theorem 12. Any register protocol admits a cut-off (for any given initial register value
and target state).

4 Detecting negative cut-offs

We develop an algorithm for deciding whether a distributed system associated with a register
protocol has a negative cut-off. Thanks to Theorem 12, this can also be used to detect
the existence of a positive cut-off. Our algorithm relies on the construction and study of
a symbolic graph, as we define below: for any given protocol P, the symbolic graph has
bounded size, but can be used to reason about arbitrarily large distributed systems built
from P. It will store sufficient information to decide the existence of a negative cut-off.

4.1 k-bounded symbolic graph

In this section, we consider a register protocol P = (Q, D, qo,T), its associated distributed
system Sp = (I, Pr), an initial register value dy € D, and a target location g5 € @ of P.
With P, we associate a finite-state graph, called symbolic graph of index k, which for k large
enough contains enough information to decide the existence of a negative cut-off.

» Definition 13. Let k& be an integer. The symbolic graph of indezx k associated with P and
dp is the transition system G = (V, v, E) where
V= Ng x 29 x D contains triples made of a multiset of states of Q of size k, a subset
of @, and the content of the register; the multiset (called concrete part hereafter) is used
to exactly keep track of a fixed set of k processes, while the subset of @ (the abstract
part) encodes the support of the arbitrarily many remaining processes;

vo = (a5, {qo}, {do});
transitions are of two types, depending whether they involve a process in the concrete part
or a process in the abstract part. Formally, there is a transition (u,S,d) — (¢, S’,d’)
whenever there is a transition (¢,0,d”,¢’) € T such that d = d = d"” if O = R and
d =d" if O =W, and one of the following two conditions holds:

either S = S and ¢ C p (that is, u(g) > 0) and 4/ = p© ¢ & ¢';

or p=p' and g€ Sand S € {S\{qtU{d},SU{d}}.

The symbolic graph of index k can be used as an abstraction of distributed systems made
of at least k + 1 copies of P: it keeps full information of the states of k£ processes, and only
gives the support of the states of the other processes. In particular, the symbolic graph of
index 0 provides only the states appearing in each configuration of the system.

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan

» Example 1.c. Consider the protocol depicted in Fig. 1. Its symbolic graph of index 0 is
depicted in Fig. 4 (where self-loops have been omitted). Notice that the final state (representing
all configurations containing qr) is reachable from any state of this symbolic graph. However,
our original protocol P of Fig. 1 does not have a positive cut-off (assuming initial register
value 0): indeed, with positive probability, a single process will go to g1 and immediately
writes 1 in the register, thus preventing any other process to leave qq; then one may check
that the process in q1 alone cannot reach qy, so that the probability of reaching qy from qé’ 18
strictly less than 1, for any k > 0. This livelock is not taken into account in the symbolic
graph of index 0, because from any configuration with support {qo,q1} and register data equal
to 1, the symbolic graph has a transition to the configuration with support {qo,q1,q2}, which
only exists in the concrete system when there are at least two processes in q1. As we prove in
the following, analyzing the symbolic graph for a sufficiently large index guarantees to detect
such a situation.

/—>

D

{90, 91}, 1 {90, q1,q2},1 {90, 41, q2},2 all sets
{90 containing
{Q1 }7 2 af

e By

Figure 4 Symbolic graph (of index 0) of the protocol of Fig. 1 (self-loops omitted).

For any index k, the symbolic graph achieves the following correspondence:

» Lemma 14. Given two states (i, S,d) and (', S, d’), there is a transition from (p, S, d)
to (u',S",d’) in the symbolic graph G of index k if, and only if, there exist multisets & and &'
with respective supports S and S’, and such that {(u ® 6,d) — (' ® ', d') in Sp.

4.2 Deciding the existence of a negative cut-off

We now explain how the symbolic graph can be used to decide the existence of a negative
cut-off. As said in Lemma 8, the set Pre*([¢r]) is upward-closed in (I', <) and there is a finite
set of configurations {n; = (u;,d;) | 1 < i < m} such that Pre*([qr]) = {n: | 1 <@ < m}.
We let K = max{st(n;)(q) | ¢ € @, 1 <i < m}. We show in this part that for our purpose,
it is enough to consider the symbolic graph of index K -|@| and in the next section, we
provide a bound on K.

» Lemma 15. There is a negative cut-off for P, do and qy if, and only if, there is a node in
the symbolic graph of index K -|Q| that is reachable from (qé('lQl, {qo},do) but from which
no configuration involving qs is reachable.

Proof. We begin with the converse implication, assuming that there is a state (u, S, d) in the
symbolic graph of index K - |Q] that is reachable from (qf "Q‘, {qo},dp) and from which no
configuration in [gy] is reachable. Applying Lemma 14, there exist multisets §y = ¢{’ and 4,
with respective supports {qo} and S, such that (i @ d,d) is reachable from (qéﬂQ‘ @ 0g, do)-
If location ¢y was reachable from (u @ d,d) in the distributed system, then there would exist

23:9

CVIT 2016

23:10

Reachability in Networks of Register Protocols under Stochastic Schedulers

a path from (i, S, d) to a state involving ¢y in the symbolic graph, which contradicts our
hypothesis. By Lemma 7, it follows that such a configuration (1 @ ¢’,d) — which cannot
reach ¢s — can be reached from (qé('lQ| ® qév/7 dp) for any N’ > N: hence it cannot be the
case that ¢y is reachable almost-surely for any N’ > N. Therefore there cannot be a positive
cut-off, which implies that there is a negative one (from Theorem 12).

Conversely, assume that there is a negative cut-off: then for some N > K -|Q)|, the dis-
tributed system Sg with N processes has probability less than 1 of reaching [g¢] from a’.
This system being finite, there must exist a reachable configuration (u,d) from which gy
is not reachable [5]. Hence (u,d) ¢ Pre*([gs]), entailing that for all i < m, there is a
location ¢* such that u(q*) < u;(¢*) < K. Then there must exist a reachable state (x, .S, d)
of the symbolic graph of index K - |Q| for which x(q") = u(q") and ¢ ¢ S, for all 1 < i < m:
it indeed suffices to follow the path from (g}, do) to (u, d) while keeping track of the processes
that end up in some ¢* in the concrete part; this is possible because the concrete part has
size at least K - |Q)|.

It remains to be proved that no state involving ¢ is reachable from (k, S, d) in the symbolic
graph. If it were the case, then by Lemma 14, there would exist 6 with support S such that
[gf] is reachable from (k @ d,d) in the distributed system. Then (k @ 6,d) € Pre*([¢r]),
so that for some 1 <i < m, (k® J)(q") > u;(q*), which is not possible as k(q*) < u;(q*) and
¢ is not in the support S of §. This contradiction concludes the proof. |

» Remark. Besides the existence of a negative cut-off, this proof also provides us with an
upper bound on the tight cut-off, as we shall see in Section 5.

4.3 Complexity of the algorithm

We now consider the complexity of the algorithm that can be deduced from Lemma 15.
Using results by Rackoff on the coverability problem in Vector Addition Systems [19],
we can bound K —and consequently the size of the needed symbolic graph—by a double-
exponential in the size of the protocol. Therefore, it suffices to solve a reachability problem
in NLOGSPACE [20] on this doubly-exponential graph: this boils down to NEXPSPACE with
regard to the protocol’s size, hence EXPSPACE by Savitch’s theorem [20].

» Theorem 16. Deciding the existence of a negative cut-off is in EXPSPACE.

4.4 PSPACE-hardness for deciding cut-offs

Our proof is based on the encoding of a linear-bounded Turing machine [20]: we build a
register protocol for which there is a negative cut-off if, and only if, the machine reaches its
final state gha; with the tape head reading the last cell of the tape.

» Theorem 17. Deciding the existence of a negative cut-off is PSPACE-hard.

Write n for the size of the tape of the Turing machine. We assume (without loss of
generality) that the machine is deterministic, and that it accepts only if it ends in its halting
state gpqi while reading the last cell of the tape. Our reduction works as follows: some
processes of our network will first be assigned an index ¢ in [1; n] indicating the cell of the
tape they shall encode during the simulation. The other processes are stuck in the initial
location, and will play no role. The state ¢ and position j of the head of the Turing machine
are stored in the register. During the simulation phase, when a process is scheduled to play,
it checks in the register whether the tape head is on the cell it encodes, and in that case it
performs the transition of the Turing machine. If the tape head is not on the cell it encodes,

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan

the process moves to the target location (which we consider as the target for the almost-sure
reachability problem). Finally, upon seeing (gpqi, n) in the register, all processes move to
a (n + 1)-filter protocol F,,4+1 (similar to that of Fig. 3) whose last location s,4+1 is the
aforementioned target location.

If the Turing machine halts, then the corresponding run can be mimicked with exactly one
process per cell, thus giving rise to a finite run of the distributed system where n processes
end up in the (n + 1)-filter (and the other processes are stuck in the initial location); from
there s,11 cannot be reached. If the Turing machine does not halt, then assume that there is
an infinite run of the distributed system never reaching the target location. This run cannot
get stuck in the simulation phase forever, because it would end up in a strongly connected
component from which the target location is reachable. Thus this run eventually reaches
the (n + 1)-filter, which requires that at least n 4+ 1 processes participate in the simulation
(because with n processes it would simulate the exact run of the machine, and would not
reach gpqit, while with fewer processes the tape head could not go over cells that are not
handled by a process). Thus at least n + 1 processes would end up in the (n + 1)-filter, and
with probability 1 the target location should be reached.

5 Bounds on cut-offs

5.1 Existence of exponential tight negative cut-offs

We exhibit a family of register protocols that admits negative cut-off exponential in the
size of the protocol. The construction reuses ideas from the PSPACE-hardness proof. Our
register protocol has two parts: one part simulates a counter over n bits, and requires a token
(a special value in the register) to perform each step of the simulation. The second part is

used to generate the tokens (i.e., writing 1 in the register). Figure 5 depicts our construction.

We claim that this protocol, with # as initial register value and g as target location, admits
a negative tight cut-off larger than 2™: in other terms, there exists N > 2™ such that the
final state will be reached with probability strictly less than 1 in the distributed system made
of at least N processes (starting with # in the register), while the distributed system with
2™ processes will reach the final state almost-surely. In order to justify this claim, we explain
now the intuition behind this protocol.

We first focus on the first part of the protocol, containing nodes named a;, b;, ¢;, d;
and s;. This part can be divided into three phases: the initialization phase lasts as long as
the register contains #; the counting phase starts when the register first contains halt; the
simulation phase is the intermediate phase.

During the initialization phase, processes move to locations a; and tok, until some process
in tokwrites 1 in the register (or until some process reaches ¢y, using a transition from a;
to gy while reading #).

Write v for the configuration reached when entering the simulation phase (i.e., when 1
is written in the register for the first time). We assume that st(vyp)(a;) > 0 for some i, as
otherwise all the processes are in tok, and they all will eventually reach q;. Now, we notice
that if st(v9)(a;) = 0 for some 4, then location d,, cannot be reached, so that no process
can reach the counting phase. In that case, some process (and actually all of them) will
eventually reach ¢;. We now consider the case where st(vp)(a;) > 1 for all 3. One can prove
(inductively) that d; is reachable when st(vo)(tok) > 2'. Hence d,,, and thus also sg, can
be reached when st(vyo)(tok) > 2™. Assuming gy is not reached, the counting phase must
never contain more than n processes, hence we actually have that st(yo)(a;) = 1. With this
new condition, sg is reached if, and only if, st(yo)(tok) > 2. When the latter condition

23:11

CVIT 2016

23:12 Reachability in Networks of Register Protocols under Stochastic Schedulers

it R(#) ~
> mne - 0
\ R(i) \ R(G) R() &
i#1 i#2 i#£n
@ @ @ o
R(1) R(2) R(n)
® ® | @
W (2) W (3) ("
w(0) W (0) W (0)
R(halt)
@J 29 R it
R(1) R(2)i R(n l 1 @
R(halt) @ @ @
R(f;),3€[0,n] 5 0)
W (halt) R(m),m#halt
W(f2)

_/
R(fo) R(f1) R(f2) R(fn-1) R(fn)

Figure b Simulating an exponential counter: grey boxes contain the nodes used to encode the
bits of the counter; yellow nodes at the bottom correspond to the filter module from Fig. 3; purple
nodes tok, sentand sinkcorrespond to the second part of the protocol, and are used to produce
tokens. Missing read edges are assumed to be self-loops.

is not true, ¢y will be reached almost-surely, which proves the second part of our claim:
the final location is reached almost-surely in systems with strictly less than n + 2™ copies of
the protocol.

We now consider the case of systems with at least n + 2" processes. We exhibit a finite
execution of those systems from which no continuation can reach g¢, thus proving that g is
reached with probability strictly less than 1 in those systems. The execution is as follows:
during initialization, for each i, one process enters a;; all other processes move to tok, and
one of them write 1 in the register. The n processes in the simulation phase then simulate
the consecutive incrementations of the counter, consuming one token at each step, until
reaching d,. At that time, all the processes in tokmove to sent, and the process in d,,
writes halt in the register and enters sg. The processes in the simulation phase can then
enter sg, and those in sent can move to sink. We now have n processes in sg, and the other
ones in sink. According to Lemma 4, location gy cannot be reached from this configuration,
which concludes our proof.

» Theorem 18. There exists a family of register protocols which, equipped with an initial
register value and a target location, admit negative tight cut-offs whose size are exponential
in the size of the protocol.

» Remark. The question whether there exists protocols with exponential positive cut-offs
remains open. The family of filter protocols described at Section 3.1 is an example of
protocols with a linear positive cut-off.

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan

5.2 Upper bounds on tight cut-offs

The results (and proofs) of Section 4 can be used to derive upper bounds on tight cut-offs.
We make this explicit in the following theorem.

» Theorem 19. For a protocol P = (Q, D, qo, T') equipped with an initial register value dy € D
and a target location qf € Q, the tight cut-off is at most doubly-exponential in |P|.

6 Conclusions and future works

We have shown that in networks of identical finite-state automata communicating (non-
atomically) through a single register and equipped with a fair stochastic scheduler, there
always exists a cut-off on the number of processes which either witnesses almost-sure
reachability of a specific control-state (positive cut-off) or its negation (negative cut-off).
This cut-off determinacy essentially relies on the monotonicity induced by our model, which
allows to use well-quasi order techniques. By analyzing a well-chosen symbolic graph, one can
decide in EXPSPACE whether that cut-off is positive, or negative, and we proved this decision
problem to be PSPACE-hard. This approach allows us to deduce some doubly-exponential
bounds on the value of the cut-offs. Finally, we gave an example of a network in which
there is a negative cut-off, which is exponential in the size of the underlying protocol. Note
however that no such lower-bound is known yet for positive cut-offs.

We have several further directions of research. First, it would be nice to fill the gap
between the PSPACE lower bound and the EXPSPACE upper bound for deciding the nature
of the cut-off. We would like also to investigate further atomic read/write operations, which
generate non-monotonic transition systems, but for which we would like to decide whether
there is a cut-off or not. Finally, we believe that our techniques could be extended to more
general classes of properties, for instance, universal reachability (all processes should enter a
distinguished state), or liveness properties.

—— References

1 C. Aiswarya, Benedikt Bollig, and Paul Gastin. An automata-theoretic approach to the
verification of distributed algorithms. In Luca Aceto and David de Frutos-Escrig, editors,
Proceedings of the 26th International Conference on Concurrency Theory (CONCUR’15),
volume 42 of Leibniz International Proceedings in Informatics, pages 340-353. Leibniz-
Zentrum fiir Informatik, September 2015. doi:{10.4230/LIPIcs.CONCUR.2015.340}%}.

2 Benjamin Aminof, Swen Jacobs, Ayrat Khalimov, and Sasha Rubin. Parametrized model
checking of token-passing systems. In Kenneth L. McMillan and Xavier Rival, editors, Pro-
ceedings of the 15th International Workshop on Verification, Model Checking, and Abstract
Interpretation (VMCAI’1}), volume 8318 of Lecture Notes in Computer Science, pages
262-281. Springer-Verlag, January 2014. doi:{10.1007/978-3-642-54013-4_15}.

3 Benjamin Aminof, Sasha Rubin, and Florian Zuleger. On the expressive power of communic-
ation primitives in parameterised systems. In Martin Davis, Ansgar Fehnker, Annabelle K.
Meclver, and Andrei Voronkov, editors, Proceedings of the 20th International Conference
Logic Programming and Automated Reasoning (LPAR’15), volume 9450 of Lecture Notes
in Computer Science, pages 313-328. Springer-Verlag, November 2015.

4 Simon AufBlerlechner, Swen Jacobs, and Ayrat Khalimov. Tight cutoffs for guarded protocols
with fairness. In Barbara Jobstmann and K. Rustan M. Leino, editors, Proceedings of the
17th International Workshop on Verification, Model Checking, and Abstract Interpretation
(VMCAI’16), volume 9583 of Lecture Notes in Computer Science, pages 476-494. Springer-
Verlag, January 2016. doi:{10.1007/978-3-662-49122-5_23}.

23:13

CVIT 2016

23:14

Reachability in Networks of Register Protocols under Stochastic Schedulers

10

11

12

13

14

15

16

Christel Baier and Joost-Pieter Katoen. Principles of Model-Checking. MIT Press, May
2008.

Benedikt Bollig, Paul Gastin, and Len Schubert. Parameterized verification of commu-
nicating automata under context bounds. In Joél Ouaknine, Igor Potapov, and James
Worrell, editors, Proceedings of the 8th Workshop on Reachability Problems in Computa-
tional Models (RP’14), volume 8762 of Lecture Notes in Computer Science, pages 45-57.
Springer-Verlag, September 2014. doi:{10.1007/978-3-319-11439-2_4}.

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan.
Reachability in networks of register protocols under stochastic schedulers. CoRR,
abs/1602.05928, 2016. URL: http://arxiv.org/abs/1602.05928.

Edmund M. Clarke, Muralidhar Talupur, Tayssir Touili, and Helmut Veith. Verification
by network decomposition. In Philippa Gardner and Nobuko Yoshida, editors, Proceedings
of the 15th International Conference on Concurrency Theory (CONCUR’0/), volume 3170
of Lecture Notes in Computer Science, pages 276-291. Springer-Verlag, August-September
2004. doi:{10.1007/978-3-540-28644-8_18}.

Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, and Gianluigi Zavattaro. On the
complexity of parameterized reachability in reconfigurable broadcast networks. In Deepak
D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, Proceedings of the
32nd Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’12), volume 18 of Leibniz International Proceedings in Informatics, pages 289
300. Leibniz-Zentrum fiir Informatik, December 2012. doi:LIPIcs.FSTTCS.2012.289.
Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized verification
of ad hoc networks. In Paul Gastin and Francois Laroussinie, editors, Proceedings of
the 21st International Conference on Concurrency Theory (CONCUR’10), volume 6269
of Lecture Notes in Computer Science, pages 313-327. Springer-Verlag, September 2010.
doi:{10.1007/978-3-642-15375-4_22}.

Antoine Durand-Gasselin, Javier Esparza, Pierre Ganty, and Rupak Majumdar. Model
checking parameterized asynchronous shared-memory systems. In Daniel Kroening and
Corina S. Pasareanu, editors, Proceedings of the 27th International Conference on Computer
Aided Verification (CAV’15), volume 9206 of Lecture Notes in Computer Science, pages 67—
84. Springer-Verlag, July 2015. doi:{10.1007/978-3-319-21690-4_5}.

E. Allen Emerson and Vineet Kahlon. Reducing model checking of the many to the few. In
David McAllester, editor, Proceedings of the 17th International Conference on Automated
Deduction (CADE’00), volume 1831 of Lecture Notes in Artificial Intelligence, pages 236—
254. Springer-Verlag, June 2000. doi:{10.1007/10721959_19%}.

E. Allen Emerson and Kedar Namjoshi. On reasoning about rings. International
Journal of Foundations of Computer Science, 14(4):527-550, August 2003. doi:{10.1142/
$0129054103001881}.

Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verification
(invited talk). In Ernst W. Mayr and Natacha Portier, editors, Proceedings of the 31st
Symposium on Theoretical Aspects of Computer Science (STACS’1/), volume 25 of Leib-
niz International Proceedings in Informatics, pages 1-10. Leibniz-Zentrum fiir Informatik,
March 2014. doi:{10.4230/LIPIcs.STACS.2014.1}.

Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast protocols.
In Proceedings of the 14th Annual Symposium on Logic in Computer Science (LICS’99),
pages 352-359. IEEE Comp. Soc. Press, July 1999. doi:{10.1109/LICS.1999.782630}.

Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of asyn-
chronous shared-memory systems. In Natasha Sharygina and Helmut Veith, editors, Pro-
ceedings of the 25th International Conference on Computer Aided Verification (CAV’13),

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan

17

18

19

20

volume 8044 of Lecture Notes in Computer Science, pages 124-140. Springer-Verlag, July
2013. doi:{10.1007/978-3-642-39799-8_8%}.

Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes.

Journal of the ACM, 39(3):675-735, July 1992.

Matthew Hague. Parameterised pushdown systems with non-atomic writes. In Supratik
Chakraborty and Amit Kumar, editors, Proceedings of the 31st Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS’11), volume 13
of Leibniz International Proceedings in Informatics, pages 457-468. Leibniz-Zentrum fiir
Informatik, December 2011. doi:{10.4230/LIPIcs.FSTTCS.2011.457}.

Charles Rackoff. The covering and boundedness problems for vector addition systems.
Theoretical Computer Science, 6:223-231, 1978. doi:{10.1016/0304-3975(78)90036-1%}.
Michael Sipser. Introduction to the theory of computation. PWS Publishing Company,
1997.

23:15

CVIT 2016

Regular transformations of data words through
origin information *

Antoine Durand-Gasselin’** and Peter Habermehl?

1 Aix Marseille Université, CNRS & Centrale Marseille
Antoine.Durand-Gasselin@centrale-marseille.fr
2 IRIF, Univ. Paris Diderot & CNRS
Peter .Habermehl@liafa.univ-paris-diderot.fr

Abstract. We introduce a class of transformations of finite data words
generalizing the well-known class of regular finite string transformations
described by MSO-definable transductions of finite strings. These trans-
formations map input words to output words whereas our transforma-
tions handle data words where each position has a letter from a finite al-
phabet and a data value. Each data value appearing in the output has as
origin a data value in the input. As is the case for regular transformations
we show that our class of transformations has equivalent characteriza-
tions in terms of deterministic two-way and streaming string transducers.

1 Introduction

The theory of transformations of strings (or words) over a finite alphabet has
attracted a lot of interest recently. Courcelle [8] defined finite string transforma-
tions in a logical way using Monadic second-order definable graph transductions.
Then, a breakthrough was achieved in [9] where it was shown that these transfor-
mations are equivalent to those definable by deterministic two-way finite trans-
ducers on finite words. In [1] deterministic streaming string transducers (SST)
on finite words were introduced. This model is one-way but it is equipped with
string variables allowing to store words. It is equivalent [1] to the deterministic
two-way finite transducers and to MSO-definable transformations. Interestingly,
the motivation behind SST was the more powerful SDST model [2]. SDST work
on data words, i.e. words composed of couples of letters from a finite alphabet
and an infinite data domain. However, they do not have the same nice theoretical
properties as SST, for example they are not closed under composition because
SDST have data variables allowing to store data values and compare data values
with each other. Furthermore, there is no equivalent logical characterization.
In this paper, analogously to the case of string transformations of finite words,
we obtain a class of transformations of finite data words which has an MSO
characterization as well as equivalent characterizations in terms of deterministic

* This work was supported in part by the VECOLIB project (ANR-14-CE28-0018)
and by the PACS project (ANR-14-CE28-0002).
** Part of this work was done while this author was at Technical University Munich.

2 A. Durand-Gasselin and P. Habermehl

two-way transducers and streaming transducers. To achieve this, we allow storing
of data values in the transducers but not comparison.

As an example we consider the transformation taking a finite input word over
{#, a,b} starting and finishing with a #, together with associated data values
from the integers, like (fgﬁ?g?ﬁ) and produces as output the word where (1)
#’s are left unchanged, and between successive #’s (2) words w in {a,b}* are
transformed into wfw where w! denotes the reverse image of w, and (3) the data
value associated to each a is the value of the first # and the value for b’s is the

value of the second #. So, the output for the example word is (f;f;’é’fizggiﬁ).

It is clear how a deterministic two-way transducer with the ability of storing
data values can realize this transformation: it stores the first data value (1) in
a data variable while outputting (?), then goes to the second #, stores the
corresponding data value (5) in a second data variable, and goes back one by
one while producing (f’)‘ll) Then, it turns around at the first #, goes again to the

second # producing (‘fg) and restarts the same process.

Now, to realize this transformation with a deterministic streaming string
transducer one has to make with the fact that they can only go through the
input word once from left to right. Nevertheless we will introduce a model which
can realize the described transformation: in between two #’s it stores the so-far
read string and its reverse in a data word variable. As the data value of the
second #’ is not known in the beginning it uses a data parameter p instead. For
example, before the second #, the stored word will be (Z‘ﬁ‘z) When reading the
second #, it then replaces p everywhere by 5 and stores the result in another
data word variable. The same repeats for the rest of the word until the end is

reached and the output contained in a data word variable.

The same transformation can also be described logically. To define trans-
formations on data words, a natural choice would be to use transducers with
origin information and their corresponding MSO transductions studied in [6].
Basically, their semantics also takes into account information about the origin
of a letter in the output, i.e. the position in the input from which it originates.
Obviously, this can be generalized to data values by defining the data value of
each output position as the data value in the input position from where the out-
put originated. This definition is however not expressive enough to handle our
example, since an input position can only be the origin of a bounded number of
output positions but the data values attached to (unboundedly many) a’s and
b’s between two successive #’s come from the same two input positions.

Therefore, in this paper, we first introduce a logical characterization of word
transformations with generalized origin information. Our logical characterization
is an extension of classical MSO transductions with an additional functional
MSO defined relation that maps each element of the interpretation (symbols
of the output word) to an element of the interpreted structure (symbols of the
input word). This generalization naturally defines transformations of data words;
the data value at a given position of the output is the data value carried at
the corresponding position in the input. This suffices to define the previously
described example transformation.

Regular transformations of data words 3

Interestingly, our class of transformations is captured by a natural model of
deterministic two-way transducers extended with data variables whose values can
neither be tested nor compared. By adding data word variables (as in streaming
string transducers) containing data values and parameters, we then manage,
while preserving determinism, to restrict that model to a one-way model. Data
parameters are placeholders for data values which can be stored in data word
variables and later replaced by concrete data values. We show that this one-way
model can be captured by MSO to achieve the equivalence of all three models.

2 MSO interpretations with MSO origin relation

2.1 Words, strings and data words

For S a set of symbols, we denote by S* the set of finite words (i.e. the set of
finite sequences of elements of S) over S. Given a word w, we can refer to its
length (|wl), its first symbol (w[0]), the symbol at some position ¢ < |w| in the
word (w[i]), some of its subwords (e.g. w(i:j] with 0 < ¢ < j < |w|, the subword
between positions ¢ and j) etc. In this paper, we only consider finite words.

An alphabet (typically denoted X or I') is a finite set of symbols. Further-
more, we use a (potentially infinite) set of data values called A. In the sequel,
we use string to refer to a (finite) word over a finite alphabet and data word to
refer to a word over the cartesian product of a finite alphabet and a set of data
values. Since symbols of data words consist of a letter (from the finite alphabet)
and a data value, we can naturally refer to the data value at some position in a
data word, or the string corresponding to some data word. Conversely a string
together with a mapping from its position to A forms a data word.

A string w (over alphabet X)) is naturally seen as a directed node-labeled
graph (rather than considering edges only connecting two successive positions,
we take the transitive closure: thus the graph is a finite linear order). The graph
is then seen as an interpreted relational structure whose domain is the positions
of w, with a binary edge predicate <, and a monadic predicate for each letter of
2!. We denote Sy the signature consisting of </, and o/, for each o0 € X.

Any string over alphabet Y is an interpretation over a finite domain of Sy,
conversely any interpretation of Sy is a string if (1) its domain is finite, (2) <
defines a linear order and (3) at every position exactly one monadic predicate
holds. We remark that (2) and (3) can be expressed as monadic second order
(MSO) sentences. Two interpretations are isomorphic iff they are the same string.

With this logic based approach we have a very simple classical characteriza-
tion of regular languages: a language L over alphabet X is regular iff there exists
an MSO sentence ¢ (over signature Sy) such that the set of interpretations of
Sy with finite domain satisfying ¢ is the set of strings in L.

2.2 MSO interpretations

Using this model theoretic characterization of strings, we can define a class of
transformations of strings. For the sake of clarity we consider transformations

4 A. Durand-Gasselin and P. Habermehl

of strings over alphabet Y to strings over alphabet I". We now define an MSO
interpretation of Sy in Sy, as |I'| +2 MSO formulas over signature Sy: ¢~ with
two free first-order variables and @gon, and (¢4)yer with one free first-order
variable. Any interpretation Zyx, (of the signature Sy) defines an interpretation
of the structure Sr: its domain is the set of elements of the domain of Zyx
satisfying @g4om in Iy, and the interpretation of the predicates over that domain
is given by the truth value of each of the other MSO formulas.

An important remark is that if the interpretation Zy; has finite domain, then
so will the constructed interpretation of Sp. Also, since we can express in MSO
(over the signature Sr) that the output structure is a string (with (2) and (3)),
we can also express in MSO over the signature Sy that the output structure is a
string, hence we can decide whether for any input string our MSO interpretation
produces a string.

Above, we presented the core idea of Courcelle’s definition [8] of MSO graph
transductions. Courcelle further introduces the idea of interpreting the output
structure in several copies of the input structures. To define such a transduction,
we need to fix a finite set C of copies, the domain of the output structure will
thus be a subset of the cartesian product of the domain of the input structure
with the set of copies. The transduction consists of |C|? + (|I'| +1)|C| + 1 MSO
formulas over the input structure:

— the sentence @;p40m that states whether the input structure is in the input
domain of the transduction,

— formulas ¢, ,,, (with one free first-order variable) for each ¢ in C', each stating
whether a node x in copy c is a node of the output structure,

— formulas ¢S (also with one free first-order variable), for each ¢ € C' and each
« € I' which states whether a node z in copy c is labelled by «,

— and formulas gpid (with two free first-order variables, namely x, y) that states
whether there exists an edge from z in copy ¢ to y in copy d.

The semantics of these transformations naturally provides a notion of origin:
by definition a node of the output structure is a position z in the copy c of the
input structure (such that ¢5,,,(z) is true).

2.3 Transduction of data words

Data words cannot be represented as finite structures (over a finite signature)
but they can be seen as strings together with a mapping of positions to data
values.

To define a data word transduction, we take a string transduction that we
extend with an MSO relation between positions in the input word and positions
in the output word. Formally we extend the definition of MSO transduction with
|C| MSO formulas (with two free first-order variables) ¢g,;(,y), which we call
the origin formulas, stating that position in copy ¢ (in the output string)
corresponds to position y in the input string. We further impose that for any
input word in the domain of the transformation and any x and ¢ € C such that

Regular transformations of data words 5

x in copy c is in the output of the transformation, there exists exactly one y that
validates p¢(x,y). We remark that this restriction can be ensured in MSO (over
the input structure). Then, the data value at each output position is defined to
be the data value at the corresponding input position.

We call MSOT the class of string transformations defined as MSO inter-
pretations, and MSOT+O the class of data word transformation defined as
MSO interpretations together with origin formulas. We remark that this def-
inition of origin captures the usual origin information in the sense of [6] by

fixing cpgrig(x,y) = (z =vy).

2.4 The running example

Two copies suffice to define the transformation for the running example. For
clarity, we do not represent the ordering relation <, but rather the successor
relation.

input:#baab#bbaabb_#

copy 1: # [bﬂ a%aﬁ bﬂ # [bg’b%a%aﬁb%bﬂ #

bb g <=a—b—b

b—ag<—a<~b ‘
4

copy 2: ‘
4

Vindom States the input word starts and ends with a #. cp}iom(a:) is true (every
node in the first copy is part of the output), while 2 (z) = —#(x) tests the
letter in the input at that position is not a #. The labeling formulas are the
identity (o!(z) = a(x),...) —the behaviour of the formula outside the output
domain is considered irrelevant. o= (z,y) = z < y, and >*(z, y) checks if there
is a #-labeled position between position x and y (in the input): if so it ensures
that 2 < y, if not it ensures > y. p2(z, y) and p'?(x,y) also distinguish cases
whether there is a #-labeled position between = and y or not.

The origin information MSO formulas happen here to be the same for the
two copies ¢’ (z,y) making cases on the letter x: if it is an a (resp. a b) it ensures
y is the first #-labeled position before (resp. after) position .

2.5 Properties

Defining word transformations through MSO interpretations yields some nice
properties:

Theorem 1. MSOT+O is closed under composition.

Proof. MSOT is naturally closed under composition: given 2 mso transduc-
tions 77 and T5, (using C; and Cs copies) we can define T} o Ty as the MSO-
interpretation 77 of the MSO-interpretation 75 of the original structure, which
is an MSO-interpretation over C7 x Cy copies.

In order to show the compositional closure of MSOT+O, it now suffices to
define the origin information for the composition of two transductions 77 and T5

6 A. Durand-Gasselin and P. Habermehl

in MSOTHO. It is clear how to define formulas g, ;, that relate a position in
the output with a position in the input, from the origin formulas of 77 and T5.
We just need to show these origin formulas are functional; a fact that we easily
derive from the functionality of the origin formulas of T} and T5.

The (MSO)-typechecking problem of a transformation is defined as follows:

INPUT: Two MSO sentences @pre, Ppost and an MSOTHO transformation T°
OUuTPUT: Does w = @pre imply that T(w) = ©post ?

It consists in checking whether some property on the input implies a property
on the output, those properties are here expressed in MSO.

Theorem 2. MSO-typechecking of MSOT+O0 is decidable.

Proof. An MSO formula can not reason about data values. Therefore it is suf-
ficient to show that MSO-typechecking of MSOT is decidable. Since the output
is defined as an MSO interpretation of the input, it is easy to convert an MSO
formula on the output into an MSO formula on the input. We just need to check
whether the input property implies that converted output property, on any input
word, which is checking the universality of an MSO formula over finite strings.

2.6 MSO k-types

Since we present a generalisation of the classical MSO string transductions, the
machine models that are expressively equivalent to our logical definition will be
extensions of the classical machine models.

To show later that these logical transformations are captured by finite state
machines, we use the notion of MSO k-types. We crucially use this notion (more
precisely Theorem 3) to prove in Section 3 that we only need a finite number of
data variables (Lemma 1) to store data values originating from the input.

Given a string w, we define its k-type as the set of MSO sentences of quantifier
depth at most k (i.e. the maximum nesting of quantifiers is at most k) that hold
for w. A crucial property is that the set of MSO k-types (which we denote
Oy) is finite and defines an equivalence relation over strings which is a monoid
congruence of finite index. We refer the reader to [11] for more details.

These k-indexed congruences satisfy the following property: two k-equivalent
strings will satisfy the same quantifier depth k¥ MSO sentence.

We can extend this notion to MSO formulas with free first-order variables.

Theorem 3. Given two strings w1 and wy each with two distinguished positions
x1,y1 and x2,ys. (w1, (z1,y1)) and (we, (z2,y2)) satisfy the same MSO formulas
with quantifier depth at most k and two free first order variables if:
— wi[z1] = walwo] and wily1] = wa[yo]
— x1,y1 and Ta, Yo occur in the same order in wy and wy (with the special case
that if x1 = y1, then xo = ys).
— The k-types of the two (strict) prefizes are the same, and the k-types of the
two (strict) suffizes are the same, as well as the k-types of the two (strict)
subwords between the two positions.

Proof. Immediate with Ehrenfeucht-Fraissé games.

Regular transformations of data words 7
3 Two-way transducers on data words

Two-way deterministic transducers on strings are known to be equivalent to MSO
string transductions [9]. Since we process data words and output data words, we
will naturally extend this model with a finite set of data variables. Notice that
the data values in the input word do not influence the finite string part of the
output. Therefore the transition function of the transducer may not perform any
test on the values of those data variables. However the output word will contain
some (if not all) data values of the input word, therefore the model may store
some data value appearing in the input word in some variable, and when an
output symbol is produced, this is done (deterministically) by combining some
letter of the output alphabet together with the data value contained in some
data variable.

We start by defining the classical two-way deterministic finite-state trans-
ducers (2dft) (with input alphabet X' and output alphabet I') as a deterministic
two-way automaton whose transitions are labeled by strings over I'. The image
of a string w by a 2dft A is defined (if w admits a run) as the concatenation of
all the labels of the transitions along that run.

Definition 1. A 2dft is a tuple (X, T, Q, qo, F,) where:

— X and I' are respectively the finite input and output alphabets (+,- ¢ X)

— Q is the finite set of states, qg the initial state, and F the set of accepting
states

—0:Qx (XU} — Q x {+1,—-1} x I'* is the (two-way, I*-labeled)
transition function

A (finite) run of a 2dft A over some string w is a finite sequence p of pairs of
control states @ and positions in [—1, |w|] (where —1 is supposed to be labeled by
F and |w| by), such that: p(0) = (0, qo), p(|p|—1) € N x F and at any position
k < |p| — 1 in the run, if we denote p(k) = (ig,qr) and p(k + 1) = ix11, qrr1, We
have that d(qk, w(ix)) = (qr+1,ik+1 — Tk, Urt1) for some ugyq1 € I'™*. Informally
41 corresponds to moving to the right in the input string and —1 to moving to
the left. The output of A over w is simply the string ujus ... uj,—;. We denote
T(A) the (partial) transduction from X* to I'* defined by A.

Notice that not every input string admits a finite run (since the transducer
might get stuck or loop), but if w admits a finite run, it is unique and has length
at most |Q|(|w|+2), as this run visits any position at most |@Q| times. Therefore a
run can also be defined as a mapping from positions of Fw- to Q=I€! (sequences
of states of length at most |Q)]).

The next theorem states the equivalence between transformations defined by
this two-way machine model and the logical definition of string transformations.

Theorem 4. [9] Any string transformation from X* to I'* defined by a 2dft can
be defined as an MSO interpretation of I'* in X* and vice versa.

8 A. Durand-Gasselin and P. Habermehl

Now we define our two-way machine model, two-way deterministic finite-state
transducer with data variables (2dftv) for data word transformations. We simply
extend the 2dft by adding some data variables whose values are deterministically
updated at each step of the machine.

Definition 2. A 2dftv is a tuple (X, I, A, Q, qo, F,V, 11, 0) where:

— X and I’ are respectively the input and output alphabets (-, ¢ X),

A is the (infinite) data domain,

Q is the finite set of states, qo the initial state, and F the set of accepting

states,

— V a finite set of data variables with a designated variable curr € V,

e Qx X x (V\{curr}) = V is the data variable update function,

—0:Qx (XU} = Qx{+1,-1} x (I" x V)* is the (two-way, (I" x V)*-
labeled) transition function.

We can define the semantics of a 2dftv like the semantics of an 2dft by
extending the notion of run. Here, a run is labeled by positions and states but
also by a valuation of the variables, i.e. a partial function § which assigns to
variables from V values from A. This partial function is updated in each step
(while reading a symbol different from the endmarkers - or) according to u and
additionally to the variable curr the current data value in the input is assigned.
The output is obtained by substituting the data variables appearing in the label
of the transition relation by their value according to 8 which we suppose to be
always defined (this can be checked easily). Then, naturally a 2dftv defines a
transduction from words over X' x A to words over I" x A.

We call 2DFTYV the class of all data word transductions definable by a 2dftv.

Theorem 5. MSOT+O is included in 2DFTYV.

The challenge to show the theorem is to be able to extend the MSOT to
2DFT proof from [9], so as to be able to also carry in data variables all the
necessary data values needed in the output.

We recall the key features in the proof of [9]. First, 2dft’s are explicitly
shown to be composable [7], which gives regular look-around (the ability to
test if the words to the left and to the right of the reading head are in some
regular languages) for free: a first pass rewrites the input right-to-left and adds
the regular look-ahead, and the second pass re-reverses that word while adding
the regular look-back. It is then possible (by reading that regular look-around)
to implement MSO-jumps. Given an MSO formula ¢ with 2 free variables, an
MSO-jump ¢ from position x consists in directly going to a position y such that
©(z,y) holds. Using MSO-jumps 2dft can then simulate MSO transformations.

We show thereafter how to extend such a 2dft that takes as input the (look-
around enriched) string and produces its image, to a 2dftv. The proof is then
in three steps: first we show that a finite number of data variables is needed,
then we briefly describe how to update those data variables: each transition of
the 2dft being possibly replaced by a “fetching” of exactly one data variable,

Regular transformations of data words 9

and finally it is easy to see how to compose the preprocessing 2dft with that
produced 2dftv.

To store only a finite number of data values, we will only store those which
originate from a position on one side of the currently processed position and
that are used on the other side of the currently processed position. The following
lemma ensures a bound on the number of data variables.

Lemma 1. Let w be a data word, x a position in w, and T a transducer. Denote
k the quantifier depth of origin formulas. There are at most |X||Ok|? positions
z > x such that there exists a position y < x in some copy c such that wgrig(y, 2)
holds, i.e. that the data value carried by y in copy c is that of z.

Proof. By contradiction, we use the pigeon hole principle. We can find two dis-
tinct positions z and z’ such that the type of the subword between x and z and
x and 2z’ is the same, and the type of the suffix from z is the same as the type
of the suffix from 2’.

Let y a position, left of where the data value of z is used, thus ¢, (y, z)
holds. We apply Theorem 3 to (w, (y,2)) and (w, (y,2")) and therefore ¢ . (y, 2')
also holds, which contradicts the functionality of the relation ¢ori4. a

It seems appropriate to name our data variables using MSO types. The data
variables are thus X x O x O x {l,r}, (0,71, 72,1) denoting the data variable
containing the data value from the position y (in the input word which is labeled
by o), left (1) of current positions, such that the prefix up to y has type 71, and
the subword between y and current position has type 7».

With an appropriate value of k' (greater than k) the knowledge of the k’-
types of the prefix and suffix of the word from the currently processed position,
informs us for each data variable whether it contains a value or not, whether it
is used at the current position and most importantly to which data variable the
value should be transfered when a transition to the right (or the left) is taken.

Notice that when the 2dft performs a transition to the right, four things can
happen (only 2 and 3 are mutually exclusive):

1. A data value from a previous position was used for the last time and should
be discarded

2. The current data value has been used earlier and will not be used later (and
should be discarded)

3. The current data value may be used later and was not used before (and thus
should be stored)

4. A data value from a next position is first used (and thus should be stored)

The challenging part is the case (4), as we would need to fetch the data value
which we suddenly need to track. The new value is easily fetched through an
MSO jump (to the right) which is a feature introduced by [9] allowing to jump
to a position in the input specified by an MSO formula. In turn this jump is
implemented (thanks to the look-around carried by the input word) as a one-
way automaton that goes to the right until it reaches the position where the data

10 A. Durand-Gasselin and P. Habermehl

value is, and a one-way automaton that goes (left) from that position back to the
original position. The challenge is to be able to return to the current position.
Thanks to our definition, we can also describe an MSO jump that allows the
return: if we had to fetch a new data value, it is because it was first used at
the position we want to jump back to. Such a position can easily be expressed
uniquely with an MSO formula from the position we fetched our data value. We
remark that we cannot fetch data values on a per-needed basis (an MSO jump
to the position where the data is, is possible, but going back with an MSO-jump
is not), which indicates we need data variables.

In the 2dft, any transition for which case (4) happens (this information is
contained in the look-around) is replaced by two automata that go fetch (and
back) that newly needed data value.

Finally we present how this conversion should work on our example. We
need to consider 1-types. ©; is 2%: each characterizing exactly which letters are
present in the word. This means hundreds of data variables, but at any point
for this transformation, no more than 2 data values will be stored. So long as
we read a’s we should not have fetched the data value of the following #-labeled
position. When a b is read, we fetch that data value and then we can return back
to our original position: it is the first position (after the last #) in the word that
contains a b.

4 One-way transducers

4.1 Streaming string transducers with data variables and
parameters

We first define sstvp, i.e. streaming string transducers with data variables and
data parameters. They have the features of streaming string transducers [1,2]
extended with data variables and data parameters. Notice that in contrast to the
streaming data-string transducers from [2] sstvp can not compare data values
with each other.

Intuitively, sstvp read deterministically data words and compute an output
data word. They are equipped with data variables which store data values, pa-
rameters which are placeholders for data values and data word variables contain-
ing data words which in addition to data values can also contain data parameters.
These data parameters can be replaced by data values subsequently.

Definition 3. A sstup is a tuple (X, A, I',Q, X, V, P, qo, vo, 9, £2) where:

— X and I' are respectively the input and output alphabets,

— A is the (infinite) data domain,

— @ is the finite set of states and qy € @ the initial state,

— X is the finite set of data word variables,

— V is the finite set of data variables with a designated variable curr € V,

— P is the finite set of data parameters (PN A =10),

— vy : X = (I'xX P)* is a function representing the initial valuation of the data
word variables.

Regular transformations of data words 11

— 4 is a (deterministic) transition function: §(q,0) = (¢, pv, px, up) where:
o uy : (V\A{curr}) — V is the update function of data variables,
e ux : X = (XU (I x (VUP))*, is the update function of data word
variables,
e up: Px X — PUV is the parameter assignment function (dependent
on the data word variable).
- 2:Q— (I'xV)UX)* is the partial output function.

The streaming string transducers of [1,2] were defined by restricting updates
to be copyless, i.e. each data word variable can appear only once in an update
wx . Here, we relax this syntactic restriction along the lines of [5] by considering
only 1-bounded sstvp’s: informally, at any position the content of some data
word variable may only occur once in the output. This allows to duplicate the
value of some data word variable in two distinct data word variables, but the
value of these variables can not be later combined. It is clear that this condition
can be checked and a 1-bounded sstvp can be transformed into a syntactically
copyless sstvp one [5].

Now, we define the semantics of sstvp. A valuation of data variables 3y for an
sstvp is a partial function assigning data values to data variables. A valuation
of data word variables Sx is a function assigning words over I' x (AU P) to
data word variables. Then, a configuration of an sstvp consists of a control state
and a valuation of data and word variables (8y, Sx). The initial configuration
is (g0, BY,vo), where 37 is the empty function. When processing a position i in
the input word in some state ¢, first curr is set to the data value at that position
in the input, then the data word variables are updated according to px, then
the data words contained in data word variables are substituted according to pp
and finally data variables are updated according to puy .

Formally, if §(q,a) = (¢, pv, x,pp), then from (g, By, Bx) at position i

with a letter (a,d) one goes to (¢, 8y, %) where:

U = Bl - py, where B}, = By [curr — d].
— B = Bx - ux
() = By (@)[v + 5(/(11)](UGV) £ up(op) € P
" _an pup(x,p) 1L pp(T,p) €
() =X P\ g1 (up(2,p)) i ol p) € V

For each two data word variables z, x’, we say that = at position ¢ flows to
a2’ at position i + 1 if € px(z’). The notion of flow can be easily extended by
transitivity, the copylessness restriction forbids that the value of some data word
variable at some position 7 flows more than once to some data word variable at
position j > i. When reaching the end of the input word in a configuration (g,),
a sstvp produces B(£2(q)) if 2(q) is defined. Then, naturally a sstvp S defines a
transduction from words in X' x A to words in I" x A.

The sstvp for our running example is given in Figure 1. All data word vari-
ables are initialized with the empty word. By convention, a variable which is not
explicitly updated is unchanged. We omit these updates for readability.

Theorem 6. FEquivalence of two sstup is decidable.

12 A. Durand-Gasselin and P. Habermehl

xTi=T-y- (cﬁT)[p&curr]
#lyi=c

= (#) v = curr
curr

vV = curr
a _/. Q(qQ) =7

aly:=()y- () aly:=() v ()

v

b‘y::(f,)‘y‘(f)) b‘y:Z(z)-y'(b)

-®

P

Fig. 1. The sstvp for the running example

To prove this theorem we can generalize the proof of decidability of equiva-
lence of SST [2], a reduction to reachability in a non-deterministic one-counter
machine. Given two transducers we choose non-deterministically an input string,
and one conflicting position in each of the two images (of the transducers): either
they are labeled by different letters, or with attached data value originating from
two distinct positions in the input word. We keep track in the counter of the
difference between the number of produced symbols which will be part of each
output before the corresponding conflicting position. Therefore, if the counter
reaches 0 at the last letter of the input, the two transducers are different.

We call SSTVP the class of all data word transductions definable by a sstvp.

4.2 From two-way to one-way transducers
Theorem 7. 2DFTYV is included in SSTVP.

Proof. (Sketch) We use ideas of [1] (based itself on Shepherdson’s translation
from 2DFA to DFA [10]) where two-way transducers are translated into stream-
ing string transducers. As they translate two-way transducers to copyless stream-
ing string transducers they have to go through an intermediate model called
heap-based transducers. Since we relax the copylessness restriction to 1-bounded-
ness we can directly translate 2dftv to sstvp. Furthermore, we have to take care
of the contents of data variables of the 2dftv. For that purpose we use data
variables and data parameters of the sstvp.

Since an sstvp does only one left-to-right pass on the input word, we cannot
revisit any position. As we process a position we need to store all relevant in-
formation about that position possibly being later reprocessed by the two-way
transducer. The two-way transducer may process a position multiple times (each
time in a different state) each time with a different valuation of data variables and
producing some different word: for each state, we need to store in an appropriate
data word variable the corresponding production, the valuation of data variables
being abstracted with data parameters. Notice that not all these data word vari-
ables will be used in the output. Given a 2dftv A = (X, I, A, Q, qo, F, V, 1, 9),
over which we assume all accepting runs end on the last symbol, we define an
sstvp B= (X, I A,Q", X, V', P,q},vo, 8, £2) as follows:

Regular transformations of data words 13

—Q=QxQ—(@x2)]
A state of the one-way transducer consists of a state of the two-way trans-
ducer and a partial mapping from states to a pair of a state and a set of
variables. As a position i+ 1 is processed, the state of B contains the follow-
ing information: in which state A first reaches position i and for each state ¢
of A what would be the state of A when it reaches for the first time position
i+ 1 had it started processing position i from state ¢: this part is the stan-
dard Shepherdson’s construction. The function is partial, as from position i
from some states A might never reach position i + 1 (getting stuck).
We remark that along the subrun from position i (in state ¢) to position
i+ 1, the A might store some data values in some data variables. The set of
data variables denotes the set of data variables the two-way transducer has
updated along that run.

- X=xU{z,|qeQ}
At position i, variable x; will store the word produced by A until it first
reaches position i. Variable z, will store the word produced from position ¢
in state ¢ until position i 4 1 is first reached.

-V =VU{y|veV,ge @}
At position i 4+ 1, data variable v will contain the value of variable v of A
as it first reaches position ¢ + 1. Assume that B reaches position 7 in some
state (g, f) with f(¢') = (¢”, W), and v € W. Then variable v, will contain
the last value stored in v when A processes from position ¢ in state ¢’ until
it first reaches position 7 + 1.

- P={puglveV,qge @}
At position ¢, parameter p, , will be present only in data word variable z,
representing that along the run of A the data value from data variable v at
position ¢ in state ¢ was output before ¢+ 1 was first reached. Such a symbol
needs to be present in x4, but the data value is not yet known, hence it is
abstracted by the data parameter p, 4.

It is then easy to see how to define ¢, and ¢’ so as to preserve these invariants.
As B can not see -, B must maintain the possible output in an extra variable,
where it is supposed that the next symbol would be .

We now detail an example (see Fig. 2) so as to give an intuition how ¢’(g, o)
is built: we will specifically focus on the value of x4,. We denote f the second
component of ¢ and we assume that f(g2) = (g3, {v1,v2}), f(qa) = (g5, {v2, v3}).
Furthermore, we assume that in A, §(¢1,0) = (g2, -1, (7,v2)) and d(g3,0) =
(g4, —1, (7", v2) (7", v3)) and finally that §(gs,0) = (gs, +1, (", v2)). Also read-
ing o in ¢; and g3 assigns the current data value to v; (i.e. p(qi,o,v1) =
w(gs,o,v1) = curr), other data variables are not modified (i.e. u(gi,o,v;) =
N((I3a g, vi) = Ui)-

By the aforementioned invariants, from state ¢;, A will first reach the follow-
ing position in state gg (from the o-labeled position in state ¢, it first goes left,
reaches it again in state g3, goes left again, arrives in state g5 and then moves
to the right in state gg).

14 A. Durand-Gasselin and P. Habermehl

q1

e o Di,ge < CUrT
V1 — curr T = (V,P2a1) Taz | “—
2 (y v2) Piq2 < Di,q1
Tgo; V1, V2 ’
92y b ’ "
q3 (75 v2,42) (Vs P3,01)
qa VLS cury P1,qq <= CUTT
Tu: V2, U3 (v, v2) (7", vs) - (")
g4 720 7 s Tqy | P2,q4 V2,q5 | \V V2,94
Piqq < Diqy
V1 4 curr g6
("5 v2) Ul,qp € CUTT, V2,q; € V2,q4, V3,q1 € U3,qu

Fig. 2. An example to illustrate the transformation from A to B.

If we abstract the data values, the content of the data word variable x4,
will thus be (v, ?)zq, (v,) (7", V)xq, (v, 7). Now we detail data attached to the
produced letters, and the parameter assignments in the data word variables:

v will be given the data parameter ps g4, .

In z4,: since a data value is assigned to v; between ¢; and g2, p1,4, should
be substituted by that data value (which is curr) in x4,. Other parameters in
x4, (which are all of the form p; 4,) are substituted by the corresponding p; g, -

+" will be given the data value vg 4, and (because vz has not been assigned a
data value since ¢1) " will be assigned the data parameter ps 4, .

In z4,: as a data value was assigned to vo between go to g3, parameter ps g4,
will be substituted by that value i.e. vg 4,; parameter p; 4, will be substituted
by curr and all other parameters (which are of the form p; 4,) will be assigned
the corresponding data parameters p; g, .

+""" should be assigned data value vg 4, .

Therefore by reading a ¢ in B, we reach a state whose second component
maps ¢ to (QGv {'Ul,’l)g,’l)g}), Ul,q, $— CUTT, V2,q, <~ V2,q45 U3,q; < U3,q4-

4.3 From one-way transducers to MSO

In order to conclude that the three models of data word transformations are
equivalent, it remains to show that our MSO transductions with MSO origin
information capture all transformations defined by the one-way model.

Theorem 8. SSTVP is included in MSOT+O.

The proof is very similar to that of encoding finite state automata in MSO.
Usually to show that MSO captures string transformations defined by a one-way
model one defines an output graph with I"-labeled edges and e-edges. We directly
give a proof that builds a (string) graph whose nodes are I'-labeled.

Given an sstvp S we fix the set of copies C as the set of occurrences of
symbols of I" in the variable update function.

Since S'is deterministic, we will write an MSO sentence ¢ that characterizes
a run of a word in S. This formula will be of the form 3X7, ... X%, such that
given a word w (in the domain of the transformation), there exists a unique
assignment of the X; such that 1 holds. These second order variables consist of:

Regular transformations of data words 15

— X, for ¢ € Q: position i € X, iff processing position ¢ yielded state g.

— X, for every word variable r: position ¢ € X, iff the content of variable r
will flow in the output

— X, r, for every pair of distinct word variables 7, ry: position ¢ € X,, ,, iff
the content of variable r; will flow in the output before the content of the
variable ry that will also flow in the output.

Our sequential machine model allows easily to write such a formula . With the

formula 1), we can write formulas Yindom, (PG)cec, (¥5)cec, and (wgd)c)dec.
We remark that second order variables X, ., have a unique valid assignment
because of the (semantic) copylessness of sstvp. These variables are typically
used to define %7,

To hint how to build formula ¢, (z,y) we state the following simple lemma

about runs of sstvps.

Lemma 2. Given an sstvp S, an input word w and position x that produces a
symbol v € I' that will be part of the output.

— Fither v is produced with a data variable (namely v):
In this case, there exists a unique position y < x where the data value curr
was stored in some data variable and that data variable flows to data variable
v at position x.

— or~ is produced with a data parameter (namely p):
In this case, there exists a unique position z such that the data parameter
attached to v is some p,, at position z and that p,, is assigned a variable
U (or curr) at position z. There exists a unique position y < q such that
at position y the data value curr was put in some data variable, which flows
to a data variable v, at position z.

The notion of “flow” is easily expressed with 1 and second order existential
quantification. The copyless semantics of sstvps ensures that to each (output)
symbols, exactly one data value (or equivalently a unique position from the
input word) is assigned to. This allows to build MSO formulas ¢§,.;, that have
the desired functional property.

5 Conclusion

Finite string transformation have been generalized to infinite string transforma-
tions [5] and tree transformations [3,4]. It would be interesting to extend our
results to these settings by adding data values and defining transformations via
origin information. Furthermore, it would be interesting to study the pre-post
condition checking problem along the lines of [2], i.e. the problem to check that
given a transducer is it the case that each input satisfying a pre-condition defined
via some automata-model is transformed into an output satisfying a similarly
defined post-condition.

16

A. Durand-Gasselin and P. Habermehl

References

10.

11.

Alur, R., Cerny, P.: Expressiveness of streaming string transducers. In: FSTTCS.
vol. 8, pp. 1-12 (2010)

Alur, R., Cerny, P.: Streaming transducers for algorithmic verification of single-
pass list-processing programs. In: POPL. pp. 599-610 (2011)

Alur, R., D’Antoni, L.: Streaming tree transducers. In: Automata, Languages,
and Programming - 39th International Colloquium, ICALP. vol. 7392, pp. 42-53.
Springer (2012)

Alur, R., Durand-Gasselin, A., Trivedi, A.: From monadic second-order definable
string transformations to transducers. In: 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS. pp. 458-467. IEEE Computer Society (2013)
Alur, R., Filiot, E., Trivedi, A.: Regular transformations of infinite strings. In:
Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science,
LICS. pp. 65-74. IEEE Computer Society (2012)

Bojanczyk, M.: Transducers with origin information. In: Automata, Languages,
and Programming - 41st International Colloquium, ICALP Proceedings, Part II.
vol. 8573, pp. 26-37. Springer (2014)

Chytil, M., Jékl, V.: Serial composition of 2-way finite-state transducers and simple
programs on strings. In: Proceedings of the Fourth Colloquium on Automata, Lan-
guages and Programming. pp. 135-147. Springer-Verlag, London, UK, UK (1977)
Courcelle, B.: Monadic second-order definable graph transductions: A survey.
Theor. Comput. Sci. 126(1), 53-75 (1994)

Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Logic 2, 216-254 (2001)
Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198-200 (Apr 1959)

Thomas, W.: Ehrenfeucht games, the composition method, and the monadic theory
of ordinal words. In: In Structures in Logic and Computer Science: A Selection of
Essays in Honor of A. Ehrenfeucht, Lecture. pp. 118-143. Springer-Verlag (1997)

Discrete Parameters in Petri Nets*

Nicolas DAvVID!, Claude JARD!, Didier LiME?, and Olivier H. Roux?

! University of Nantes, LINA
nicolas.davidl@univ-nantes.fr
claude. jard@univ-nantes.fr
2 Tcole Centrale de Nantes, IRCCyN
didier.lime@ec-nantes.fr
olivier-h.roux@irccyn.ec-nantes.fr

Abstract. With the aim of significantly increasing the modeling capa-
bility of Petri nets, we suggest that models involve parameters to repre-
sent the weights of arcs, or the number of tokens in places. We consider
the property of coverability of markings. Two general questions arise:
“Is there a parameter value for which the property is satisfied?” and
“Does the property hold for all possible values of the parameters?”. We
show that these issues are undecidable in the general case. Therefore, we
also define subclasses of parameterised networks, depending on whether
the parameters are used on places, input or output arcs of transitions.
For some subclasses, we prove that certain problems become decidable,
making these subclasses more usable in practice.

Keywords: Petri net, Parameters, Coverability

1 Introduction

The introduction of parameters in models aims to improve genericity. It also
allows the designer to leave unspecified aspects, such as those related to the
modeling of the environment. This increase in modeling power usually results in
greater complexity in the analysis and verification of the model. Beyond verifi-
cation of properties, the existence of parameters opens the way to very relevant
issues in design, such as the computation of the parameters values ensuring
satisfaction of the expected properties.

We chose to explore the subject on concurrent models whose archetype is that
of Petri nets. We consider discrete parameterisation of markings (the number of
tokens in the places of the net) or weight of arcs connecting the input or output
places to transitions. We call these Petri nets parameterised nets or PPNs.

We consider the general properties of coverability and, to a lesser extent,
reachability (that are often the basis for the verification of more specific prop-
erties).

First issues are:

*Work partially supported by ANR project PACS (ANR-14-CE28-0002) and Pays
de la Loire research project AFSEC.

2 Nicolas DaviD, Claude JARD, Didier LIME, and Olivier H. Roux

— Is there a value of the parameters such that the property is satisfied?
— Is the property satisfied for all possible values of the parameters?

Given the modeling power offered by PPNs, we first study the decidability
of these issues. Since in the general case, they are undecidable, we then examine
decidable subclasses.

Related work There is not much work on Petri nets with parameters. One exam-
ple is regular model checking [3] for algorithmic verification of several classes of
infinite-state systems whose configurations can be modeled as words over a finite
alphabet. The main idea is to use regular languages as the representation of sets
of configurations, and finite-state transducers to describe transition relations.
This is only possible for particular examples including parameterised systems
consisting of an arbitrary number of homogeneous finite-state processes con-
nected in a regular topology, and systems that operate on linear data structures.
Parameters are also introduced in models such as predicate Petri nets [8], in the
aim to have more concise models, in particular to take into account symmetries in
the model [4]. Domains of values are generally finite. Parameterised verification
on timed systems has also been studied in several papers since its introduction
by Alur et al. in [1]. Parameterisation of time uses continuous parameters. In
this paper, we focus on discrete parameters on untimed Petri nets.

The remainder of the paper is structured as follows: Section 2 re-visites the
semantics of Petri Nets and gives the basic definitions related to the formalism
of Parametric Petri Nets. Section 3 presents the undecidability results. Section 4
introduces subclasses of our parameterised models. Section 5 answers decidability
results over those subclasses and underlines issues encountered with reachability.
Section 6 concludes and points to future work.

2 Definitions

Notations

N is the set of natural numbers. N* is the set of positive natural numbers and
N,, is the classic union N U {w} where for each n € N, n 4+ w = w, w — n = w,
n < w and w < w. Z is the set of integers. Let X be a finite set. 2% denotes
the powerset of X and |X| the size of X. Let V' C N, a V-valuation for X is
a function from X to V. We therefore denote VXthe set of V-valuations on X.
Given an alphabet X', we denote as X, the union X' U {e} where € is the silent
action. Given a set X, let kK € Z and =z € X, we define a linear expression on X
by the following grammar: A ::=k | k*x | A + X. Given a linear expression A on
X and a N-valuation v for X, v()\) is the integer obtained when replacing each
element z in X from A, by the corresponding value v(x).

2.1 Petri Nets and Marked Petri Nets

Definition 1 (Petri Net) A Petri Net is a 4-tuple N = (P, T, Pre, Post)
where P is a finite set of places, T is a finite set of transitions, Pre and

Discrete Parameters in Petri Nets 3

Post € NIPIXITI gre the backward and forward incidence matrices, such that
Pre(p,t) = n with n > 0 when there is an arc from place p to transition t with
weight n and Post(p,t) = n with n > 0 when there is an arc from transition t
to place p with weight n.

Given a Petri Net N' = (P, T, Pre, Post), we denote Pre(e,t) (also written
t) as the vector (Pre(p1,t), Pre(pz,t), ..., Pre(p p|,t)) i.e. the t" column of the
matrix Pre. The same notation is used for Post(e,t) (or t*).

Definition 2 (Marking) A marking of a Petri Net N' = (P, T, Pre, Post) is a
vector m € NP1

If m € NPl is a marking, m(p;) is the number of tokens in place p;. We can
define a partial order over markings.

Definition 3 (Partial Order) Let N be a Petri Net such that N = (P, T, Pre,
Post), let m and m' be two markings of N'. We define < as a binary relation
such that < is a subset of NIl x NI defined by:

m <m' & Vp e P,m(p) <m/(p) (1)

Definition 4 (Marked Petri Net) A marked Petri Net (PN) is a couple S =
(N, mg) where N is a Petri Net and mg is a marking of N called the initial
marking of the system.

An example of marked Petri Net is given in Figure 1.

P
t1 t2

° o -11_ P1
P [00] ps)
2 2[1—O m(>
3 1_51152_ 0

2 (= [20

’ 30 D2

b2 101] ps

Fig. 1. A Marked Petri Net

2.2 Operational Semantics

Augmenting Petri Nets with markings leads to the notion of enabled-transitions
and firing of transitions. Given a marked Petri Net S, a transition ¢ € T is said
enabled by a marking m when m > Pre(e,t).

4 Nicolas DaviD, Claude JARD, Didier LIME, and Olivier H. Roux

Definition 5 (PN Semantics) The semantics of PN is a transition system
St =(Q,qo,—) where, Q = NPl gy =mg, =€ Q x T x Q such that,

mZ .ti
m =m— *t;+1¢

mgmlﬁ{ (2)

This relation holds for sequences of transitions:

— m 3 m if wis the empty word and m = m’
t . t
—mEw if I m 3 m” Am” = m’ where w e T* and t € T.

Definition 6 (Reachability set) Given a PN, S = (N,myg), the reachability
set of S, RS(S) is the set of all reachable markings of S i.e. RS(S) = {m | Jw €
T, mo = m}

2.3 Parametric Petri Nets

We would like to use less rigid modeling in order to model systems where some
data are not known a priori. Therefore, in this subsection, we extend the previous
definitions by adding a set of parameters Par. Working with Petri nets and
discrete parameters leads to consider two main situations: the first one involves
parameters on markings, by replacing the number of tokens in some places by
parameters, the second one involves parameters as weights. The same parameter
can be used in both situations. Using parameters on markings can be easily
understood as modeling an unfixed amount of resources that one may want to
optimise. Let us consider a concrete example to illustrate parameterised weights.
In a production line, we consider two operations: first, to supply raw material,
we need to unpack some boxes containing an amount \; of resources, as depicted
in Figure 2, and at the end, we need to pack end products in boxes of capacity
A2, as in Figure 3. This is part of a whole packaging process that one may want
to optimise. The level of abstraction induced by parameters permits to leave
those values unspecified in order to perform an early analysis.

P ‘ P2 b t b2
(—LF)+ 0—0O
O A2
Fig. 2. Unpacking raw material Fig. 3. Packing end products

Definition 7 (Parametric Petri Net) A parametric Petri Net, NP is a 5-
tuple NP = (P, T, Pre, Post, Par) such that P is a finite set of places of NP,
T is a finite set of transitions of N'P, Par is a finite set of parameters of NP,
Pre and Post € (NU Par)/PIxIT

Discrete Parameters in Petri Nets 5

P1
t1 t2
. _ 11 P1
p3 © 0Az | P2
A3 00 pP3
om0
A1 t1 t2
° 0 O P1
A =
2 () M0 | po
D2 0 A3] p3

Fig. 4. A Parametric Petri Net

Intuitively, a parametric Petri net is a Petri net where the number of tokens
involved in a transition is parameterised as depicted in Figure 4.

Definition 8 (Parametric marking) Given a parametric Petri Net NP =
(P, T, Pre, Post, Par), a parametric marking is a |P|-dimensional vector u of
linear expressions on NU Par.

Modeling with parameters means using parameters over weights and mark-
ings rather than setting numeric values everywhere. Therefore we may also use
a parametric initial marking.

Definition 9 (parametric PN or PPN) A parametric marked Petri Net (PPN)
is a couple, SP = (NP, po) where NP is a Parametric Petri Net and pyg is the
parametric initial marking of N'P.

PPNs can be used to design systems where some parts have not been analysed
or where we need to keep flexibility. We now need to define a way to instantiate
classic Petri nets from our parametric marked Petri Nets, in order to define a
semantics.

Definition 10 (Parametric Semantics) Let SP = (P, T, Pre, Post, Par, 1)
be a PPN, we consider the set of valuations NP, Let v € NP we define v(SP)
as the PN obtained from SP by replacing each parameter A € Par by v(A), its
valuation by v, i.e. v(SP) = (P, T, Pre’, Post',my) where Vi € [1,|P|],Vj €
[1,[77],

1.~ | Pre(i,j) if Pre(i,j) €N
Pre'(i,j) = {y(Pre(Lj)) if Pre(i,j) € Par ®)
feon Post(i,j) if Post(i,j) €N
Post'(i, j) = {V(Post(i,j)) if Post(i, j) € Par (4)
o) i po(i) € N
mo (i) = {y(,u(,)o(i)) if po(i) is a lmec(z)r expression on Par)

A marked Petri Net is an instance of a parametric marked Petri net.

6 Nicolas DaviD, Claude JARD, Didier LIME, and Olivier H. Roux

2.4 Parametric problems

We can define several interesting parametric problems on PPNs. In fact, the
behaviour of a PPN is described by the behaviours of all the PNs obtained by
considering all possible valuations of the parameters. It seems therefore obvious
to ask, in a first time, if there exists valuations for the parameters such that
a property holds for the corresponding instance and its dual, i.e., if every in-
stance of the parametric marked Petri Net satisfies the property. Given a class
of problem P (coverability, reachability,...), SP a PPN and ¢ is an instance of
P, parameterised problems are written as follows:

Definition 11 (P-Existence problem) (&-P): Is there a valuation v € NFa"
s.t. v(SP) satisfies the property ¢ ¢

Definition 12 (P-Universality problem) (% -P): Does v(SP) satisfies the
property ¢ for each v € NP 2

This paper focuses on reachability and coverability issues.

Definition 13 (Reachability) Let S = (N, mg) = (P, T, Pre, Post,mg) and
m a marking of S, S reaches m iff m € RS(S).

Definition 14 (Coverability) Let S = (N,mg) = (P, T, Pre, Post,mg) and
m a marking of S, S covers m if there exists a reachable marking m’ of S such
that m’ is greater or equal to m i.e.

Im’ € RS(S)s.t. Vp € P,m/(p) > m(p) (6)

We recall that reachability [9] and coverability [7] are decidable on classic
Petri nets. In the context of parametric Petri nets, coverability leads to two
main problems presented previously, that is to say: the existence problem, writ-
ten (&-cov) and the universal problem, written (% -cov). For instance, (% -cov)
asks: “Does each valuation of the parameters implies that the valuation of the
parametric P/T net system covers m ?” i.e.

m is % -coverable in SP < (7)

st.m' >m

{VV € NPar I/ € RS(v(SP))
We can similarly define &-reach and %/ -reach for parameterised reachability.

3 Undecidability Results for the General Case

In their paper suming-up results of decidability for reset-nets and corresponding
subclasses, Dufourd, Finkel and Schnoebelen noticed that ”Reachability is known
to become undecidable as soon as the power of Petri nets is increased” [5], for
instance, adding reset arcs [2] or inhibitor arcs [6] makes reachability undecid-
able. In this section, we focus on showing that adding parameters to PN leads to
undecidability. More specifically, (% -cov) and (&-cov) are undecidable on PPNs.

Discrete Parameters in Petri Nets 7

As we will proceed by reduction to the halting problem (and counter bound-
edness problem) for counter machines to answer our problem, we first recall some
definitions. A 2-Counters Machine has a pointer and a tape which contains finite
number of instructions in three types: increment, decrement and zero-test. The
pointer reads the tape to execute increment or decrement instructions sequen-
tially. When the pointer reaches a zero-test instruction, then it will jump to a
certain position on the tape and continue. Formally, it consists of two counters
c1,C2, a set of states P = {po, ...pm }, & terminal state labelled halt and a finite
list of instructions Iy, ...,ls among the following list:

— increment: increase ¢ by one and go to next state, where k € {1,2}

— decrement: decrease ¢ by one and go to next state, where k € {1,2}

— zero-test: if ¢, = 0 go to state p; else go to state p;, where p;, p; € PU{halt}
and k € {1,2}

We can assume without restriction that the counters are non negative integers
i.e. that the machine is well-formed in the sense that a decrement instruction
is guarded by a zero-test and that the counters are initialised to zero. It is
well known that the halting problem (whether state halt is reachable) and the
counters boundedness problem (whether the counters values stay in a finite set)
are both undecidable as proved by Minksy [10].

Theorem 1 (Undecidability of &-cov on PPN) The &-coverability problem
for PPN is undecidable *.

Proof. We proceed by reduction from a 2-counters machine. Given a Minksy
2-counters machine M, we construct a PPN that simulates it, SP A, as follows.

— Each counter ¢; is modeled by two places C; and —C;. The value of the
counter is encoded by the number of tokens in Cj.

— For each state p of P U {halt} a 1-bounded place p is created in the net.

The instructions of the previous definition are modeled by the transitions

and arcs depicted in Figure 5.

— A unique additional place 7 with an additional transition € serves to initialise
the net. The initial marking is composed of one token in 7 and one token in
the place p corresponding to the initial state p of M.

Initially, only 6 can be fired, which leads to the initial configuration of the
machine (state pg and counters values null), with one token in pg, no tokens in Cy
and Cs and a parameterised number of tokens in —C';. The value of this parameter
will therefore represent the upper bound of the counter over the instructions
sequence. We have to verify that each time m(C;) +m(—C;) = A. First we show
that SPaq simulates M by verifying the behaviour of each instruction:

1'We can be more accurate by specifying that we need at least 1 parameter used on
6 distinct arcs. The question remains opened for fewer parameterised arcs

8 Nicolas DaviD, Claude JARD, Didier LIME, and Olivier H. Roux

™ ? ™
0 0
A A A
— (O,
-C1 0\ ~C1
pj pj
error Pk
incrementation decrementation zero test of
of a counter of a counter a counter

Fig. 5. Modeling a counter with PPN

— Increment instruction: As C; models the counter, the transition C; + +
adds one token in C;, removes one token from —C; and changes the current
state by removing the token from p; and adding a token in p;. The error
states is marked iff the incrementation instruction is performed whereas we
have already reached the upper bound over the execution. This state will be
useful for the second proof.

— Decrement instruction: As C; models the counter, the transition C; - -
removes one token from C;, adds one token in =C; and changes the current
state by removing the token from p; and adding a token in p;. We recall the
machine is well-formed.

— Zero Test: As C; models the counter, and as we know the sum of tokens
available in C; and —C}, there is no token in C; iff there are A tokens in
—C;. According to this test the current state is updated by removing the
token from p; and adding a token in p; or pi. The value of the counter is
left unchanged.

& Coverability is undecidable :
We will show that given a 2-counters machine M, (a) M halts (it reaches the
halt state) iff (b) there exists a valuation v such that v(SP) covers the corre-
sponding ppqi: place.

— (a) = (b) First, let us assume that M halts. As M halts, the execution
of the machine is finite. On this execution the two counters are bounded
by ¢iim1 and c¢jime. Let ¢ be the maximum of those two values. Let v
be the valuation such that v(A) = ¢jp,. By the previous explanation, SP
simulates M. Moreover, the valuation v ensures that SP 4 does not reach

Discrete Parameters in Petri Nets 9

a deadlock state where peyror is marked. Therefore, when M reaches halt,
SPa will add 1 token in ppe. So, a marking where there is one token in
Phait is coverable.

— (b) = (a) We proceed by contrapositive. Let us assume that M does not
halt. We want to show that there is no valuation v such that v(SP) adds
a token in ppq¢. Let us consider the two following distinct alternatives:

e If the counters are bounded along the execution, either the value of A is
less than the maximum value of the counters and error will be reached
during some increment resulting in a deadlock, or the value of \ is big
enough so that error is never marked, but, in this case, then, as the
machine does not halt, it means that it does not reach halt. So there
is no instruction that leads to halt in M. Therefore, according to the
previous explanation, there is no transition that adds a token in ppq:.

e If at least one counter is not bounded, then for any given valuation v,
we will reach an instruction inc(c;), where ¢ is 1 or 2, and ¢; = v(A).
Therefore, a token will be added in pe,ror leading to a deadlock. So SP a4
will not cover a terminal state.

The undecidability of the halting problem on the 2-counters machine gives the
undecidability of the &-coverability problem.

Theorem 2 (Undecidability of %-cov on PPN) The % -coverability prob-
lem for PPN is undecidable.

Proof. % Coverability is undecidable:

We proceed by reduction from a 2-counters machine. We use the same con-
struction as in the previous proof. We denote m.,o the marking were me,ror (p) =
0 for each p € P except Mepror(Derror) = 1. We will show that given a 2-counter
machine M, (a) the counters are unbounded along the instructions sequence of
M (counters boundedness problem) iff (b) for each valuation v, v(SPaq) covers
the Merror-

— (a) = (b) First, let us assume that on a given instruction sequence, one
counter of M is unbounded. By the second alternative considered in the
proof for &-cov we proved that for any valuation, a token will be added in
Perror-

— (b) = (a) Reciprocally, by contrapositive, we want to show that if the
counters are bounded, there exists a valuation v such that v(SP) does not
COVer Mepror. LThis comes directly from the previous proof. As the counters
are bounded along the instructions sequence, we consider a valuation v such
that v(A\) = ¢jim where ¢, is an upper bound of the values of the counters.
By construction, there is no possibilities to add a token in pe,ror, otherwise,
it means that SP 4 took an incrementation transition meaning that ¢, is
not an upper bound.

The undecidability of the counters boundedness problem on the 2-counters ma-
chine gives the undecidability of the % -coverability problem.

10 Nicolas DaviD, Claude JARD, Didier LIME, and Olivier H. Roux

4 Subclasses of Parametric Petri Nets

4.1 Introducing Subclasses

On the one hand, our parametric model increases the modeling power of Petri
nets but on the other hand, using parameters leads to complex models where
properties become undecidable. In order to obtain parameterised models that
are easier to analyse and therefore can be used in practice, we should reduce the
power of modeling. We will therefore introduce some subclasses of the PPN in
which we restrict the use of parameters to only markings, which could be used
to model arbitrary number of identical processes, to only output arcs, which,
we will see, is a bit more general or to only input arcs, which could model
synchronizations among arbitrary numbers of identical process, and finally some
combinations of those.

The following subclasses have therefore a dual interest. From a modeling
point of view, restrict the use of parameters to tokens, output or input can be
used to model concrete examples such as respectively processes or synchroni-
sation of a given number of processes. From a theoretical point of view, it is
interesting to introduce those subclasses of PPN in a concern of completeness of
the study.

Definition 15 (P-parametric PN) A P-parametric marked Petri Net (P-PPN),
SP = (NP, o) where NP is a Parametric Petri Net such that Pre and Post €
NPT and g is a parametric marking of N'P.

A P-PPN is a classic Petri net with a parametric initial marking.

Definition 16 (T-parametric PN) A T-parametric Petri Net (T-PPN),
SP = (NP, mg) where N'P is a Parametric Petri Net and mq s a marking of
NP

Intuitively, using parameters on outputs means we will create parametric mark-
ings. To complete this study, we can extract a subclass in which parameters
involved in the Pre matrix and parameters involved in the Post matrix corre-
spond to disjoints subsets of parameters. i.e. par(Pre) N par(Post) = () where
par is the application that maps to the set of parameters involved in a ma-
trix (or a vector). We call this subclass distinctT-PPN?. We can even refine
the subclass of distinct T-PPN by considering the two distinct classes of Pre-T-
parametric PPN (preT-PPN), where Post € NPl and Post-T-parametric PPN
(postT-PPN), where Pre € NPl

As we introduced several subclasses, it is interesting to study whether one of
this subclass is more expressive than the other. We will show that P-PPN and
postT-PPN are related. Therefore, we introduce here some useful definitions.
Our translations add silent actions that detail the beahviour of the Petri nets.
Therefore, we introduce a labelling function A from the set of transitions T' to

2Studying the undecidability proof, it is relevant to think that using different pa-
rameters for the input and the output would reduce the modeling power.

Discrete Parameters in Petri Nets 11

distinct T-PPN
postT-PPN

Caption:

——> : is a syntactical subclass of

— — — —> : is a weak-bisimulation subclass of

Fig. 6. Subclasses of PPN

Yey A: T — X, such that X, C T U {e} and A(¢;) equals either ¢; or e. We
A

extend the previous definitions by using m Lm! orm g) m’ depending on the

context®. For instance, m < m’ means that m leads to m’ by using zero or more

internal e-transitions. Given two markings m and m’ we write:

* *

mS3em' & m S8 with o # € (8)

Definition 17 (Weak-Simulation) Given two labelled marked Petri nets, Sy =
(P, Ty, Fi, A1, Ye,mY) and So = (Pa, Ta, Fy, Ao, XeymY), a binary relation R C
NI x NP2l 45 o simulation if

Ya € ¥ and m) s.t. my 5. m),
Imbs.t. my 3 mh and (m),mh) € R

Wmi,ms) € R & {)

If we can find a weak-simulation R C NP1l x NP2l such that (mf, m3) € R we say
that So weakly simulates S1, which means intuitively that Sy can match all the
moves of ;. Moreover if we can find another weak-simulation R’ C NP1l x NIZ2l
such that &7 weakly simulates Sy, we say that S; and Sy are weakly co-similar.

Definition 18 (Weak-Bisimulation) Given two labelled PN, S = (P1, Ty, F1,
Ay, Ze,mY) and Sy = (Py, Ty, Fy, Ao, Xe,mY), a binary relation R C NI x NPzl

3Indeed, if we consider the alphabet A equals to the set of the transition 7' of the
Petri Net, and L as the identity function, the two definitions are equivalent. Using
labelling is more general and allows to introduce non deterministic behaviours.

12 Nicolas DaviD, Claude JARD, Didier LIME, and Olivier H. Roux

is a weak-bisimulation * if

—VYa € X and m} s.t. my S, m)}

. @
there is mhs.t. ma —. mb and (m},mh) € R

V(ml,mg) ER & (10)

— Ya € X and mhy s.t. my 3¢ m
there is m/ys.t. my —s. m} and (m},mh) € R

Two labelled Petri Nets &1 and So are weakly bisimilar if there is a weak
bisimulation relating their initial markings. In the sequel, every transition called
0 is mapped to € by A whereas for a transition called ¢, A(t) = t. If the original
PPN, 8P = (P, T, Pre, Post, Par, A, ug), has a set of transition 7" and T” denotes
the set of transition of the constructed PPN, SP' = (P, T’, Pre’, Post', Par, A', uj)
then T = T U O with TNO = (). For each t € T, A(t) =t and for each 6 in O,
A(9) =e.

4.2 Translating P-PPN to postT-PPN

In order to simulate the behaviour of parameterised places, we translate those
places in a parameterised initialisation process that needs to be fired before
firing any other transitions in the net. The idea relies on using a new place 7
and a new transition # enabled by this place, such that 6° initializes a P-PPN, as
showed in Figure 7. We define the initial marking mg = (0, ...,0,1) i.e. Vp € P,
mo(p) = 0 and mo(m) = 1. We will show that SP’ and SP are weakly-bisimilar
by showing that each behaviour of SP can be done in SP’ if we begin by firing
and reciprocally.

T
0
replacement of the 1 A2
D2 D3 P parameters by A1
i postT parameters
W ANANNANNNANNANNS P1 P2 Q pP3
t t

nO w0

Fig. 7. From P-PPN to postT-PPN

4There exists several definitions of bisimulation, for instance preserving deadlocks
or epsilon-branching, but the one we use is sufficient for our purpose.

Discrete Parameters in Petri Nets 13

Lemma 3 Vv € NP« y(SP) and v(SP’) are weakly bisimilar.

Note that each path in SP = (P, T, Pre, Post, Par, A, 1) can be done in
SP' = (P',T', Pre/, Post', Par, A',m{) by adding 6 at the beginning. And re-
ciprocally, each path in SP’ begins by 6 so is written #.w where w is a path in
SP.

Proof. Let v € NP9 a valuation of the parameters. We want to show that v/(SP)
and v(SP’) are weakly bisimilar. Let v(uo) be the parametric initial marking
of ¥(8P) and v(m{) = m{ the initial marking of ¥(SP’). The only transition
firable from my is 6 and my, A v(1p) as shown in Figure 7. From v(ug), SP and
SP’ are isomorphic. So v(SP1) and v(SP2) are weakly-bisimilar.

Those results underline that using parameters on outputs is more powerfull
than using parameters on markings. We can conclude that T-PPN are more
expressive than PPN.

4.3 Translating postT-PPN to P-PPN

We will show that from a postT-PPN, SP; = (Py, Ty, Prey, Posty, Pary, A1, mY)
we can construct a P-PPN, SPy = (P, Ty, Preg, Posty, Pars, A, 19) that weakly-
simulates the behaviours of the postT-PPN. Reciprocally, the postT-PPN also
weakly-simulates the behaviours of the P-PPN built.

For each transition ¢ and place p such that the arc (¢,p) is weighted by a
parameter, we construct the net depicted in Figure 8 which replace this arc ®.
Therefore, 77 C Ty. As previously, we introduce two labelling functions A; and
Ay from T (resp. Tb) to T. such that, for each t € Ty, A;(t) = Ax(t) = t and
As(t) = € otherwise (i.e. for each t € To\Th).

Lemma 4 Vv € NP9 y(SP;) and v(SP2) are weakly cosimilar.

Proof. We will prove the 2 weak-simulations.

— Vv € NP« (8P3) simulates v(SP1). Let us consider v € N7 1(SPy)
has the following behaviour: each time ¢ is fired, v(\) tokens are created
in p. In §P», it is possible to generates v(A) tokens in p after firing the
sequence ¢ 6] S‘i 0: 0; X‘%, labeled te*. Moreover, this sequence resets the
sub-net constructed for the weak-simulation. As the other transitions of the

network are not affected, monotony gives directly the weak-simulation.

5Notice that if several labeled arcs come from the same transition, some places and
transitions of the Figure 8 should be duplicated according to indices

14 Nicolas DaviD, Claude JARD, Didier LIME, and Olivier H. Roux

replacement of the
postT parameters
by P parameters

A
{@) s @ —
t,p,)
Otp.1 O.p.2
I

— Vv € NPor »(SPy) simulates v(SP5). Reciprocally, a marking with /()
tokens in p allows to simulate the behaviours of every marking such that
m(p) < v(\) according to monotony therefore, the reachable markings in-
duced by creating less than v(\) tokens in SP5 are simulated by the one with
v(A) tokens, and therefore by SP;. As the other transitions of the network
are not affected, monotony gives directly the weak-simulation.

Fig. 8. From postT-PPN to P-PPN

Therefore, SP; and SPqy are weakly co-similar.

Remark 1. This is not a weak bisimulation. Indeed, if SP5 adds 3 tokens in p
(leading to a marking ms) whereas SP; adds v(A) = 4 tokens in p (leading to
a marking mq). Then any transitions needing more than 3 tokens could only be
fired from m; in SP; only. Here the two simulations relations are not reciprocal:
my would simulates mo but ms would not.

5 Decidability Results

We will now consider the parameterised properties defined in Section 2 and the
different subclasses of parameterised models of Section 4. Table 1 sums up the
results that we present in this section.

% -problem &-problem
Reachability Coverability Reachability Coverability
preT-PPN ? ? ? D
postT-PPN ? D ? D
PPN U U U U
distinct T-PPN ? ? ? D
P-PPN ? D D D

Table 1. Decidability results for parametric coverability and reachability

Discrete Parameters in Petri Nets 15

5.1 Study of Parameterised Coverability

The easiest proofs rely on monotony. Indeed, some instances simulate other
instances. We recall that the zero valuation (written 0) is the valuation that
maps every parameter to zero.

Lemma 5 Decidability of % -coverability on postT-PPN (resp. P-PPN) can be
reduced to a test with the zero valuation.

Proof. For postT-PPN and P-PPN, the zero valuation is the one allowing the
lowest amount of behaviours for coverability i.e. it is the most restrictive valua-
tion for coverability. Indeed, considering a marking m that we try to cover, m is
% -coverable if and only if there is a firing sequence w such that mg — ml >m
in the O-instanced postT-PPN (or P-PPN). Formally, given a postT-PPN or a
P-PPN SP and a marking m, we have:

v s.t. m is not coverable in v(SP) iff m is not coverable in 0(SP)

Indeed, for any valuation v we can fire w in the v-instanced PPN, leading to a
marking m2 > ml by monotony. Moreover, on the instance of a PPN (i.e. on
a PN), the coverability is known decidable, so we can answer to the problem
on the zero instanced postT-PPN (or P-PPN). If the answer is no, then we
have found a counter example. Else, monotony directly implies that using a
greater valuation v will provide at least behaviours covering the current ones.
The winning behaviour that allowed to answer yes for the zero-instance will still
works on this v-instance. So every instance will satisfy the coverability.

Therefore we can claim that % -cov is decidable on postT-PPN and P-PPN.
Let us consider &-cov for the same subclasses.

Theorem 6 &-cov is decidable on P-PPN.

Proof. Decidability of &-cov on P-PPN:

We consider a P-PPN, SP;. We will now build a PN S, with token-canons that
will supply the parameterised places of SP; as depicted in Figure 9. Each token-
canon consists in two places m,, w;, and two transitions 6,, 9;,. 0, supplies p of
Sa. Moreover, each transition of SP; is added as an input and an output of 7,
meaning that the net is blocked as long as every 6, has not been fired. This is
repeated for each place initially marked by a parameter. We initialize S with 1
token in each m,. So for each valuation v of SPy, firing the sequence 9;0"’) 9;,
for each parameterised place p leads to a marking ms equals to the valuation of
the initial marking of SP;. Moreover, the #-transitions added have been fired,
so every m, is marked. The two nets have now the same behaviour. This shows
that Sp simulates any valuation of SP;. Therefore, the existence of a valuation
such that a given marking is covered can be reduced to the coverability of the
same marking (completed with 0 for each 7, and 1 for each 7, added) which is
known decidable as a classic coverability problem on an unbounded Petri net.

16 Nicolas DaviD, Claude JARD, Didier LIME, and Olivier H. Roux

I 0p
I T
replacement of the i
P parameters \
1
1
JOL 0,
1
1
1

1

1

1

1

:

1

by token canons !
10 .
1

1

1

1

1

1

1

1

1

Fig. 9. From PPN to PN

Corollary 7 &-cov is decidable on postT-PPN.

Proof. Decidability of &-cov on postT-PPN:

We proved in previous section that postT-PPN and P-PPN are weakly-cosimilar.
Therefore, given a postT-PPN we can built a P-PPN which is weakly-co-similar.
Moreover, as coverability can be reduced to firing transition (by adding an ob-
server transition), weak-simulation holds coverability. Theorem 6 gives us the
decidability.

Theorem 8 &-cov is decidable for preT-PPN.

Proof. &-cov for the preT-PPN is decidable:

Let us consider a preT-PPN and a marking m that we try to cover. For an input
transition with a weight of zero, we do not require the input place to be marked.
Therefore, in terms of input parameters, by monotony, the zero valuation is the
most permissive one for firing. Thus, there is at some valuation a firing sequence
w such that mg = my > m if and only if we can fire w in the 0-instanced one,
leading to a marking ms > my. Formally, given a preT-PPN SP, we have:

mo — my > m in v(SP) iff mg — ma > m in 0(SP) with my > my

Informally, it means that the zero instance of the preT-PPN has the greatest
amount of behaviours (in terms of coverability). Therefore it is the one which is
necessary and sufficient to satisfy the &-cov of m, meaning that if it does not
satisfy the property, monotony implies that any instance of the preT-PPN will
not satisfy either. If the 0-instanced net covers m, we have a witness for the
&-cov.

Corollary 9 &-cov is decidable for distinctT-PPN.

Proof. &-cov for the distinctT-PPN is decidable:
As we can create a partition over Par between Parp,. and Par p,s:, respectively

Discrete Parameters in Petri Nets 17

sets of parameters involved on inputs and outputs which are disjoint. We can
consider the partial valuation 0p4yp,., which maps every parameter of Parp,.
to 0. We therefore get a postT-PPN on which the problem is decidable. More-
over, the post-PPN built is the one with the greatest amount of behaviours for
coverability as explained previously. Considering that, if we cannot find any in-
stance of this postT-PPN satisfying the property, we cannot find any instance
of this distinctT-PPN satisfying it either.

5.2 Study of Parameterised Reachability

In classic Petri nets decidability of reachability certainly implies decidability of
coverability. Indeed, given a marked Petri Net and a coverability problem, we
can construct another marked Petri Net over which the previous coverability
problem is equivalent to a reachability problem. Actually, with notations of Fig-

Fig. 10. Reducing Coverability to Reachability

ure 10 covering a marking m is equivalent to reach the marking with only one
token in place py in the net augmented with this new place py, a new transi-
tion tgoq such that *tgoq = m, with Post(pg,tgea) = 1 and, for each place
P, a transition tempiy p such that: if p is not equal to pg, Pre(p, tempty,p) = 1,
Pre(pg, tempty,p) = 1 and Post(pg, tempty,p) = 1. It is clear that the same can be
done for PPN, which implies that decidability of &-reachability implies decid-
ability of & -coverability and decidability of % -reachability implies decidability of
U -coverability. Section 3 provides therefore the undecidability of (&-reach) and
(% -reach) in the general case of PPN.

Theorem 10 &-reach is decidable on P-PPN.

Proof. We can trivially adapt the conclusion of the proof of Theorem 6. We keep
the same construction: the existence of a valuation such that a given marking is
reached can be reduced to the reachability of the same marking (completed with
0 for each m, and 1 for each 7, added) which is known decidable as a classic

P
reachability problem on an unbounded Petri net.

Nevertheless, for the other subclasses, the decidability of reachability is more
complex. Intuitively, increasing the valuation used to instanciate a preT-PPN

18 Nicolas DaviD, Claude JARD, Didier LIME, and Olivier H. Roux

(resp. a postT-PPN) leads to disable (resp. enable) transitions, i.e. the cover-
ability of a marking, but this is not sufifcient to deduce the exact number of
tokens involved, i.e. reachability.

Ei)) \Q Ny p3 @\1" p3 % p3
Ins® (1) (1)

O ®/1 6/1

b2
(a) O-instance (b) 1-instance (c) v-instance

Fig. 11. Several instances of a preT-PPN

Figure 11 presents a preT-PPN. It is obvious that using the 0-valuation
leads to enable the firing of t in any case, so it allows to cover any amount of
tokens in po. In Figure 11(a), the coverability set is C'Sy = {m|m < (2,1,w)}.
On the other hand, increasing the valuation leads to potentially disable t. We
will therefore reduce the coverability set as we strengthen the pre-condition to
fire ¢t: in Figure 11(b), the coverability set is CS; = {m|m < (2,1,0) Vm <
(1,0,1)} € CSp, and in Figure 11(c), we have CSy = {m|m < (2,1,0) Vm <
(0,0,1)} C CS;. Nevertheless, this strengthening of the pre-condition, does not
imply general consequences in terms of reachability sets. Indeed, in Figure 11(a),
the reachability set is {(2,1,n)|n € N}, whereas in Figure 11(b) we can reach
{(2,1,0),(1,0,1)} and in Figure 11(c), we can reach {(2,1,0),(0,0,1)}.

O—0%0 @O—-0

(a) O-instance (b) 1-instance

Fig. 12. Several instances of a postT-PPN

Equivalent observations rise from the study of Figure 12. When increasing the
valuation, we may fire at least the same transitions, therefore, the coverability
set is increasing: Figure 12(a) can cover any markings lower or equal to (2,0) and
can reach the set {(2,0),(1,0), (0,0)} whereas Figure 12(b) can cover markings
lower or equal to (2,0),(1,1) or (0,2) but can reach the set {(2,0)(1,1)(0,2)}.

Discrete Parameters in Petri Nets 19
6 Conclusion

6.1 Main results

In this paper, we have introduced the use of discrete parameters and suggested
parametric versions of the well known reachability and coverability problems.
The study of the decidability of those problems leads to the results summed
up in Figure 13 for coverability (Classes inside a dashed outline are decidable
for the two corresponding parametric coverability problems). We recall that the

Fig. 13. What is decidable among the subclasses ? (for coverability)

other results are presented in Tab 1.

6.2 Future work

If we have strong intuitions for several empty cases such as decidability of %/ -
Coverability on preT-PPN and distinctT-PPN which would join the intuition
that using the same parameters on inputs and outputs considerably increases
the power of modeling of classic Petri nets, a deeper study should be carried
to answer the decidability of Parametric-Reachability for instance. Being able
to treat these parameterised models constitutes a scientific breakthrough in two
ways:

— It significantly increases the level of abstraction in models. We will therefore
be able to handle a much larger and therefore more realistic class of models.
— The existence of parameters can also address more relevant and realistic
verification issues. Instead of just providing a binary response on the satis-
faction or not of an expected property, we can aim tosynthetise constraints

20

Nicolas DaviD, Claude JARD, Didier LIME, and Olivier H. Roux

on the parameters ensuring that if these constraints are satisfied, the prop-
erty is satisfied. Such conditions for the proper functioning of the system are
essential information for the designer.

Acknowledgement

We wish to thank the anonymous reviewers, who helped us to improve the paper
by their suggestions.

References

10.

Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time
reasoning. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory
of Computing, STOC 93, pages 592-601, New York, NY, USA, 1993. ACM.
Toshiro Araki and Tadao Kasami. Some decision problems related to the reacha-
bility problem for Petri nets. Theoretical Computer Science, 3(1):85-104, October
1976.

. Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular

model checking. In CAV, 2000.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A symbolic reachability
graph for coloured petri nets. Theor. Comput. Sci., 176(1-2):39-65, April 1997.
C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and
undecidability. In Kim G. Larsen, Sven Skyum, and Glynn Winskel, editors, Au-
tomata, Languages and Programming, volume 1443 of Lecture Notes in Computer
Science, pages 103—115. Springer Berlin Heidelberg, 1998.

N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of some problems in
Petri nets. Theoretical Computer Science 4, pages 277—-299, 1977.

Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of
Computer and System Sciences, 3(2):147 — 195, 1969.

Markus Lindqgvist. Parameterized reachability trees for predicate/transition nets.
In Grzegorz Rozenberg, editor, Advances in Petri Nets 1993, volume 674 of Lecture
Notes in Computer Science, pages 301-324. Springer Berlin Heidelberg, 1993.
Ernst W. Mayr. An algorithm for the general petri net reachability problem. In
Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing,
STOC 81, pages 238246, New York, NY, USA, 1981. ACM.

Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1967.

Fundamenta Informaticae XX (2016) 1-29 1
10S Press

Adding data registers to parameterized networks with broadcast

Giorgio Delzanno
DIBRIS, University of Genova
Italy

Arnaud Sangnier
LIAFA, Univ Paris Diderot, Paris Cité Sorbonne, CNRS

France

Riccardo Traverso
DIBRIS, University of Genova
Italy

Abstract. We study parameterized verification problems for networks of interacting register au-
tomata. The network is represented through a graph, and processes may exchange broadcast mes-
sages containing data with their neighbours. Upon reception a process can either ignore a sent value,
test for equality with a value stored in a register, or simply store the value in a register. We consider
safety properties expressed in terms of reachability, from arbitrarily large initial configurations, of a
configuration exposing some given control states and patterns. We investigate, in this context, the
impact on decidability and complexity of the number of local registers, the number of values carried
by a single message, and dynamic reconfigurations of the underlying network.

1. Introduction

Distribution is at the core of modern computer applications. They usually involve partially synchronized
entities, use different communication means, and manipulate data like identifiers and time-stamps. For
all these reasons, distributed algorithms are a challenging test-case for automated verification methods
[24]. Several examples of distributed algorithms are based on the assumption that individual processes
follow the same protocol. Methods like model checking are not always directly applicable to this class of
algorithms. Indeed, they normally require to fix the initial system configuration or the maximum number
of components.

One way to validate distributed algorithms parametric in the number of involved agents consists in
searching for finite model properties, e.g., cut-off values for the parameters. In their seminal paper [22],

German and Sistla propose a model where each entity in the system executes the same finite state pro-
tocol and where the communication is achieved via rendez-vous communication. They exhibit cut-off
properties for finding a minimal number of entities that expose a violation to a given property. They
also rely on the idea that in such systems, one does not need to know precisely the state of each process,
but that it is enough to count the number of processes in each state, this idea is known as the counting
abstraction. These ideas have then been extended to other parameterized systems with different char-
acteristics: for instance, in [17] and [19] Emerson and Namjoshi and Esparza et al. propose the model
of broadcast protocols which extends the model in [22] by allowing the entities to communicate either
via rendez-vous or via broadcast. In the broadcast operation all the entities that can react to a message
have to react. To decide coverability, the authors apply the theory of well-structured transition systems
[1,21] formulated on the counting abstraction of the considered model. Constraint-based methods for the
analysis of broadcast protocols have been considered in [10]. In a recent paper [20], Esparza and Ganty
introduce a parameterized model in which communication is achieved via a finite set of shared variables
storing finite domain values. In [18], Esparza presents a survey of some of the main results for the above
mentioned parameterized models. Parameterized verification of systems composed by repeated compo-
nents have also been proposed by considering different means of communication as token-passing [5, 9],
message passing [7], or rendez-vous over an infinite domain of data in [11].

introduced in [19, 22], Delzanno et al. propose in [15] a model of ad-hoc networks based on the
following consideration: communication in ad-hoc networks is often based on broadcast, but only the
entities in the transmission range can receive emitted messages. For this reason, they propose a simple
parameterized model, that we will refer to as AHN (for Ad Hoc Network), where each system node
executes the same protocol define by a finite state automaton labeled with broadcast and reception ac-
tions. Configuration are equipped with a communication topology (defined as a graph). In this model
broadcast messages belong to a finite alphabet. The verification problems consists then in asking whether
there exists a number of entities and a communication topology such that an execution of the protocol
exhibits some anomalies. For this model, they prove that coverability (or reachability of a configuration
exhibiting a bad control state) is undecidable [15]. Decidability can be regained by restricting the class
of allowed topologies, e.g., by considering bounded path communication topologies (in which the length
of the longest simple path is bounded) [15], or clique graphs [16] where broadcast messages are received
by all the nodes in the networks, or a mix of these two notions [16]. Decidability results can also be ob-
tained with mobility or non-deterministic reconfiguration of the communication topology at any moment
[15]. In reconfigurable AHNs a node may disconnect from its neighbors and connect to other ones at any
time during a computation. This behavior models in a natural way unexpected power-off and dynamic
movement of devices. For the latter restriction, it has been proved that checking the reachability of a
configuration where some control states are present can be done in polynomial time [14]. Furthermore,
testing for the absence of some control state in a configuration to be reached renders the problem NP-
complete [14]. We point out the fact that the model of AHN with fully connected topologies (or clique
communication topologies) is equivalent to the model of broadcast protocols introduced in [19] without
rendez-vous communication. The model of AHN has also been extended in different ways: considering
finite protocols equipped with independent clocks a la timed automata [4] evolving at the same rate [2],
or finite protocols with probabilities [6].

In this paper we study an extension of the model of AHN with reconfiguration originally introduce
in [15] and studied more deeply in [14] where we consider that the messages that are broadcast belong
now to an infinite alphabet. We assume furthermore that each node in the network is equipped with a

finite set of registers. The resulting model called Broadcast Networks of Register Automata (BNRA) is
aimed at modeling both the local knowledge of distributed nodes as well as their interaction via broadcast
communication. As in AHN, a network is modeled via a finite graph where each node runs an instance of
a common protocol. A protocol is specified via a register automaton, an automaton equipped with a finite
set of registers [23], where each register assumes values taken from the set of natural numbers. Node
interaction is specified via broadcast communication where messages are allowed to carry data, that can
be assigned to or tested against the local registers of receivers. The resulting model can be used to reason
about core parts of client-server protocols as well as of routing protocols, e.g. route maintenance as
in Link Reversal Routing. We focus our attention on the decidability and complexity of parameterized
verification of safety properties, i.e., the problem of finding a sufficient number of nodes and an initial
topology that may lead to a configuration exposing a bad pattern. The considered class of verification
problems is parametric in four dimensions: the number of nodes, the topology of the initial configuration
to be discovered, and the amounts of data contained in local registers and exchanged messages. The
peculiarity of our model is that messages are now data from an infinite domain and that interaction is
restricted according to an underlying communication graph. Distributed algorithms often manipulate
data belonging to an infinite domain such as identifiers of the agents of the network.

In our analysis we study the decidability status of some coverability problem for this model taking
into account the number of registers of individual nodes and the number of fields in the messages. For
messages with no data field (and hence no register as well in the nodes), our model boils down to AHN,
and we know that the coverability problem is undecidable for arbitrary topologies without reconfigura-
tion, while decidability is regained for fully connected and bounded-path topologies or by taking into
account reconfiguration [15, 16]. We study here whether these last decidability results still hold when
extending the protocols with registers over infinite data value and fields in the messages. We draw the
following decidability frontier.

o When reconfiguration is allowed, we show that:

— The coverability problem is undecidable if nodes have at least two registers and messages
have at least two fields.

— If we restrict the number of data fields in the messages to be less than or equal to one, we
regain decidability (without any bound on the number of allowed registers). The decision
algorithm is based on a saturation procedure that operates on a graph-based symbolic repre-
sentation of sets of configurations in which the data are abstracted away. This representation
uses the relations between data (equality, inequality) and is inspired by similar techniques
used in the case of classical register automata [23]. We prove that in this case the problem is
PSPACE-complete.

e For fully connected topologies without reconfiguration, we have that:
— The coverability problem is undecidable when nodes are equipped with at least two registers

and messages with at least one field;

— On the other hand if we restrict the number of register to be less than or equal to one and the
number of data field per message to be also less than or equal to one, then the coverability
problem becomes decidable. The decidability proof exploits the theory of well-structured

transition systems [3, 21]. We obtain as well a non-elementary lower bound which follows
from a reduction from coverability in reset nets [28].

This paper corresponds to a completed version of [12].

2. Broadcast Networks of Register Automata

2.1. Syntax and semantics

We model a distributed network using a graph in which the behavior of each node is described via an
automaton with operations over a finite set of registers. A node can transmit part of its current data
to adjacent nodes using broadcast messages. A message carries both a type and a finite tuple of data.
Receivers can test/store/ignore the data contained inside a message. We assume that broadcasts and
receptions are executed without delays (i.e. we simultaneously update the state of sender and receiver
nodes).

Actions Let us first describe the set of actions. We use > 0 to denote the number of registers in each
node. We use f > 0 to denote the number of data fields available in each message and we consider a
finite alphabet ¥ of message types. We often use [i..j] to denote the set {k € N | i < k < j}. We also
assume that if » = 0 then f = 0 (no registers, no information to transmit). The set of broadcast actions
parameterized by r, f and 3. is defined follows:

Sendgf ={b(m,p1,...,py) | m € Xand p; € [1..r] fori € [1..f]}

The action b(a, p1,...,ps) corresponds to a broadcast message of type a whose i-th field contains the
value of the p;-th register of the sending node. For instance, for » = 2 and f = 4, b(req,1,1,2,1)
corresponds to a message of type req in which the current value of the register 1 of the sender is copied
in the first two fields and in the last field, and the current value of register 2 of the sender is copied into
the third field.

A receiver node can then either compare the value of a message field against the current value of
a register, store the value of a message field in a register, or simply ignore a message field. Reception
actions parameterized by r, f and 3. are defined as follows:

Recgf:{ r(m,oq,...,of)

mex, a € Act” fori € [1..f]
and if o; = aj = [k then¢ = j

where the set of field actions Act” is: {?k, 7k, [k,* | k € [1..r]}. When used in a given position of a
reception action, ?k [resp. ?k] tests whether the content of the k-th register is equal [resp. different] to
the corresponding value of the message, |k is used to store the corresponding value of the message into
the k-th register, and = is used to denote that the corresponding value is ignored.

As an example, for r = 2 and f = 4, r(req, 72,71, *,]1) specifies the reception of a message of
type req in which the first field is tested for inequality against the current value of the second register, the
second field is tested for equality against the first register, the third field is ignored, and the fourth field
is assigned to the first register. We now provide the definition of a protocol that models the behavior of
an individual node.

Definition 2.1. A (r, f)-protocol over ¥ is a tuple P = (Q, R, qo) where: @ is a finite set of control
states, o € (@ is an initial control state, and R C @ x (Sendgf U Recgf) X @ is a set of broadcasting
and reception rules.

In the rest of the paper we call a (r, f)-protocol over ¥ simply a (r, f)-protocol when the alphabet is
clear from the context.

A configuration is a graph in which nodes represent the current state of the corresponding protocol
instance running on it (control state and current value of registers) and edges denote communication
links. In this paper we assume that the value of registers are naturals. Therefore, a valuation of registers
is defined as a map from register positions to naturals. More formally, a configuration v of a (r, f)-
protocol P = (@, R, qo) is an undirected graph (V, E, L) such that V is a finite set of nodes, £ C
VxV\{(v,v) |veV}isasetofedges,and L : V' — @Q x N is a labeling function (current valuation
of registers).

Before we give the semantics of our model, we introduce some auxiliary notations. Lety = (V, E/, L)
be a configuration. For a node v € V/, we denote by Lg(v) and Ly (v) the first and second projection
of L(v). For u,v € V, we write u ~, v — or simply u ~ v when 7 is clear from the context —
the fact that (u,v) € FE, i.e. the two nodes are neighbors. Finally, the configuration ~ is said to be
initial if Lo(v) = qo for all v € V and, for all u,v € V and all 4,5 € [l.r], if u # vori # j
then Ly (v)[i] # Las(v)[j]. Consequently in an initial configuration, all the registers of the nodes
contain different values. Note that we could have consider a different semantics with no restriction on
the contents of the registers in the initial configurations. We comment this point in the conclusion section.

We write I" [resp. I'g] for the set of all [resp. initial] configurations, and /e [resp. F{;C] for the set
of configurations [resp. initial configurations] (V, E, L) that are fully connected, i.e. such that £ =
V x V\ {(v,v) | v € V}. Note that for a given (r, f)-protocol the sets T, I'y, T/, and I‘](;c are infinite
since we do not impose any restriction on the number of processes present in the graph.

Furthermore, from two nodes u and v of a configuration v = (V, E, L) and a broadcast action
of the form b(m,p1,...,p¢), let R(v,u,b(m,p1,...,ps)) € Q x N" be the set of the possible la-
bels that can take u on reception of the corresponding message sent by v, i.e. we have (q., M) €
R(v,u,b(m,p1,...,py))if and only if there exists a receive action of the form (Lq(u), r(m, a1, ..., o),
q..) € R verifying the two following conditions:

(1) For all i € [1..f], if there exists j € [1..r] s.t. «; = 7§ [resp. «; = ?j], then Lys(u)[j] =
L (v)[pi] [resp. Lar(u)[j] # Lar(v)[pi]l;

(2) For all j € [1..r], if there exists ¢ € [1..f] such that o; = |j then M[j] = Ljs(v)[p;] otherwise
M (5] = L (u)[j]-

Given a (r, f)-protocol P = (Q, R, qp), we define a Broadcast Network of Register Automata
(BNRA) as the transition system BNRA(P) = (I',=,To) where I" [resp. T'g] is the set of all [resp.
initial] configurations and =C I" x I" is the transition relation defined as follows: for v = (V| E, L) and
v =(V',E',L") € T, we have v =~/ if and only if V' = V' and one of the following conditions holds:

(Broadcast) £ = E' and there exist v € V and (g,b(m,p1,...,ps),¢’) € R such that Lo(v) = ¢,
L(v) = ¢ and forallu € V' \ {v}:

e if u ~ v then L'(u) € R(v,u,b(m,p1,...,py)), or, R(v,u,b(m,p1,...,ps)) = 0 and
L(u) = L'(u);

e if u = v, then L(u) = L'(u).
(Reconfiguration) L = L’ (no constraint on new edges E’).

Reconfiguration steps model dynamic changes of the connection topology, e.g., loss of links and mes-
sages or node movement. An internal transition 7 can be defined using a broadcast of a special message
such that there are no reception rules associated to it. A register j € [1..r] is said to be read-only if and
only if there is no (¢,r(m, c1,...,ay),¢') € Rand ¢ € [1..f] such that a; = |j. Read-only registers
can be used as identifiers of the associated nodes.

Given BNRA(P) = (I',=,Ty), we use =, to denote the restriction of = to broadcast steps only,
and =" [resp. =>7] to denote the reflexive and transitive closure of = [resp. =>;]. Now we define the set
of reachable configurations as: Reach(P) = {7/ € T' | 3y € Tg s.t. ¥ =* 7'}, Reach®(P) = {y € T'|
Fy € To s.t. v =5 7'}, and Reach’*(P) = Reach®(P) N T/e.

2.2. Coverability Problem

Our goal is to decide whether there exists an initial configuration (of any size and topology) from which
it is possible to reach a configuration exposing (covered by with respect to graph inclusion) a bad pattern.
We express bad patterns using reachability queries defined as follows. Let P = (Q, R, qo) be a (r, f)-
protocol and Z a denumerable set of variables. A reachability query ¢ for P is a formula generated by
the following grammar:

o u= q(z) | Mi(z) = M;(2') | Mi(z) # M;(2') [Ay

where z,z' € Z,q € Q and i, j € [1..r]. We now define the satisfiability relation for such queries. Given
a configuration v = (V, E, L) € T, a valuation is a function g : Z +— V. The satisfaction relation = is
parameterized by a valuation and is defined inductively as follows:

o 7 =4 q(z) if and only if Lo(g(z)) = g,

* 7 =g Mi(2) = Mj(2') if and only if Lar(9(2))[i] = Lar(9(2"))[j],
* 7 f=g Mi(z) # M;(2') if and only if Lpr(9(2))[i] # Lar(9(2"))[7],
o vy oA ifandonlyify =y @ andy =, ¢

We say that a configuration ~y satisfies a reachability query , denoted by v |= ¢ if and only if there exists
a valuation g such that v |=, ¢. Furthermore we assume that our queries do not contain contradictions
with respect to = and #. This query language mediates between expressiveness and simplicity, enabling
us to search for graph patterns involving both control states and register values. We can now provide the
definition of the parameterized coverability problem, which consists in finding an initial configuration
that leads to a configuration containing in which the query can be matched.

Definition 2.2. The problem Couv(r, f) is defined as follows: given a (7, f)-protocol P and a reachabil-
ity query ¢, does there exist ¥ € Reach(P) such that v = ¢?

The problem Cov®(r, f) [resp. Cov’®(r, f)]is obtained by replacing the reachability set with Reach®(P)
[resp. Reach/®(P)]. Finally, Couv(x, f) denotes the disjunction of the problems Couv(r, f) varying on
r > 0 (i.e. for any (finite) number of registers).

Note that these problems belong to the class of coverability problem since we seek a configura-
tion which “covers” the query, in other words a configuration which contains a subpart respecting a
reachability query. Furthermore in our context, strict reachability problems, where one asks whether a
configuration is reachable, are easier to solve, since when we fix a final configuration we know the num-
ber of nodes present in all the previous configurations (since during an execution this number does not
change) and hence the problem boils down to the verification of a finite state system.

For the cases with no register (r = 0) and hence no information to transmit (f = 0), the problems
have already been studied previously. More precisely it has been shown that Covb(O, 0) is undecidable
[15] and that C’ovfc(O, 0) is decidable [16, 19] and Ackermann-complete [27] and that Cov(0,0) [14]
can be solved in polynomial time.

3. An Example: Route Discovery Protocol

We describe here the behavior of our model on an example Consider the problem of building a route
from nodes of type sender to nodes of type dest. We assume that nodes are equipped with two registers,
called id and next, used to store a pointer to the next node in the route to dest. The protocol that collects
such information is defined in Figure 1.

Initially nodes have type sender, idle, and dest. Request messages like rreq are used to query

b(rregq,id) r(rregq, x)

r(rrep, lnext
sender [swait | (L[ready dest ' raus |
— b(rrep, id)
T

r(rreq, x)

r(rrep, lnext) () b(rrep, id)
[

ireply

jwait

Figure 1. Route discovery example

adjacent nodes in search for a valid neighbor. Back edges are used to restart the protocol in case of loss
of intermediate messages or no reply at all. An instance of the protocol starts with a node in state sender
broadcasts a route request rregq, attaching his identifier to the message, and waits. Intermediate nodes in
state idle react to it by forwarding another rreq with their identifier, and then they wait too for a reply.
The protocol goes on until an rreq message finally reaches a destination, a node in state dest, which
replies by providing its identifier with an rrep message to its vicinity. All of the intermediate nodes
involved save in the local register next the value from the rrep message, and send another rrep message
with their identifier to the neighbors, to notify them that they are on the route to reach the destination.
When an rrep message arrives to the sender, it saves the identifier of the next hop and the route is
established.

In this example an undesired state is, e.g., any configuration in which two adjacent nodes n and n’
point to each other. Bad patterns like this one can be specified using a query like ready(z1) Aready(z2) A
Mid(zl) = Mnext(ZQ) A Mnezt(zl) = Mid(ZQ)-

Note that in this work we are mainly interested in safety properties, or more precisely, properties
that can be checked thanks to reachability queries. On this example, another interesting property could
be to check whether the protocol builds eventually a route from sender to dest. Such a property would
involved a more complex reasoning than the one we currently propose and it will be hence more difficult
to tackle.

4. Reconfiguration in Arbitrary Graphs

4.1. Undecidability of Cov(2,2)

Our first result is the undecidability of coverability for nodes with two registers (one read-only) and
messages with two data fields. The proof is based on a reduction from reachability in two counter
machines. The reduction builds upon an election protocol that can be applied to select a linked list (of
arbitrary length) of nodes in the network. The existence of such a list-builder protocol is at the core of
the proof. The simulation of a two counter machine becomes easy once a list has been constructed. In
this section, we assume that protocols have at least one read-only register id € [1..r]. We formalize next
the notion of list and list-builder that we use in the undecidability proofs presented across the paper.

We first say that a node v points to a node v’ via x if the register x of v contains the same value as
register id of v'. We consider a configuration v = (V, E, L) € T' with Lg(v) C @ for all v € V. For
a set of states () and pairwise disjoint sets Q,, Qp, Q. C @, we say that -y contains a (Qg, Qp, Qc)-list
(linked via x), or simply list, starting at v if there exists a set of nodes {vy,--- ,vx} C V such that
Lo(v1) € Qa, Lg(vk) € Qc, and Lg(v;) € Qp for ¢ € [2..k — 1], and furthermore v; is the unique node
in V' that points to v;41 via and has label in @, U @, for j € [0..k — 1]. In other words sets (), and
Q. are sentinels for a list made of nodes with label in (0. A backward list is defined as before but with
reversed pointers, i.e., v;j41 points to v; and we say that the list ends at v.

We often write (qq, gp, qc)-list as a shorthand for a ({q,},{qs}, {qc})-list. For a transition relation
~~E{=, =}, IV CTandy € T, TV ~* ~ is true iff there exists 7' € I s.t. 7/ ~* 7. We now state the
definition of list builders.

Definition 4.1. A protocol P = (Q, R, qo) is a forward [resp. backward] (qq,, g, qc)-list builder for a
transition relation ~~¢€ {=, =} and I'; C I'o on z € [l..r] if, for any v = (V, E, L) € T" and every
v € V such that 'y ~»* v and Ly (v) = g4, we have that ~y contains a (qq, gs, gc)-list [resp. (gc, @b, Ga)-
list] linked via x starting at v [resp. ending at v]. Furthermore, if ~ is =, then v’ ~ v” for all successive
nodes v’ and v” in the list.

We will now see how we can exploit the list (of arbitrary length) generated by a list-builder protocol
to build a simulation of a two counter machine. Indeed, notice that if node v is the only one pointing to
node v’ then the pair of actions b(m, x) and r(m, ?7id) can be used to send a message from v to v (v’ is
the only node that can receive m from v). Furthermore, the pair of actions b(m, id) and r(m, ?x) can be
used to send a message from v’ to v (v is the only node that can receive m from v’). This property can
be exploited to simulate counters by using intermediate nodes as single units (the value of the counter is
the sum of unit nodes in the list). One of the sentinels is used as program location, and the links in the
list are used to send messages (in two directions) to adjacent nodes to increment or decrement (update of
labels) the counters. Test for zero is encoded by a double traversal of the list in order to check that each
intermediate node represents zero units.

Let Q; be the set {qq, qp, g }- We say that a forward or backward (q,, g, g.)-list builder protocol
P = (Qu, Rip, qo) is extended with new states Q' and rules R’ when the resulting protocol P =
(Q, R, qo) first executes Py, reaching a state in @, and then continues only in states in Q" by firing
only rules in R’ which preserve lists and cannot interfere with the Py, sub-protocol. More formally,
we require that Q = Qp U Q’, Qi N Q" = Q;, R = Ry U R/, and each rule in R’ cannot involve:
messages m € X that appear in some rule of Ry; states in Qg \ @3 or store operations overwriting
register x. Furthermore, there is a partitioning Q,, Qp, and Q. of @’ such that q, € Qu, @ € Qp,
¢e € Q¢ and every rule in R’ does not involve states belonging to different partitions. Thanks to all these
conditions, while executing P, (qq, gb, gc)-lists may evolve into (Qg, Qp, Q.)-lists while maintaining the
original underlying structure. Then (e.g., with f = 1 and forward list builders), a message m € X can
be propagated from a node v; of the list v --- v € V to the next v;;1 by broadcasting b(m, x) and
receiving r(m, 7id). Indeed, because of the property of lists, v; is the only node in the network which
can possibly execute the broadcast from some state in)’ and, at the same time, having its register x set
to v; 1. At the same time, v; 11 is the only node in the network in some state in Q" with the reception
rule possibly enabled, because the read-only register <d uniquely identifies it. For the same reasons, m
can be propagated backward from v; 1 to v; by broadcasting b(m, id) and receiving r(m, ?z).

Lemma4.1. For 7 > 2 and f > 1, Cou(r, f) [resp. Cov®(r, f)] restricted to initial configurations
I'y, € Ty is undecidable if there exists a forward or backward list builder (r, f)-protocol for = [resp.
=] and I’ C T’y on € [1..r] that can generate lists of arbitrary finite length.

Proof:

We show that, under the assumptions of the Lemma, the following reduction from the halting problem
for two-counter machines to Cov®(r, f) is correct. Then, to prove the Cou(r, f) case, we will show that
the reduction also works with =-. We provide the reduction only for the case of forward list builders: in
case of backward ones it is sufficient to swap the patterns to communicate back and forth in the linked
list. Indeed, the only change to be dealt with would be the direction of the links kept in register x of each
node.

First we recall the definition of a a two-counter machine; it is machine M = (Loc, Inst, {y) where
Loc is a finite set of location, £y € Loc is an initial location and Inst is a finite set of instructions
manipulating two variables c; and ¢z which take their value in the natural numbers (aka counters), each
rule being of the following form: increment of counter ¢; (¢,c;++,¢'), decrement of counter c;
(¢,c;——, ") and zero-test of counter c¢; (¢,c; == 0,¢') with £,/ € Loc. In such a machine, the
counters can never take negative values. We do not recall the semantics of such machine which is quite
natural. The reachability problem for a two counter machine M and a location ¢ € Loc consists in
determining whether such a machine starting in ¢y with 0 as counter values can reach the location ¢ by
executing the instructions. This problem is known to be undecidable [26].

Let Py, = (Quw, R, qo) be a forward {(qp, ¢z, g;)-list builder for =, and I'jy C T'g on = € [1..r] and
with a read-only register id € [1..r], and let M = (Loc, Inst, {y) be a two-counter machine. We extend
P to obtain protocol P = (@, R, qo) as an encoding of M. Each location ¢ € Loc \ {{p} and each
instruction ¢ € Inst are mapped respectively to a state P(¢) € Q \ Qp and to a set of new auxiliary
states ¢ € @ \ Qyp and rules » € R\ Ryp,. The initial location ¢, is mapped into P({y) = g, because, by
Definition 4.1, as soon as a node labelled g;, appears its corresponding list is ready. Counters are encoded
in unary through individual processes: each process in state ¢, represents a zero and it may change state

in order to represent a unit of one counter (g.,) or another (g.,). The encoded instructions work by
propagating appropriate messages back and forth through the list, with the the tail node ¢; serving as a
terminator.

b(incy,,

id)

P(0) r(ince, , 7id) b(ince,,)
b(ince,,) r(
U id)
[
r(inch , 7z) r(ince,, 7id) L b(inc,,,x)
[
U

PO @ r(ince, , 7id)

Figure 2. Increment of counter c;

It is worth noting that, since Pj, may build more than one list, at a given point we may have sev-
eral ongoing simulations of M. However, by following the point to point communication patterns
previously described we ensure they are independent of each other. Figure 2 shows how increments
(¢, c++,0") € Inst are encoded. The head node, in state P(¢), sends an increment order inc. and waits
for an acknowledgement reply incl, before moving to the encoding of the next state, P(¢'). The message
is propagated through the list, until either it reaches the first process in state g, which goes to state g,
and replies back, or it reaches the tail ¢;, which ignores it leading the head node to a deadlock (meaning
the processes in the list were not enough to keep count of c¢; and c2). A decrement instruction can be
encoded by following the same pattern as for increments. Tests (¢,c == 0,¢') € Inst are encoded in
a similar way, but in this case the reply with the acknowledgement ¢z can be sent only by the tail node
q:. The nodes in state q. representing units of the currently tested counter do not propagate the message,
therefore the message ¢z, travels through the whole list and reaches the tail if and only if there are no g,
nodes, i.e. when ¢ = 0.

When considering reconfigurations, i.e. when the transition relation is =, all of the previous assump-
tions still hold, except for the fact that, when sending a message from a node in the list to its successor,
we no longer know if the two of them are neighbors. Otherwise said, with = we may lose messages,
and the computation would block as soon as this happens. This is not a problem for the reduction how-
ever, because we know that an execution with reconfigurations such that no messages are lost still exists.
Indeed, when encoding the reachability problem for M and ¢ € Loc with Couv(r, f) for P and P(¢),
blocked executions do not represent an obstacle, since the parameterized coverability problem is satisfied
by the existence of an execution that leads to the target state. O

The previous lemma tells us that to prove undecidability of the parameterized coverability problem
we just have to exhibit a list-builder protocol. In the case of Cov(2,2), we apply Lemma 4.1, by showing
that protocol Py, of Figure 4 is a backward list-builder for gy, ¢, and g; on = € [1..r]. The rationale is
as follows. Lists {v1, - , v} are built one node at a time, starting from the tail vy, in state ¢;. The links

r(tze,,?

]
U
P @ r(tze, 7id) @ b(tz,,id) @

Figure 3. Testing for zero counter c;

id)

point from each node to the previous one, up to the head vy, in state g,. Any node in the initial state g
(e.g., v1) may decide to become a tail by starting to build its own list. Every such construction activity,
however, is guaranteed not to interfere in any way with the others, thanks to point to point communication
between nodes simulated on top of network reconfigurations and broadcast by exploiting the two payload
fields. This is achieved via a three-way handshake where the first and second fields respectively identify
the sender and the recipient. When the sub-protocol is done, v; moves to state ¢;, v2 moves to the
intermediate state g;, and one points to the other. Node v, decides whether to stop building the list by
becoming the head g, or to continue by executing another handshake to elect node v3. The process

continues until some vy, finally ends the construction by moving to state g,. The following theorem then
holds.

b(s, id, id r(a,z, 7id) mbsazd:r
(s,id,id) L @
r(s,x, %) (M) bla,id,z) Mr(sa,?z, 7zdh T
J J]
b(sa,id,: i, 7id
@ (sa,id, x) D r(a,lx, 7id) os.id,id)

Figure 4. Py,: backward list-builder for ¢y, q., q:, and I'g on x

Theorem 4.1. Cowv(2,2) is undecidable even when restricting one register to be read-only.

Proof:
Let us consider protocol Py, of Figure 4. We now prove that Py, is a backward list builder for g3, q., ¢+
andT'ponx € [1..7].

Lety = (V,E, L) € T be a configuration. It is not fundamental that v € Ty, because the protocol
may elect multiple lists. The only requirement is to have at least some nodes still in the initial state

qo, and this is trivially satisfied by every 79 € I'g. A node v; € V wishing to establish a connection
with v;11 € V broadcasts its identifier with a request b(s, id, id), either from gg or ¢; (the paths from
those two states to respectively ¢; and ¢, are labelled by the same actions). Its current neighbors in state
qo store the identifier of v; by firing r(s, |z, *). The first v;y; of them that answers b(a,id, z) gets
its own identifier stored by v; with the reception rule r(a, Jxz, 7id) (provided reconfigurations did not
disconnect it, otherwise the message is lost and the protocol stops). The winner, v;41, is notified by v;
with a confirmation message b(sa,id,). Only v;;1 will be able to react to such a message, because it
is the only node in the network for which the guard ?id in r(sa, 7z, 7id) is satisfied. At this point, node
v; which started the communication from gg or g; is respectively in ¢; or g,. Node v; 1 is necessarily in
the intermediate state ¢; instead, as the (temporarily) latest elected node of the list. Its role is to choose
whether to stop the construction via an internal transition to g5, which would make it the head of the list,
or to continue as previously described by choosing the path toward g,. In the latter case, v;;; becomes
an intermediate node ¢, and loses the pointer to v;, which is overwritten because of the handshake with
the next v; 9. Nevertheless v; will continue to point to v;41: the pointers of a completed list, therefore,
go from g; to g;. With appropriate reconfigurations to keep only two nodes connected at a time, the
protocol may build lists of arbitrarily length by involving all nodes in the network.

According to Definition 4.1, is indeed a backward list builder for g3, ¢, ¢; and I'g on = € [1..r]. By
applying Lemma 4.1, we can finally conclude that Cov(2, 2) is undecidable. O

4.2. Decidability of Cov(x,1)

In this section, we will prove that Couv(x, 1), i.e. the restriction of our coverability problem to processes
with only one field in the message, is PSPACE-complete.

4.2.1. Lower bound for Cov(x,1)

We obtain PSPACE-hardness through a reduction from the reachability problem for 1-safe Petri nets.
Proposition 4.1. Cov(x,1) is PSPACE-hard.

Proof:

A Petrinet N is atuple N = (P, T, mj), where: P is a finite set of places, T is a finite set of transitions
t such that *¢ and ¢* are multisets of places (pre- and post-conditions of t), and m is a multiset of places
that indicates how many tokens are located in each place in the initial net marking. Given a marking 173,
the firing of a transition ¢ such that *¢ C m leads to a new marking m/ obtained as m’ = 1 *tute.
A Petri net P is 1-safe if in every reachable marking every place has at most one token. Reachability of
a marking m; from the initial marking 17 is decidable for Petri nets, and PSPACE-complete for 1-safe
nets [8].

Given a 1-safe net N = (P,T,mj) and a marking n71, we encode the reachability problem into
Cov(|N|,1). We will assume that P = {py,...,p,} and that p; is the unique place such that ny(p;) =
1 and p, the only place such that 771 (p,) = 1 (without lost of generality we can in fact reduce the
reachability problem of 1-safe net into such a simple case). We now explain how to simulate the behavior
of N with a (r, 1)-protocol P = (@, R, qo). The protocol P contains two control states full and empty
from which the only possible action is the broadcast of a message containing the value stored in the first
register. This is depicted in Figure 5. We see that nodes in state empty will always broadcast messages

of type « and nodes of type full will always broadcast messages of type 3, and each of these messages
contains the value of the first register which will never be overwritten (and hence will correspond to the
identifier of the node). Then for each transition ¢ € T' with *t = {p;,,...,p;. } and t* = {p;,,...,p;}

b(a, 1) b(8,1)
OENe

(o] (3]

Figure 5. Encoding the nodes of type full and empty

(with iq,...,0g, j1,-..,J1 € [1..r]), we will have in P the transitions depicted in Figure 6. Basically, a
node in state ¢; will first begin to test whether it has identifiers of nodes of type full in its register i; to
ik, then it will put in these registers identifiers of nodes of type empty to simulate the consumption of
tokens in the associated places (by receiving messages of type «) and finally it will store identifiers of
nodes of type full in its registers j; to j; to simulate the production of tokens in the associated places.
Finally, the Figure 7 shows how the simulation begin from the initial state qg, first nodes can go in states

r(B, Lji-1) r(8,441)

Figure 6. Encoding transition ¢ with *¢ = {p;,,...,p;, } and t* = {p;,,...,p; }

full or empty by broadcasting a message that no one will receive and then a node can go to state g; by
receiving a message sent by a node full and it will store the identifier in the first register, this to simulate
that the initial marking of IV is the one with one token in p;. Finally, a node will go in state end if there
is an identifier of a node of type full in the f-th register. One can then easily prove that the protocol P

verifies the property that 777; is reachable from n7p in NV if and only if there exists v € Reach(P) such
that v = end. 0

Figure 7. Initialization of the simulation and ending of the simulation of the 1-safe net

4.2.2. Upper bound for Cov(x,1)

We now provide a PSPACE algorithm for solving Cov(x,1). The algorithm is based on a saturation
procedure that computes a symbolic representation of reachable configurations. The representation is
built using graphs that keep track of control states that may appear during a protocol execution and of
relations between values in their registers. The set of symbolic configurations we consider is finite and
each symbolic configuration can be encoded in polynomial space.

Symbolic configurations. Assume a (7, 1)-protocol P = (Q, R, qo) over ¥. A symbolic configuration
¢ for P is a labelled graph (W, 0, \) where W is a set of nodes, § C W x [1..r] x [1..r] x W is the set
of labelled edges and A : W — @ x {0, 1}" is a labeling function (as for configurations, we will denote
Aq [resp. Aps] the projection of A to its first [resp. second] component) such that the following rules are
respected:

e Forw,w’ € W, w # w' implies A\g(w) # Ag(w’), i.e. there cannot be two nodes with the same
control state;

o If (w,a,b,w’) € § then \ps(w)[a] = 1 or Aps(w')[b] = 1 (or both);
e Forw € Wand j € [1..r], if Aps(w)[j] = 1 then (w, j, j,w) € 9.

The labels {0, 1}" are redundant (they can be derived from edges) but simplify some of the constructions
needed in the algorithm. We denote by © the set of symbolic configurations for P.

The intuition behind symbolic configuration is the following: a concrete configuration - belongs to
the denotation [6] of € if for any node of there is a node in 6 labelled with the same control states.
Furthermore, for a pair of nodes v; and vs in y containing the same value in registers a and b, respectively,
6 must contain nodes labelled with the corresponding states and an edge labelled with (a, b) connecting
them. Finally, if there are two nodes v in -y labelled with the state ¢ and with the same value in register
Jj, then there must be a node w in @ with state ¢ and Ay (w)[j] = 1.

We now formalize this intuition. Let & = (W, 4§, \) be a symbolic configuration for P. Then,
(V,E, L) € [0] iff the following conditions are satisfied:

1. For each v € V, there is a node w € W such that Ly (v) = Ag(w), i.e. v and w have the same
control state;

2. For each v # v’ € V, if there exist registers j, 5’ € [1..r] s.t. Las(v)[j] = Lar(v')[5'], i-e., two
distinct nodes with the same value in a pair of registers, then there exists an edge (w, j,j',w’) € §
with Ag(w) = Lg(v) and Ag(w’) = Lo(v'), i.e. we store possible relations on data in registers
using edges in 6;

3. Foreach v € V, if there exist j # j' € [1..r] s.t. Las(v)[j] = Las(v)[4’], i.e. a node with the same
value in two distinct registers, then there exists a self loop (w, 7, j', w) € § with Ag(w) = Lg(v).

We remark that we do not include any information on the communication links of +, indeed reconfigu-
ration steps can change the topology in an arbitrary way. We define the initial symbolic configuration
0o = ({wo}, D, Xo) with A\o(wp) = (go,0). Clearly, we have [6y] = To, i.e. the set of concrete configu-
rations represented by 6 is the set of initial configurations of the protocol P.

Computing symbolically the successors. In order to perform a symbolic reachability on symbolic
configurations, we define a symbolic post operator POSTp that, by working on a symbolic configuration
6 simulates the effect of the application of a broadcast rule on its instances [#]. We illustrate the key
points underlying its definition with the help of an example. Consider the symbolic configurations 6;
and 65 in Figure 8, where we represent edges (w, a, b, w’) € § with arrows from w to w’ labelled by a, b.
Please note that, even though we use directed edges for the graphical representation, the relation between
nodes in W symmetrical as (w, a, b, w’) € 4 is equivalent to (w', b, a, w).

1,2

61

2,2
Figure 8. Example of computations of symbolic post

01 denotes configurations with any number of nodes with label gg or ¢;. Nodes in state gy must
have registers containing distinct data (label 0,0). Nodes in state g; may have the same value in their
second register (label 0, 1 is equivalent to edge (g1, 2,2, q1)), that in turn may be equal to the value of
the first register in a node labelled go (edge (qo, 1,2, ¢q1)). 01 can be obtained from the initial symbolic
configuration by applying rules like (g, b(a, 1), o) and {qo, r(c, 12), ¢1). Indeed, in gy we can send the
value of the first register to other nodes in gg that can then move to ¢; and store the data in the second
register (i.e. we create a potential data relation between the first and second register).

We now give examples of rules that can generate the symbolic configuration o starting from 6.
The pair (qo, b(5,1),qo) and {(qo,r(/3,]1), o) generates a new data relation between nodes in state g
modelled by changing from 0 to 1 the value of Ay/(go)[1]. We remark that a label 1 only says that
registers in distinct nodes may be (but not necessarily) equal.

Consider now the reception rule (g1, r(/3, 72), g2) for the same message 3. The data relation between
nodes in state gg and ¢; in 0 tells us that the rule is fireable. To model its effect we need to create a new

node with label g with data relations between registers expressed by the edges between labels qg, g1 and
g2 in the figure. Due to possible reconfigurations, not all nodes in ¢; necessarily react, i.e. f contains
the denotations of 6;.

A rule like {q1,r(8,72),q3) can also be fireable from instances of #;. Indeed, the message 3 can
be sent by a node in state go that does not satisfy the data relation specified by the edge (1,2) in 6y,
i.e., the sending node is not the one having the same value in its first register as the node ¢; reacting to
the message, hence the guard 72 could also be satisfied. This leads to a new node with state g3 which
inherits from ¢; the constraints on the first register, but whose second register can have the same value
as the second register of nodes in any state.

We will now provide the formal definition of this symbolic post operator POSTp : © — O that takes
as input a symbolic configuration and compute a symbolic configuration characterizing the successor of
all the configurations represented by the input symbolic configuration following the rules of P. Before
giving the formal definition, we need to introduce another notion over symbolic configurations. Given
two symbolic configurations § = (W,d,\) and 0’ = (W’ ¢, \'), we define the union of symbolic
configurations ¢ and ¢, denoted 6 LI &', as follows: (W” 6" Ny = 6 LI 0" iff the following conditions
are respected:

e there exist w” € W with Ag(w”) = ¢ iff there exists w € W with A\g(w) = g or there exists
w' € W with A\g(w) = Af)(w") and furthermore for all i € [1..r], Ays(w”)[i] = 1 if and only if
An(w)[i] = 1 or Ay (w')[i] = 1.

e there exists (v, a, b, wy) € §" with Ag(w!) = ¢1 and Ag(wh) = g2 iff there exists (w1, a, b, w2) €
d (with Ag(w1) = q1) and Ag(w2) = g2) or there exists (w},a,b,ws) € & (with A\ (w}) = q1
and \g(w)) = ¢2)

The idea is that to build 6 LI 6/, we put all the labels present in the symbolic configuration in the result
symbolic configuration and each time we encounter a 1 in a label, it is reported in the union and all the
edges of the two configurations are reported in the union. We have then the following result which makes
the link between the symbolic union and the union on the corresponding concrete configurations.

Lemma 4.2. Let 6, 6’ be two symbolic configurations. We have [0] U [0'] C [0 L 6].

Proof:

Assume 6 = (W, 6, \yand 0’ = (W' &', N). Lety = (V, E, L) be in [0]U[0']. We suppose y € [0] (the
casey € [0'] can be treated similarly). Let (W” 6", \') = 0U¢". We will show thaty € [(W" 5" \")].
We verify each point of the definition of [].

1. Letv € V,since v € [6], there exists w € W such that Ly (v) = Ag(w), by definition of LI, there
exists w” € W such that \() (w") = Ag(w) = Lg(v).

2. Letv,v’ € V withv # v’ and let j, j' € [1..r].Assume Lz (v)[j] = Las(v")[j]. Then there exists
(w, 7, j',w') € 6 with A\g(w) = Lg(v) and A\g(w’) = Lg(v’) and by definition of LI there exists
(w4, 5", wg) € 8" with Ag(wy) = Ag(w) = Lq(v) and Ag(wy) = Ag(w') = Lo(v').

3. Let v € V and j,j' € [l..r] with j # j’ such that A\ (v)[j] = Aa(v)[j] then there exists
(w,j,j",w) € 6 with A\g(w) = Lg(v) and by definition of L there exists (w”, 7, j/, w") € 6" with
Ao(w") = Ag(w) = Lo(v).

This allows us to conclude that v € [6 L 6].
D

Algorithm 1 gives the formal definition of the function POSTp : (Q x Sendg1 X Q) x © — © which
take as input a broadcast rule and a symbolic configuration and compute the effect of the broadcast on the
configurations by considering the different receptions of the protocol P. The operator POSTp : © — ©
is then simply the symbolic union of the possible symbolic configurations obtained by applying all the
broadcast rules of P. More formally if P = (Q, R, qo), then for all symbolic configurations 6 we have
POSTR () = (g b(m.p),.qyer POSTR((¢; b(m, p), ¢'), 0).

Before giving the properties of the POSTp operator, we introduce some notations. First we in-
troduce an order on symbolic configurations. Given two symbolic configurations § = (W, 4, A) and
o' = (W', 4§, N), we say that C ¢’ if and only if there exists an injective function h : W +— W’ such
that for all w,w’ € W:

o Ag(w) = Ap(h(w));
e forall j € [1..r], if Apr(w)[j] = 1 then X, (h(w))[j] = 1;
o if (w,a,b,w') € 0 then (h(w),a,b, h(w)) € §'.

In other words, we have 6 C ¢’ if there are more nodes in 6’ than in 6§ and all the labels of # appears in 6’
as well, and for what concerns the symbolic register valuation, the one of 6’ should “cover” the one of 6,
i.e. there are more 1 in ¢’ than in 6. In the sequel, we will say that two symbolic configurations are equal
if they are equal up to isomorphism. Since the number of symbolic configurations which are pairwise
disjoint is finite (because there is at most |@| nodes in a symbolic configuration), and by definition of the
[] operator and of C, one can easily prove the following result.

Lemma 4.3. (1) If 6 C ¢’ then [0] C [#']. (2) If there exists an infinite increasing sequence 6y C 6, C
B ... then there exists 2 € N s.t. forall j > 4, 0; = 0;.

Using the definition of C, we can state our first property saying any symbolic configurations is
symbolically included in its symbolic successor.

Lemma 4.4. For all symbolic configurations 6, we have § C POSTp(6).

Sketch of proof. Recall that POSTp () = U<q7b(m,p)’q,>€R POSTp({q,b(m,p),q'),0). If we look care-
fully at Algorithm 1, we notice that it only changes 0 to 1 in the label of the nodes of the input symbolic
configuration 6 or it adds new edges or new nodes. Hence by definition of the relation C, we have for
all rules (¢, b(m,p),q") € R, § T POSTp((¢g, b(m,p),q’),0) and using the definition of the operator
U that also do not delete any edges from the symbolic configurations given in input, we deduce that
6 C POSTp(0). (]

One consequence of these two lemmas is that if we denote POST%) the function which consists in
applying 7 times POSTp, then we now that for all symbolic configurations 6, there exists an integer K
such that for all i > K we have POST%, () = POSTX (). We denote in the sequel POST}(6) the symbolic
configuration POSTX (). Note that each symbolic configuration of the (r, 1)-protocol P is a graph with
at most |@Q| nodes and at most |Q|? |r|? edges and hence we need only polynomial space in the size of
the protocol P to compute POST},(#) for a symbolic configuration 6.

Algorithm 1 ¢’ = POSTp({q, b(m, p), '), 0)

Require: A broadcast rule {g,b(m,p),q') € R and § = (W,§,\) a symbolic configuration of the (r, 1)-protocol P =
(@, R, qo)
Ensure: 6/ = (W' &' \)
LW =W,8 =8N =\
2: if there exists w € W such that A\g(w) = ¢ then
if there does not exist w’ € W' such that A (w’) = ¢’ then
4 Create a node w’ € W' with A\, (w’) = ¢ and Xy, (w') := 0
5: endif
6: Letw’ € W’ suchthat A\ (w') = ¢
7.
8

w

forall j € [1..r], if Aar(w)[5] = 1 then Ny (w')[j] := 1
: forall (w,a,b,w"”)€d,8 =8 U{(w,a,bw’)}
9: forall (w,a,bw)€d,d =§U{(w,a,bw)}
10: for all (¢, r(m,a),q"") € R such that there exists w'’ € W with Ag(w") = ¢” do

11: if « = 7k or o = * then

12: if there does not exist w”’ € W' such that A (w”’) = ¢""’ then

13: Create a node w”’ € W' with Ay (w’) = ¢ and Xy, (w'”’) := 0
14: end if

15: Let w” € W' such that A (w"") = ¢"”

16: forall j € [1..r],if Aar(w”)[j] = 1 then Ny (w'")[5] := 1

17: for all (w”,a,b,v) € 46',8 :=6 U{(w"”,a,b,v)}

18: forall (w"”,a,b,w") € §,8 =6 U{(w",a,bw")}

19: end if

20: if o = |k then

21: if there does not exist w"”’ € W’ such that \gy (w”’) = ¢’ then

22: Create a node w”’ € W' with A, (w’) = ¢ and Xy, (w"”’) := 0
23: end if

24: Let w"”" € W’ such that Ag (w"’) = ¢"”

25: Av(w)[k] = 1and &' := & U {(w', p, k,w""), (w"' k, k,w")}
26: For all j € [1..7], if Aps(w')[4] = 1 then Ny (w)[5] := 1

27: if Aar(w)[p] = 1, Then for all (w, p, b,v) € §, 8" :=§ U {(w", k,b,v)}
28: for all (w”,a,b,v) € 8 witha #k, 8" := 8§ U {(w",a,b,v)}

29: For all (w”,a,b,w") € § witha # kand b # k, 6" := 6" U {(w"',a,b,w")}
30: end if

31: if « = 7k and (w, p, k,w") € § or (W, k,p,w) € 4 then

32: if there does not exist w"”’ € W' such that Ay (w"”’) = ¢""’ then

33: Create a node w'’ € W' with A (w”’) = ¢ and Xy (w’) := 0
34: end if

35: Let w"”" € W’ such that Ag (w"’) = ¢"”

36: forall j € [1..7],if Aar(w”)[5] = 1 then Ay (w')[5] :=1

37: for all (w”,a,b,v) € 6,6 :=6 U{(w"”,a,b,v)}

38: forall (w”,a,b,w") €¢§,8 =8 U{(w",a,bw")}

39: end if

40: end for

41: end if

Lemma 4.5. Given a symbolic configuration, POST}(¢) can be computed in polynomial space in the
size of P.

Given a set of configurations S C I' of the (7, 1)-protocol P = (Q, R, qo) (with BNRA(P) = (I', =
,T0)), we define post(S) = {7’ € I' | 3y € I's.t. v = 7/} and post}, is the reflexive and transitive
closure of postp. We will now see how to relate POSTp and postp.

Lemma 4.6. For all symbolic configuration 6, we have post,([6]) € [POSTp(8)].

Sketch of proof. We consider a symbolic configuration . We recall that by definition POSTp(0) =
|_|<q,b(m7p)7q,>€R POSTp({q,b(m,p),q'),d). We consider a broadcast rule (g, b(m, p), ¢’) and we denote
by postp({g, b(m,p),q'), [0]) the set of configurations that can be obtained by performing a Broad-
cast step in BNRA(P) from a configuration - in [6] using the broadcast rule (g, b(m,p), ¢'). By per-
forming a case analysis on the different reception rules of 7, one can show that post ({g, b(m,p), ¢'), [6])
C [POSTp({gq, b(m,p),q'),0)]. We have hence:

U postp((a.b(m,p),d), [0 < |J [POSTp((g,b(m,p),q),0)]
(g,;b(m.,p),¢')ER (g,b(m.,p),q")ER

Thanks to Lemma 4.2, we can deduce that

U [POSTp((g,b(m,p),), 0] €[|| POSTp((g, b(m,p),q),0)]
(g,b(m,p),¢")ER (g,b(m,p),q'YER

and hence we have:

U postp((a,b(m,p),q),[6]) C [POSTA(6)]
(g;b(m,p),q")ER

Furthermore note that for all v € [6] and all configurations «/, if v = ~' and the applied rule is a
Reconfiguration, then we have ' € [0], hence using Lemma 4.4 and the first item of Lemma 4.3, we
deduce that 7/ € [POSTp(6)]. Consequently we can conclude that post,([f]) € [POSTp(6)]. O

From this lemma, we can deduce by an easy induction the following lemma.

Corollary 4.1. For all symbolic configurations 6, we have post},([f]) € [POST}(6)].

Ideally, we would like to have that for any symbolic configuration the set [POSTp(6)] is included
into post’},([0]) because we perform many broadcast in a symbolic step during the computation of the
symbolic post. Unfortunately this is not the case. In fact, consider the symbolic configuration ¢; depicted
in Figure 8. As we explained this symbolic configuration could be equal to POSTp(6p) (where 6 is the
initial symbolic configuration containing a single node labelled by (qo, 6>) by considering the rules in P
of the form: (go, b(, 1), qo) and (qo,r(c, }2), q1). Note that the configuration containing two nodes
w and v such that Lg(u) = qo, Ly (u) = (0,1), Lo(v) = ¢i and Ly (u) = (2,3) belongs to [61]
but is not reachable thanks to the according rules, in fact when one node goes from gg to ¢; it should
share in its second register a value with a node labelled by go. Hence we have v € [POSTp(6p)] and
v ¢ posty([fo]). However we can “increase” the configuration + to obtain a bigger configuration

reachable from an initial configuration and belonging as well to [#;], for instance by adding a node v’ to
7 such Lg(u') = g and Ly (u') = (3,4). We now formalize this idea.

We introduce an ordering relation <I C I' x I" on concrete configurations defined as follows: given
two configurations v = (V, E, L) and v/ = (V' E’, L), we have v <~/ iff there exists an injective
function h : V' + V' such that:

e forallv € V, Lo(v) = Lg(h(v));

e forall v,v’ € Vandall 4,5 € [l..r], Lys(v)[i] = Lp(v)[j] if and only if Lys(h(v))[i] =
Ly (h(v'))[7]-
Note that in the previous example, we have effectively v <!y'. By using the definition of the transition
relation = and of the satisfaction relation |= for reachability query we have the following lemma.

Lemma 4.7. Let v;,72 € I such that y; < 2. We have then:
1. For all 4 € T such that y; = 4], there exists +}, € I" such that v = 74 and 7} < 5.

2. For all reachability queries ¢, if 71 = ¢ then v = .

Furthermore, as shown with the previous example, by using the definition of [] over symbolic con-
figurations and the definition of the symbolic post operator POSTp, we can deduce the following result.

Lemma 4.8. Let 0 be a symbolic configuration. For all v € [POSTp(6)], there exists v’ € post} ([6])N
[POSTp ()] such that v < ~'.

These two last lemmas allow us to obtain the following corollary.

Corollary 4.2. Let # be a symbolic configuration. For all v € [POST}(6)], there exists 7' € post}([6])
such that v < /.

Proof:

We will prove that for all n € N, for all v € [POST} ()], there exists v/ € post}([f]) such that
~ < +. We reason by induction on n. First in the case n = 0, the property holds trivially (we recall that
POST () = 6). Now assume the property holds for n € N and we will show it is still true for n + 1.
Let v € [POSTA™(A)]. From Lemma 4.8, we deduce that there exists v/ € post’s([POST(6)]) N
[POST,T(6)] such that v < +'. Hence there exists 71 € [POST(0)] such that 1 = ... = /. By
induction hypothesis, there exist 72 € post},([#]) such that y; < 5. But then thanks the first item of
Lemma 4.7, since 3 <72 and 71 = ... = 7/ we deduce that there exists 74 such that v, = ... = 44
and 7" < 75. Note that since 72 € post;([f]), then 75 € post}([f]) and since v <~ and v < 75, we
also have v < . 0

Evaluating a reachability query symbolically. We now define how to evaluate a reachability query
over a symbolic configuration . Let & = (W, , A) be a symbolic configuration and ¢ be a reachability
query. We denote by Vars(y) the subset of variables used in the query ¢ and we assume that ¢ =
Nkef1..m) Pk Where for each k € [1..m], ¢ is of the form ¢(z) or M;(z) = M;(2') or M;(z) # M;(2').
We will then say that 6 |= ¢ if there exists a function g : Vars(y) — W such that for all k£ € [1..m)]
we have the following properties: if ¢, = g(z), then A\g(g(z)) = ¢; if ¢ = (M;(z) = M;(2’)) with
z # Z' ori # j, then (¢(z),4, j,9(2')) € 6. We have then the following lemma.

Lemma 4.9. Given a symbolic configuration # and a reachability query o, we have 6 |= ¢ if and only if
there exists v € [#] such that v = .

We can now state the main result about the symbolic post operator.

Lemma 4.10. Let 6 be a symbolic configuration of the protocol P. Then we have for all reachability
query ¢, there exists y € post}([0]) such that |= ¢ iff POST} (6) [= .

Proof:

Let 6 be a symbolic configuration of the protocol P. Let ¢ be a reachability query. First assume that
there exists 7 € post}([6]) such that vy |= ¢, then by Corollary 4.1 we know that v € POST,(f). By
Lemma 4.9, we deduce that POST}(6) = ¢. Assume now that POST} () |= . By Lemma 4.9, there
exists v € [POST,(6)] such that vy = ¢. By Corollary 4.2, there exists 7' € post},([0]) such that v <1~/
Using the second item of Lemma 4.7, we obtain that v = . O

We have consequently an algorithm to solve whether there exists v € Reach(P) = post}(Ig). In fact it
is enough to compute POST},(6p) and to check whether POST}, () |= . This computation is feasible in
polynomial space thanks to Lemma 4.5. Finally we can check in non-deterministic linear time whether
POST}(6p) = ¢ (it is enough to guess the function g from Vars(y) to the nodes of POST},(6)). Using
Lemma 4.10, this gives us a polynomial space procedure to check whether there exists v € Reach(P)
such that v = . Furthermore, thanks to the lower bound given by Proposition 4.1, we can deduce the
exact complexity of coverability for protocols using a single field in their messages.

Theorem 4.2. Cov(x*,1) is PSPACE-complete.

5. Fully Connected Topologies and No Reconfiguration

5.1. Undecidability of Cov’*(2,1)

We now move to coverability in fully connected topologies. In contrast with the results obtained without
identifiers in [15] it turns out that, without reconfiguration, coverability is undecidable already in the
case of nodes with two registers and one payload field. We define a (forward) list-builder protocol,
which builds lists backwards from the tail ¢;. At each step, a node v among the ones which are not part
of the list broadcasts its identifier to the others (which store the value, thus pointing to v), and moves to
q (or g4, if it is the first step) electing itself as the next node in the list. The construction ends when such
a node will instead move to g and force everyone else to stop. By applying Lemma 4.1, the following
theorem then holds.

Theorem 5.1. Cov” (2,1) is undecidable even when one register is read-only.

Proof:

We now show that the protocol PIJ;C in Figure 9 is a list builder for = and I‘](;C on x and states qp, ¢, G¢
(where the lists are built backwards from ¢;). Let~yy = (V, E, L) € I‘](;C be an initial configuration. As
soon as anode v € V decides to start the construction of the list, it broadcasts its identifier to every other
node with a message b(tail, id). Since the network is fully connected, every process has to react to the

b(zero,id

b(head, id)

r(tail,)

qh
r(head, *)

r(zero,)

Figure 9. P;°: list builder for qn, 4=, q:) and fully connected configurations on x
g ib y g

message: after the transition we get a configuration y; € I" such that v is the only node in state ¢; while
any other node u € V' \ {v} is in state ¢; and points to v via .

The processes labelled by ¢; may build a list of arbitrary length by electing one ¢, node at a time.
The communication pattern for handling message b(zero, id) is the same as before, therefore the same
reasoning applies: at each step, all of the nodes in state g; have their local register x pointing to the newly
elected node z € V in state g, (or to v if it is the first ¢,), and z is excluded from the list construction
from now on. As soon as a node h € V switches to g, every remaining process moves to gpnqj¢: exactly
one list has been built, and the protocol has to stop. According to Definition 4.1, PZJ;C is therefore a
forward (qp, gz, ¢:)-list builder for = and F{;C on x. Since it also has a read-only register id, we can
conclude that Cov/¢(2, 1) is undecidable thanks to Lemma 4.1.

g

5.2. Decidability of Cov™(1,1)

We now consider the problem Cov/®(1,1), where configurations are fully connected and do not change
dynamically, processes have a single register, and each message has a single data field. To show de-
cidability, we employ the theory of well-structured transition systems [1, 21] to define an algorithm for
backward reachability based on a symbolic representation of infinite set of configurations, namely mul-
tisets of multisets of states in). In the following we use [ay,. .., ax] to denote a multiset containing
(possibly repeated) occurrences ay, . . ., ai of elements from some fixed domain. For a multiset m, we
use m(q) to denote the number of occurrences of ¢ in m.

In the sequel we consider a (1, 1)-protocol P = (@, R, qo). The set = of symbolic configurations
contains, for every k£ € N, all multisets of the form { = [my, ..., my], where m; for ¢ € [1..k] is in turn
a multiset over). Given & = [my,...,my] € E, (V, E, L) € [{] iff there is a function f : V — [1..k]
such that (1) for every v,v" € V, if Lys(v) = Ly (V') then f(v) = f(v') and (2) for all ¢ € [1..k] and
q € @, m;(q) is equal to the number of nodes v € V' s.t. f(v) =i and Lg(v) = ¢. Intuitively, each m;
is associated to one of the k distinct values of the register (the actual values do not matter), and m;(q)
counts how many nodes in state ¢ have the corresponding value. We now define an ordering over =.

Definition 5.1. Given { = [my,...,my] € Zand &' = [m),...,my] € E,{ < ' iff k < p and there
exists an injection A : [1..k] — [L..p] such that for all i € [1..k] and all ¢ € Q, m;(q) < myp((q), ie.
m; is included in my, ;).

The following properties then hold.

Proposition 5.1. The ordering (£, <) over symbolic configurations is a well-quasi ordering (wqo), i.e.
for any infinite sequence £1&> . . . there exist 7 < j s.t. § < &;.

Proof:

By Dickson’s Lemma, we know that, for multisets over a finite set (), multiset inclusion is a wqo. By
Higman’s Lemma, for multisets built over a wqo domain, multiset inclusion (in which elements are
compared using the wqo) is still a wqo. Thus, the juxtaposition of the two orderings yields a well-quasi
ordering. O

We now exhibit an algorithm PREp that works on symbolic representations in = of configurations of net-
works with one register in each node and one data field in each message. For a symbolic configuration
¢ = [mq,...,mg], m; is a multiset over Q) for i € [1,..., k|. The representation allows us to maintain
the minimal information about relations (= and #) over data and forget about specific values of the data
and minimal constraints on the number of nodes (sharing the same value) in each state in Q). For S C T,
we define prep(S) as the set {y | v =4 7/ and 7' € S} The following proposition then holds.

Proposition 5.2. There exists an algorithm PREp that takes in input / C = and returns a set I’ C = s.t.
[1'] = prep(l1]).

To prove the proposition, in the rest of the section we define the algorithm PREp. The algorithm that
computes PREp computes minimal representations of predecessors by applying backwards broadcast
and receive rules to elements of I. Actually,

PREp(I) = | J PRE,(I)

where B = (Q % Sencllz’1 X @) N R is the set of all broadcast actions. Furthermore,

PRE,({¢1,--,&}) = |J PRES()

i€[1,...,n]

We focus our attention on PRE; for a given broadcast b and a given symbolic configuration £. In the rest
of the section we assume that

= <q,b(ms.g>p1)aq/>’

e & = [my,...,my] where each multiset m; of symbols in @ is associated to a distinct value for
register x;

To symbolically compute predecessors, we recall that a configuration & = [mq,...,my] denotes the
infinite set of multisets of the form v = [m/],..., m%,mkﬂ, ...,m,| where, in turn, m; is a sub-
multiset of m/ for ¢ € [1..k]. These kind of configurations are obtained either by adding either nodes
with identifiers equal to those already present in £ (e.g. when m/, is strictly larger than m;) or by adding
nodes with fresh identifiers (the additional multisets mg1, ..., m;).

We recall that reception rules in R have four possible types of action ?pi, ?p1, |p1, and *. For
a reception rule of the shape r = (g;,r(msg, o), ¢;) with a € {?p1, 7p1,p1, *} we call ¢; [¢,] the
precondition [resp. postcondition] of the rule 7.

To illustrate the rationale behind our construction of PRE;, we first illustrate the key ideas with the
help of an example.

Example 5.1. Consider a symbolic configuration £ = [mq,ms], where mq = [g2, 72, uz] and mo =
[v2, Vo] represent two groups of nodes s.t. m; contains at least three processes with the same value ¢; in
the register and mo contains at least two processes with the same value cz in the register.

Consider now the rules: (g1, b(a, 1), q2), {(r1,r(a,?1),r9), (u1,r(a,l1),us), and (vy,r(a,?1),vs).

We assume that the sender is the node in state g2 in m;. Its precondition is then the state ¢;. We now
have to consider reactions. We first consider the nodes in mq (same identifier as the sender) with state ro
and u2. Each node matches a postcondition of a test or store rule. However, for each of them there are
two cases to consider: they either reacted to the current broadcast or they reached their state in a previous
step. Thus the precondition for 72 can be either 7y or r itself. Both preconditions must remain in the
same group. For uy we have to be more careful. The precondition can be either u; or uy. However, since
the value of the register before store is unknown, they can either remain in the same group, move to other
existing groups in &, or to newly created groups (associated to fresh identifiers). Similarly, the precon-
ditions for nodes in state vo can be either v; or vs. These processes remain in the same group. Among
the predecessors we have then symbolic configurations like: [[q1, 71, u1], [v1,v1]], [[q1, 71, w1], [v1, v2]],
(g1, r1, ua], [v2, va]l [lqu, 2, wel, [v1, vi]]s [lgv, 7], [ur, o1, 0a])s lgr, ml, [, 01, [ua]], ete.

To take into account the upward closure of the denotations of &, we also have to consider possible
extensions of ¢ with additional nodes that match postconditions of send and receive rules. For instance,
we may assume that there exists another node in state g; in mg, and then recompute predecessors start-
ing from [[q2, 72, u2], [g2, v2, v2]] or assume that there exist a node with a fresh value with postcondition
g2 and then compute the predecessors from [[go, 72, u2], [v2, v2], [¢2]], and so on. Similarly we have to
consider possible extensions of £ with matching postconditions of reception rules and computed prede-
cessors for them too. Luckily, we have to consider only finitely many extensions since we are interested
in computing minimal configurations only. Specifically, extensions of £ with more than one occurrence
of the same postcondition will lead to non-minimal configurations, and thus they can be avoided.

All the predecessor symbolic configurations are then collected together and only the minimal one
w.r.t. < form the basis of the symbolic representation of predecessor configurations.

To simplify the presentation, we present a non-deterministic algorithm to compute PRE; (&) defined
via a case analysis on broadcast and receptions. The algorithm can be transformed into a deterministic
one by exploring all possible alternatives. Consider the broadcast rule b = (¢, b(msg,p1),¢’) and the
symbolic configuration & = [mq,...,my]. We recall that £ denotes all configurations larger than &
w.r.t. <. However, to compute predecessors it is enough to consider extensions of & with at most one
occurrence of a sender process. Adding explicit representations of receivers is not necessary since the
corresponding predecessors would produce non minimal representations. This is due to the fact that
update of receiver states do not influence the state of other processes.

In what follows, the operator & denotes the multiset union. We first define the finite set of possible
extensions of £ as follows:

Exty(§) ={U{g@ [P U{lm,....mi®[q],...,mu] | € [L K]}

The intuition behinds this extension is that we have to consider the configuration in [¢] where the state ¢’
appears since these are the configuration we will get after taking the broadcast rule b = (g, b(msg, p1),q’).

For each ¢’ € Euxty(§), we will show how to compute a set of symbolic predecessor. Let £’ €
Exty (&) with & = [my, ..., mi). We can now assume now that m; = [¢'] & m for some i. We first
notice that £’ has no predecessors if there are states that correspond to preconditions of receptions of
msg that could be fired with b, unless receptions preserve the state with a loop on ¢’. Indeed, since the
topology is fully connected all nodes must react to the broadcast b (i.e. a precondition state of a reception
cannot remain in the current state unless the reception does not change it). Let us assume now that the
previous case does not apply. We will give now the way to obtain set of predecessors of £ of the shape
[m),...,m)] with ¢ > k.

To define mg we first non-deterministically decompose m into the multisets wy, ws, w3, wq, Where
w1 contains target states of receptions for msg with action 7p;, wo contains target states of receptions
for msg with action *, w3 contains target states of receptions for msg with action |p;, and w4 contains
the remaining states. We then non-deterministically decompose w; into u;, v;. In other words we have

that
3

m = (P (u; © v)) & wy
i=1
We can now define the effect of b on m as the multiset m’ defined as

3

m' = (P (pre(u;) @ vi)) ® wy

i=1
To multiset pre(u;) is defined by case analysis on receptions.

e For rules with test and ignore action pre(u;), ¢ € [1, 2], is obtained by replacing each occurrence of
a postcondition with the corresponding precondition of a (non deterministically selected) reception
rule for msg (i.e pre(u;) and u; have the same size).

e For rules with store actions, pre(us) is obtained by first replacing each occurrence of a postcon-
dition in ugz with the corresponding precondition of a (non deterministically selected) reception
rule for msg, and then by non-deterministically splitting the resulting multiset into two multisets,
namely pre(usz) and pre.(us). The latter processes correspond to processes with register values
distinct from those in m.

We will then have m/; = [q] & m/.

We now have to generate the multiset m; associated to the multisets m; with j € [1..k] \ {i}. To
compute m; we consider reception rules that either have 7py (i.e. the value in the register is distinct from
the sender) or * action. We non-deterministically split m; in

m; = uj B v;

so that u; contains postcondition states of receptions of msg, and compute m; by applying reception
backwards to u;, i.e.,
/
m; = pre(u;) @ vj

Finally, the multiset pre_(u3) is non-deterministically distributed among the multisets mg with j # i or
used to add to the resulting configuration additional multisets (all possible splittings of sub multisets of
pre=+(ug)). In the former case the processes in pre(u3) correspond to processes with register values
that were already present in £’. In the latter case they correspond to processes whose register value is
fresh with respect to those in £’

When we have computing sets of symbolic predecessors for each ' € Ext (), we take for PRE,(§)
the minimal set I of symbolic representations representing the union of all the computed sets and which
is obtained by by removing redundant representations and representations that are larger than others.

5.3. Decision Procedure

Following [3], the algorithm for PREp can be used to effectively compute a finite representation of the
set of predecessors pre}, ([Bad]) for a set of symbolic configurations Bad. The computation iteratively
applies PREp until a fixpoint is reached. The termination test is defined using <. The wqo < ensures
termination of the computation [1]. The following theorem then holds.

Theorem 5.2. Cov/®(1,1) is decidable.

Proof:

We show how to apply the symbolic predecessor computation based on PREp. Let ¢ be a query with set
of variables Z. The (in)equalities in ¢ induce a finite set Py, ..., Pj of partitions of Z. Each partition
P; = {X},..., X} is such that X} contains variables that may take the same value (i.e. there are
no # constraints between them in ¢). For a partition X, we define the multiset m x of symbols in @
for which there exists a predicate ¢(z) with z € X. Thus P; = {X{,..., X} } can be represented via
the multiset of multisets s; = [me’ e szi]. The set [= {s1,..., Sk} corresponds to the minimal

elements of the set of configurations that satisfy ¢. To apply the algorithm we set Bad = I7, ie.,
I = min(Bad). We compute then the least fixpoint of PREp, say PREL(I). To check if the resulting
set of symbolic configurations contains an initial state, we need to search for a finite basis (V, L, E)
(where E = V x V \ {(v,v) | v € V}) in which all nodes have initial states as labels, and in which
there cannot be two nodes with the same value in the register (initially all processes have distinct values
in local registers). Using the multiset representation, we need to search for a multiset consisting of
multisets of the form [gy] where ¢ is the initial state of the protocol, i.e. coverability holds if and only if

[[QO]v SRR [QOH € PRE;(?(I)- O

An alternative proof can be given by resorting to an encoding into coverability in data nets [25]. We
present such an encoding in [13]. We did not investigate the reverse translation, i.e. whether data nets
can be encoded into our model with fully-connected topology, one register and one-field per message,
but due to the expressive power of data nets, it seems that it would be difficult to get such a reduction.

We consider now the complexity. We observe that, without registers and fields our model boils down
to the AHNs of [15]. For fully connected topologies, AHN can simulate reset nets as shown in [16]
and hence the parameterized coverability problem for such a model is Akcermann-hard. In fact, this
can be deduced from the fact that the complexity of coverability in reset nets is Ackermann-hard [28].
Furthermore it has been show later that for fully connected topology, the parameterized coverability
problem in AHN is in fact Ackermann-complete [27]. Following these results, we obtain the following
theoretical lower bound.

Corollary 5.1. Cov/¢(0,0) and Cov’®(1, 1) are Ackermann-hard.

6. Conclusions

In this paper we investigated decidability and complexity for parameterized verification of a formal model
of distributed computation based on register automata communicating via broadcast messages with data.
The results we obtained are summarized in Table 1 where we recall that r stands for the number of
registers present in each node of the network and f characterizes the number of fields allowed in the
messages of the protocol. As already mentioned, for » = 0 and f = 0 the parameterized coverability
problem had already been studied previously. From a technical point of view, our results can be viewed
as a fine grained refinement of those obtained for the case without data. For instance, undecidability
follows from constructions similar to those adopted in [15]. They are based on special use of data for
building synchronization patterns that can be applied even in fully connected networks. We point out
the fact that we have characterize exhaustively the decidability status of the parameterized coverability
problem for Broadcast Networks of Register Automata since as mentioned before it does not make sense
to consider more data fields in the message than number of registers in the nodes. The only problem left
open is the precise complexity characterization of Cov” “(1,1).

Protocol

Problem r f Complexity

Cov(r,f) O 0 PTIME[14]
r>11 PSPACE-complete [Thm. 4.2]
r > 2 f > 2 Undecidable [Thm 4.1]

ov!°(r, ckermann-complete [16,

Cov'(r, f) 0 0 Ack lete [16, 27]
1 1 Decidable and Ackermann-hard [Thm 5.2]
r > 2 f > 1 Undecidable [Thm. 5.1]

Cov®(r,f) r>0 f >0 Undecidable [15]

Table 1. Decidability and complexity boundaries

In our model, we have assumed that in an initial configuration the same data is not present twice
(in any register). One could easily verify that for the cases where we obtain decidability (for Cov(x, 1)
and Covfc(l, 1)), the same techniques can be applied if we relax this hypothesis and hence we would
obtain the same decidability results with the same complexity. For the cases where we have proved
undecidability (Cov(2,2) and Cov’®(2,1)), we can observe that we need in our undecidability proofs
one read-only register containing a different identifier for each node of the network. Hence if we relax
two much the hypothesis on the initial configurations (such that nodes cannot be anymore distinguished
through this register) it is not clear whether the problems will remain undecidable or not.

Finally, in this work, we have considered only safety properties for our model, but as we mention

with the example provided in Section 3, it would be interested to investigate liveness property that states
that eventually something desired happens. For the cases of fully connected topologies in which we
rely on the theory of well-structured transition systems, positive results might be difficult to obtain since
backward algorithms, as the one we use for Cov'® (1,1), will not apply, but for the case with reconfigura-
tion with one register and one field per message it might be easier. We plan to investigate such problems
in future works. Another possible direction for future research would be to see what happens when the
data are ordered. It would be also interesting to understand how such techniques can be applied to real
protocols by analyzing for instance approximate executions (our model being not expressive enough to
characterize precisely the behaviors of a concrete protocols). In fact to verify the behaviors of concrete
protocols with our method, we would need to abstract away some aspects of the protocols in order to be
able to encode them in our model. One negative point is that such methods might lead to false alarms
(bugs in the approximation which cannot occur in the real protocols) and an idea left also as possible
direction of research could then be to provide a way to refine the abstraction in order to discard such
wrong executions.

References
[1] Abdulla, P. A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General Decidability Theorems for Infinite-State Sys-
tems, LICS’96, IEEE Computer Society, 1996.

[2] Abdulla, P. A., Delzanno, G., Rezine, O., Sangnier, A., Traverso, R.: On the Verification of Timed Ad Hoc
Networks, FORMATS’11, 6604, Springer, 2011.

[3] Abdulla, P. A., Jonsson, B.: Ensuring completeness of symbolic verification methods for infinite-state sys-
tems, Theor. Comput. Sci., 256(1-2), 2001, 145-167.

[4] Alur, R., Dill, D. L.: A Theory of Timed Automata, Theor. Comput. Sci., 126(2), 1994, 183-235.

[5S] Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized Model Checking of Token-Passing Systems,
VMCAI’14, 8318, 2014.

[6] Bertrand, N., Fournier, P., Sangnier, A.: Playing with Probabilities in Reconfigurable Broadcast Networks,
FOSSACS’14, 8412, Springer, 2014.

[7] Bollig, B., Gastin, P., Schubert, J.: Parameterized Verification of Communicating Automata under Context
Bounds, RP’14, 8762, 2014.

[8] Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-Safe Nets, TCS, 147(1&2), 1995, 117-136.

[9] Clarke, E. M., Talupur, M., Touili, T., Veith, H.: Verification by Network Decomposition, CONCUR’04,
3170, 2004.

[10] Delzanno, G.: Constraint-Based Verification of Parameterized Cache Coherence Protocols, FMSD, 23(3),
2003, 257-301.

[11] Delzanno, G., Rosa-Velardo, F.: On the coverability and reachability languages of monotonic extensions of
Petri nets, Theor. Comput. Sci., 467, 2013, 12-29.

[12] Delzanno, G., Sangnier, A., Traverso, R.: Parameterized Verification of Broadcast Networks of Register
Automata, RP’13, 8169, Springer, 2013.

[13] Delzanno, G., Sangnier, A., Traverso, R.: Parameterized Verification of Broadcast Networks of Register
Automata (Technical Report), Technical report, TR-13-03, DIBRIS, University of Genova, 2013, Available
at the URL http://verify.disi.unige.it/publications/.

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]
(23]
[24]

[25]

(26]
(27]
(28]

Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the Complexity of Parameterized Reachability in
Reconfigurable Broadcast Networks, FSTTCS 12, 18, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2012.

Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized Verification of Ad Hoc Networks, CONCUR’10,
6269, Springer, 2010.

Delzanno, G., Sangnier, A., Zavattaro, G.: On the Power of Cliques in the Parameterized Verification of Ad
Hoc Networks, FOSSACS’11, 6604, Springer, 2011.

Emerson, E. A., Namjoshi, K. S.: On Model Checking for Non-Deterministic Infinite-State Systems,
LICS’98, IEEE Computer Society, 1998.

Esparza, J.: Keeping a Crowd Safe: On the Complexity of Parameterized Verification (Invited Talk),
STACS’14, 25, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

Esparza, J., Finkel, A., Mayr, R.: On the Verification of Broadcast Protocols, LICS’99, IEEE Computer
Society, 1999.

Esparza, J., Ganty, P., Majumdar, R.: Parameterized Verification of Asynchronous Shared-Memory Systems,
CAV’13, 8044, Springer, 2013.

Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!, Theor. Comput. Sci., 256(1-2),
2001, 63-92.

German, S. M., Sistla, A. P.: Reasoning about Systems with Many Processes, J. ACM, 39(3), 1992, 675-735.
Kaminski, M., Francez, N.: Finite-Memory Automata, Theor. Comput. Sci., 134(2), 1994, 329-363.

Konnoyv, 1., Veith, H., Widder, J.: Who is afraid of Model Checking Distributed Algorithms?, Unpublished
contribution to: CAV Workshop (EC)?, 2012.

Lazic, R., Newcomb, T., Ouaknine, J., Roscoe, A. W., Worrell, J.: Nets with Tokens which Carry Data,
Fundam. Inform., 88(3), 2008, 251-274.

Minsky, M.: Computation, Finite and Infinite Machines, Prentice Hall, 1967.
Schmitz, S., Schnoebelen, P.: The Power of Well-Structured Systems, CONCUR’13, 8052, Springer, 2013.

Schnoebelen, P.: Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset Petri Nets,
MFCS’10, 6281, Springer, 2010.

