
Projet PACS

Deliverable 1 :

Report on Advances on Discrete Parameter Synthesis

1 Summary

Various research works have been achieved in the context of the Task 1 of ANR Project PACS
whose main focus was to develop verification and synthesis techniques for models defined with
parameters. In these different works, the considered parameters are taking their value in some
discrete (but unbounded) state space. The main ideas of these works are provided in this Section
and the corresponding articles can be found in Appendix of this document

1.1 Studying networks where the number of participants is a parameter

In order to analyze networks protocols which are designed to run over an unbounded num-
ber of participants, it is natural to consider models where a parametric number of entities have
a similar behavior. Many works over such models have been done in this task and the variations
between them comes from the studied family of networks and as well from the different nature of
the problems.

Three of these works propose methods for a model where the communication between the
entities of the network is done by broadcasting of messages and they assume as well that the net-
work comes with a communication topology (basically a graph). In some cases, this graph can
be assumed to be static, i.e. the communication topology does not change during an execution of
the protocol. In other cases, the configuration topology is subjected to reconfiguration, in order to
simulate both the loss of the messages and the possible mobility of the entities.

For what concerns, the last work, it studies simpler networks, where processes communicate
through a shared register but the technical breakthrough comes from the fact that it provides some
results which take into account a randomized scheduler in the network whose role is to indicate
at each instant the process to be executed.

In [DST16], the authors study parameterized verification problems for networks of interac-
ting register automata. The network is represented through a graph, and processes may exchange
broadcast messages containing data with their neighbours. Upon reception a process can either
ignore a sent value, test for equality with a value stored in a register, or simply store the value in a
register. They consider safety properties expressed in terms of reachability, from arbitrarily large
initial configurations, of a configuration exposing some given control states and patterns. They

PACS (PARAMETRIC ANALYSES OF TIMED SYSTEMS)
Projet ANR-14-CE28-0002 (2014–2019)

1/3

investigate, in this context, the impact on decidability and complexity of the number of local re-
gisters, the number of values carried by a single message, and dynamic reconfigurations of the
underlying network.

In [ADR+16], the authors study decidability and undecidability results for parameterized ve-
rification of a formal model of timed Ad Hoc network protocols. The communication topology is
defined by an undirected graph and the behaviour of each node is defined by a timed automaton
communicating with its neighbours via broadcast messages. They consider parameterized verifi-
cation problems formulated in terms of reachability. In particular they are interested in searching
for an initial configuration from which an individual node can reach an error state. They study
the problem for dense and discrete time and compare the results with those obtained for (fully
connected) networks of timed automata.

In [BFS15] the authors study the problems of reaching a specific control state, or converging to
a set of target states, in networks with a parameterized number of identical processes communi-
cating via broadcast. To reflect the distributed aspect of such networks, they restrict their attention
to executions in which all the processes must follow the same local strategy that, given their past
performed actions and received messages, provides the next action to be performed. They show
that the reachability and target problems under such local strategies are NP-complete, assuming
that the set of receivers is chosen non-deterministically at each step. On the other hand, these pro-
blems become undecidable when the communication topology is a clique. However, decidability
can be regained for reachability under the additional assumption that all processes are bound to
receive the broadcast messages.

In [BMR+16], the authors study the almost-sure reachability problem in a distributed system
obtained as the asynchronous composition of N copies of the same automaton (that can com-
municate via a shared register with finite domain. The automaton has two types of transitions :
write-transitions update the value of the register, while read-transitions move to a new state de-
pending on the content of the register. Non-determinism is resolved by a stochastic scheduler. Gi-
ven a protocol, they focus on almost-sure reachability of a target state by one of the processes. The
answer to this problem naturally depends on the number N of processes. However, they prove that
our setting has a cut-off property : the answer to the almost-sure reachability problem is constant
when N is large enough ; we then develop an EXPSPACE algorithm deciding whether this constant
answer is positive or negative.

1.2 Introducing parameters in the transition relation of Petri nets

In [DJLR15], the authors have studied how discrete parameters can be introduced in the tran-
sition relation of Petri net. In a system modelled as a Petri net, the number of identical processes
involved, the number of identical processes required for some task, or the number of identical
processes spawned by some task, can all be modeled using the marking of the net and the input or
output weights of the arcs. Besides, most safety properties can be modeled by the coverability pro-
perty of Petri nets : is it possible to put at least this many tokens in some given places. They have
therefore studied the parameterization of markings and weights in Petri nets and, particularly, the

PACS (PARAMETRIC ANALYSES OF TIMED SYSTEMS)
Projet ANR-14-CE28-0002 (2014–2019)

2/3

parametric decision problems related to coverability : does there exist a parameter valuation such
that some marking in the instantiated net is coverable ? and is some marking coverable for all pa-
rameter valuations ? They prove that the problem is undecidable in general, but provide natural
syntactical subclasses for which it is decidable.

1.3 Extending regular model-checking to more expressive models

Concerning regular model-checking the authors have considered in [DH16] an extension of
the classical setting using words over a finite alphabet and their transformation to data words.
Data words consist of letters which are pairs of an element from a finite domain and a data value
from an infinite domain. They study a class of transformations of finite data words which gene-
ralizes the well-known class of regular finite string transformations described by MSO-definable
transductions of finite strings. These transformations map input words to output words whereas
our transformations handle data words where each position has a letter from a finite alphabet and
a data value. Each data value appearing in the output has as origin a data value in the input. As
is the case for regular transformations they show that our class of transformations has equivalent
characterizations in terms of novel deterministic two-way and streaming string transducers.

Références

[ADR+16] Parosh Aziz Abdulla, Giorgio Delzanno, Othmane Rezine, Arnaud Sangnier, and Ric-
cardo Traverso. Parameterized verification of time-sensitive models of ad hoc network
protocols. Theoretical Computer Science, 612 :1–22, 2016. 2

[BFS15] Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Distributed local strate-
gies in broadcast networks. In 26th International Conference on Concurrency Theory,
CONCUR 2015, volume 42 of LIPIcs, pages 44–57. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015. 2

[BMR+16] Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan.
Reachability in networks of register protocols under stochastic schedulers. In Procee-
dings of the 43rd International Colloquium on Automata, Languages and Programming
- Part II (ICALP’16 (2)), volume 55 of LIPIcs, pages 106 :1–106 :14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016. 2

[DH16] Antoine Durand-Gasselin and Peter Habermehl. Regular transformations of data words
through origin information. In FOSSACS 2016, volume 9634 of Lecture Notes in Com-
puter Science, pages 285–300. Springer, 2016. 3

[DJLR15] Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux. Discrete parameters in
petri nets. In PETRI NETS’15, volume 9115 of Lecture Notes in Computer Science, pages
137–156. Springer, 2015. 2

[DST16] Giorgio Delzanno, Arnaud Sangnier, and Riccardo Traverso. Adding data registers to
parameterized networks with broadcast. volume 143(3-4), pages 287–316, 2016. 1

PACS (PARAMETRIC ANALYSES OF TIMED SYSTEMS)
Projet ANR-14-CE28-0002 (2014–2019)

3/3

Parameterized Verification of Time-sensitive Models of
Ad Hoc Network Protocols1

Parosh Aziz Abdullaa, Giorgio Delzannob, Othmane Rezinea, Arnaud
Sangnierc, Riccardo Traversob

a

Uppsala University, Sweden

b

University of Genova, Italy

c

LIAFA, Univ Paris Diderot, CNRS, France

Abstract

We study decidability and undecidability results for parameterized verification
of a formal model of timed Ad Hoc network protocols. The communication
topology is defined by an undirected graph and the behaviour of each node is
defined by a timed automaton communicating with its neighbours via broad-
cast messages. We consider parameterized verification problems formulated in
terms of reachability. In particular we are interested in searching for an initial
configuration from which an individual node can reach an error state. We study
the problem for dense and discrete time and compare the results with those
obtained for (fully connected) networks of timed automata.
Keywords Parameterized Verification, Timed Automata, Ad Hoc Networks,
Graphs, Decidability, Well Structured Transition Systems

1. Introduction

In recent years there has been an increasing interest in automated verifica-
tion methods for ad hoc networks, see e.g. [18, 24, 23, 11, 12]. Ad Hoc Networks
(AHN) consist of wireless hosts that, in absence of a fixed infrastructure, com-
municate sending broadcast messages. In this context, protocols are supposed
to work independently from a specific configuration of the network. Indeed,
discovery protocols are often applied in order to identify the vicinity of a given
node. In the AHN model proposed in [11] undirected graphs are used to rep-
resent a network in which each node executes an instance of a fixed (untimed)
interaction protocol based on broadcast communication. Since individual nodes
are not aware of the network topology, in the ad hoc setting it is natural to
consider verification problems that are parametric in the size and shape of the
initial configuration as in [11].

1This work is partially supported by the ANR national research program ANR-14-CE28-
0002 PACS.

Preprint submitted to Elsevier September 2, 2016

In this paper we introduce a new model of distributed systems obtained by
enriching the AHN model of [11] with time-sensitive specification of individual
nodes. In the resulting model, called Timed Ad Hoc Networks (TAHN), the
connection topology is still modelled as a graph in which nodes communicate
via broadcast messages but the behaviour of a node is now defined as a timed
automaton. More in detail, each node has a finite set of clocks which all advance
at the same rate and transitions describing the behaviour of the nodes are
guarded by conditions on clocks and have also the ability to reset clocks.

Following [11, 12], we study the decidability status of the parameterized
reachability problem taking as parameters the initial configuration of a TAHN,
i.e., we aim at checking the existence of an initial configuration that can evolve
using continuous and discrete steps into a configuration exposing a given lo-
cal state (usually representing an error). Our model presents similarities with
Timed Networks introduced in [2]. A major di↵erence between TAHN and
Timed Networks lies in the fact that in the latter model the connection topol-
ogy is always a fully-connected graph, i.e., broadcast communication is not
selective since a message sent by a node always reaches all other nodes. For
Timed Networks, it is known that reachability of a configuration containing a
given control location is undecidable in the case of two clocks per node, and
decidable in the case of one clock per node.

When constraining communication via a complex connection graph, the de-
cidability frontier becomes much more complex. More specifically, our technical
results are as follows:

• For nodes equipped with a single clock, parameterized reachability be-
comes undecidable in a very simple class of graphs in which nodes are
connected so as to form stars with diameter five.

• The undecidability result still holds in the more general class of bounded
path graphs, i.e., graphs in which the length of maximal simple paths is
bounded by a constant. In our proof we consider a bound N � 5 on the
length of simple paths. Since nodes have no information about the shape of
the network topology, the undecidability proof is not a direct consequence
of the result for stars. Indeed the undecidability construction requires a
preliminary step aimed at discovering a two-star topology in a graph of
arbitrary shape but simple paths of at most five nodes.

• The problem turns out to be undecidable in the class of cliques of arbitrary
order (that contains graphs with arbitrarily long paths) in which each
timed automaton has at least two clocks.

• Decidability holds for special topologies like stars with diameter three and
cliques of arbitrary order assuming that the process running in each node
is equipped with a single clock (as in Timed Networks).

• Finally when considering discrete time, e.g. to model time-stamps, instead
of continuous time, we show that the local state reachability problem
becomes decidable for processes with any number of clocks in the class of

2

graphs with bounded path. The same result holds for cliques of arbitrary
order.

2. Preliminaries

Let N be the set of natural numbers and R�0 the set of non-negative real
numbers. For sets A and B, we use f : A 7! B to denote that f is a total
function that maps A to B. For a 2 A and b 2 B, we write f [a - b] to denote
the function f

0 defined as follows: f

0(a) = b and f

0(a0) = f(a0) for all a0 6= a.
We denote by [A 7! B] the set of all total functions from A to B.

We now recall the notion of well-quasi-ordering (which we abbreviate as
wqo). A quasi-order (A,�) is a wqo if for every infinite sequence of elements
a1, a2, . . . in A, there exist two indices i < j such that a

i

� a

j

. Given a set A

with an ordering � and a subset B ✓ A, the set B is said to be upward closed
in A if a1 2 B, a2 2 A and a1 � a2 implies a2 2 B. Given a set B ✓ A, we
define the upward closure "B to be the set {a 2 A | 9a0 2 B such that a0 � a}.
For a quasi-order (A,�), an element a is minimal for B ✓ A if for all b 2 B,
b � a implies a � b. If (A,�) is a wqo and if B is upward closed in A, then
the set of minimal elements of B is finite. If {b1, . . . , bk} is the set of minimal
elements of B, then "{b1, . . . , bk} = B; hence B can be represented finitely.

3. Timed Ad Hoc Networks

3.1. Syntax

A Timed Ad Hoc Network (TAHN) consists of a graph where the nodes
represent processes that run a common predefined protocol defined by a com-
municating timed automaton. The values of the clocks manipulated by the au-
tomaton inside each process are incremented all at the same rate. In addition,
processes may perform discrete transitions which are either local transitions or
communication events. When firing a local transition, a single process changes
its local state without interacting with the other processes. For what concerns
communication, it is performed by means of selective broadcast, a process sends
a broadcast message which can be received only by its neighbours in the net-
work. We choose to represent the communication relation as a graph. Finally,
transitions are guarded by conditions on values of clocks and may also reset
clocks.

We now provide the formal definition of the model. We assume that each
process operates on a set of clocks X. A guard is a boolean combination of
predicates of the form k C x for k 2 N, C 2 {=, <,, >,�}, and x 2 X. We
denote by G(X) the set of guards over X. A reset R is a subset of X. The guards
will be used to impose conditions on the clocks of processes that participate in
transitions and the resets to identify the clocks that will be reset during the
transition. A clock valuation is a mapping F : X 7! R�0. For a guard g and
a clock valuation F , we write F |= g to indicate that the formula obtained by
replacing in the guard g each clock x by F (x) is valid. For a clock valuation F

3

and a subset of clocks Y ✓ X, we denote by F [Y] the clock valuation such that
F [Y](x) = 0 for all x 2 Y and F [Y](x) = F (x) for all x 2 X \ Y .

For a finite alphabet ⌃ of messages, we define the set of events associated
to this alphabet as follows: M(⌃) = {⌧} [{!!a, ??a | a 2 ⌃}. These events
correspond to the following ideas:

(i) ⌧ is used for a local move ;

(ii) !!a represents the broadcast of the message a;

(iii) ??a denotes the reception of the message a (that has been broadcasted by
another process).

We now give the definition of a protocol which will be executed by the nodes
in the network.

Definition 1. A protocol P is a tuple
�
Q,X,⌃,R, q

init

�
such that Q is a finite

set of states, X is a finite set of clocks, ⌃ is a finite message alphabet, R ✓
Q ⇥ G(X) ⇥M(⌃) ⇥ 2X ⇥ Q is a finite set of rules labelled with a guard, a
message and a reset, and q

init 2 Q is an initial state.

Intuitively P defines the protocol that is run by each of the nodes (or entities)
present in the network, where Q is the set of local states of each node, while
R is a set of rules describing the behaviour of each node. We will use the

notation
⇣
q, g

e�! R, q

0
⌘

to represent the rule (q, g, e, R, q

0). For a protocol

P =
�
Q,X,⌃,R, q

init

�
, we denote by nbclocks(P) the size of X, i.e., the number

of clocks it uses.
A TAHN T is then simply a pair (G,P) where:

• G = (V,E) is a connectivity graph composed of a finite set of nodes V and a
set of undirected edges without self-loops, i.e., E ✓ V ⇥V \{(v, v) | v 2 V }
s.t. E is symmetric;

• P is the protocol which will be executed by the node present in the nodes
of the graph.

Intuitively, the graph G characterizes potential process interactions in the net-
work T ; the set V represents the nodes and E defines the connectivity relation
between the nodes of the network. The nodes belonging to an edge are called
the endpoints of the edge. For an edge (u, v) 2 E, we often use the notation
u ⇠ v and say that the vertices u and v are adjacent to each other.

3.2. Operational Semantics

We now define the operational semantics of TAHN by means of a timed
transition system. Let T = (G,P) be a TAHN with G = (V,E) and P =�
Q,X,⌃,R, q

init

�
. A configuration � of T is a pair (Q,X) where:

• Q : V 7! Q is a function that maps each node of the graph with a state
of the protocol;

4

• X : V 7! [X 7! R�0] is a function that assigns to each node a clock
valuation.

An important point is that, in a configuration, each node of the graph has its own
set of clocks. We denote by CT the set of configurations. The initial configuration
of T is the configuration

�
Qinit

,X init

�
with Qinit(v) = q

init and X init(v)(x) = 0
for all v 2 V and x 2 X. In other words, in an initial configuration all the nodes
are in the initial local state and all their associated clocks have value 0.

We now introduce a notation to characterize the nodes in a configuration
that are able to receive a message a. Given a configuration � = (Q,X) of the
TAHN T = (G,P) (with G = (V,E)) and given a message a 2 ⌃, let EnT (�, a)
be the following set of nodes able to receive a in � from the connectivity graph
G:

EnT (�, a) = {v 2 V | 9
⇣
q, g

??a�! R, q

0
⌘
2 R s.t. Q(v) = q and X (v) |= g}

In the rest of the paper we will use En(�, a) when T is clear from the context.
The semantics associated to a TAHN T is then defined by the timed tran-

sition system (CT ,=)T), where the transition relation =)T ✓ CT ⇥ CT corre-
sponds to the union of a discrete transition relation =)T ,d

, representing tran-
sitions induced by the rules of T and a timed transition relation =)T ,t

which
characterizes the elapse of time.

The discrete transition relation =)T ,d

✓ CT ⇥ CT is such that given two
configurations � = (Q,X) and �

0 = (Q0
,X 0), we have � =)T ,d

�

0 if and only if
one of the following conditions is satisfied:

Local: There exists a rule
⇣
q, g

⌧�! R, q

0
⌘
and a vertex v 2 V such that Q(v) =

q, X (v) |= g, Q0 = Q [v - q0], and X 0 = X [v - X (v)[R]], and, for each
w 2 V \ {v}, we have Q0(w) = Q(w), X 0(w) = X (w).

Broadcast: There exists a rule
⇣
q, g

!!a�! R, q

0
⌘
and a vertex v 2 V such that

Q(v) = q, X (v) |= g, Q0(v) = q

0 and X 0(v) = X (v)[R], and, for each
w 2 V \ {v}, we have:

• either w ⇠ v and w 2 En(�, a) and there exists a rule of the form⇣
q1, g1

??a�! R1, q
0
1

⌘
such that Q(w) = q1, X (w) |= g1, Q0(w) = q

0
1,

and X 0(w) = X (w)[R1].

• or (w 6⇠ v or w /2 En(�, a)), Q0(w) = Q(w), and X 0(w) = X (w).

The timed transition relation =)T ,t

✓ CT ⇥ CT is such that given two con-
figurations � = (Q,X) and �

0 = (Q0
,X 0), we have � =)T ,t

�

0 if and only
if:

Time: There is a � 2 R�0 such that for all v 2 V and x 2 X, Q0(v) = Q(v)
and X 0(v)(x) = X (v)(x) + � .

As said before, =)T is then equal to =)T ,d

[=)T ,t

.

5

3.3. Topologies

As we will see, we will often restrict the connectivity graph of TAHN to
belong to a family of graphs. In this paper, we consider di↵erent families of
graphs that we call topologies. A topology Top is hence a class of graphs that
we use to impose structural restrictions on the communication graph of a set
of configurations. In the sequel we write G 2 Top to indicate that the graph G

belongs to a given Top. We now list the topologies we will take into account in
this work.

• GRAPH is the topology consisting of all finite graphs.

• For ` � 0, STAR(`) is the star topology of depth `. It characterizes graphs
G = (V,E) for which there is a partition of V of the form {v0}[V1[· · ·[V`

such that:

(i) v0 ⇠ v1 for all v1 2 V1;

(ii) for each 1  i < ` and v

i

2 V

i

there is one and only v

i+1 2 V

i+1 with
v

i

⇠ v

i+1 and one and only one v

i�1 2 V

i�1 with v

i

⇠ v

i�1;

(iii) no other nodes are adjacent to each other.

In other words, in a star graph of dimension `, there is a central node v0

and an arbitrary number of rays. A ray consists of a path v1, v2, . . . , v` of `
nodes, starting from v1 adjacent to v0. We call v0 the root, v1, v2, . . . , v`�1

internal nodes, and v

`

a leaf of G.

• For ` � 0, BOUNDED(`) is the bounded path topology of bound `. It charac-
terizes graphs for which the length of the maximal simple path is bounded
by `. Formally, if G 2 BOUNDED(`) with G = (V,E) then there does not
exist a finite sequence of nodes (v

i

)1im

such that m > `, and, v
i

6= v

j

for
all i, j in {1, . . . ,m} with i 6= j, and, v

i

⇠ v

i+1 for all i 2 {1, . . . ,m� 1}.

• CLIQUE is the set of cliques which characterizes graphs G = (V,E) such
that v ⇠ w for all v, w 2 V with v 6= w.

3.4. State reachability problem

We now present the verification problem we study in this work. It consists
in determining for a given protocol whether there exists a connectivity graph
belonging to a certain topology such that in the obtained TAHN it is possible
to reach, from the initial configuration, a configuration exhibiting a specific
state (for instance an error state). We insist on the fact that we do not restrict
the number of nodes appearing in the considered connectivity graphs. Notice
that all the classes of graphs (called topologies) introduced previously have an
infinite cardinality hence an algorithm enumerating all the graphs belonging to
a given topology cannot be applied to solve our reachability problem. In fact,
as we shall see, the main di�culty in this problem is that the set of connectivity
graphs to consider is infinite.

6

Let T = (G,P) be a TAHN with a protocol P =
�
Q,X,⌃,R, q

init

�
and a

connectivity graph G = (V,E). We say that a configuration �

n

is reachable in T
if there exists a finite path, starting at the initial configuration �0, of the form
�0 =)T �1 =)T · · · =)T �

n

in the associated transition system . Given a state
q 2 Q, we say that q is reachable in the TAHN T if there exists a reachable
configuration � = (Q,X) and a vertex v 2 V such that Q(v) = q.

We now define the state reachability problem TAHN�Reach (Top,K) param-
eterized by a topology Top and a number of clocks K as follows:

Input: A protocol P such that nbclocks(P)  K and a control state q;

Output: Is there a TAHN T = (G,P) with G 2 Top such that q is reachable
in T ?

In [11, 12], a model of Ad Hoc Networks without time has been studied; it
is the same as the one we have introduced considering protocols without clocks.
The authors have shown that when the connectivity graphs are unrestricted,
then the state reachability problem is undecidable. However, one can regain
the decidability by restricting the graphs to have bounded path (i.e., graphs in
which the length of the maximal simple path is bounded). Note also that when
the reachability problem is restricted to cliques, then TAHN without clocks are
equivalent to Broadcast Protocols (with no rendez-vous communication) which
were introduced in [17] and for which the reachability problem is proved to be
decidable. A proof, in terms of Ad Hoc Networks, of this latter result can also
be found in [12]. The following theorem rephrases these results in our context.

Theorem 1. [11, 17, 12]

1. TAHN�Reach (GRAPH, 0) is undecidable.
2. For all N � 1, TAHN�Reach (BOUNDED(N), 0) is decidable.
3. TAHN�Reach (CLIQUE, 0) is decidable

Remark 1. We point out the fact that for a number of clocks K and given two
topologies Top and Top0, if Top ⇢ Top0, we cannot infer directly any relation be-
tween the decidability status of TAHN�Reach (Top,K) and TAHN�Reach (Top,K 0).
For instance if TAHN�Reach (Top,K) is undecidable, then it does not imply nec-
essarily that TAHN�Reach (Top,K 0) is undecidable, it could be in fact the case
that dealing with a larger class of graphs renders the problem solvable. Similarly
if TAHN�Reach (Top,K 0) is undecidable, we know that TAHN�Reach (Top,K)
could be decidable (see the above theorem where we have CLIQUE ⇢ GRAPH).

3.5. Example

Consider the protocol P described at Figure 1 which uses a single clock per
process. In this protocol, after more than one time unit, processes can broadcast
m1 or m3. A process in initial state can then receive a message m1, and after
reception of such a message, it can broadcast a message m2 if the delay between
the reception of m1 and the broadcast of m2 is strictly more than one time unit.

7

q

init

q1

x > 1, !!m1, ;

q2

x > 1, !!m3, ;

q3

true, ??m1, {x}

x > 1, !!m2, ;

q4

true, ??m2, {x}
q

f

x = 2, ??m3, ;

Figure 1: A protocol P

Finally, a process can reach the state q

f

if it receives a message m2 and exactly
2 times unit after, it receives a message m3.

The Figure 2 gives two examples of connectivity graphs; the first one G1

belongs to the topology CLIQUE and the second one G2 belongs to STAR(2).

(a) A clique graph G1 (b) A star graph G2 of depth 2

Figure 2: Example of two connectivity graphs

We are interested in knowing whether q
f

is reachable in (G1, P) and (G2, P).
We first consider the TAHN (G1, P). In this model as soon as a process broad-
casts a message m1, then all the processes in initial state have to receive it with

the rule
⇣
q

init

, true
??m1�! {x}, q3

⌘
; because of the clique graph, each broadcast

message is received by all the processes in the TAHN. Consequently, there does
not remain any node in q

init ready to receive the message m2 that is needed to
go to q

f

. Indeed there does not exist any connectivity graph G 2 CLIQUE, such
that q

f

is reachable in the TAHN (G,P).
On the other hand, if we consider the TAHN (G2, P), then q

f

can be reached.

8

We describe a possible scenario. After 2 times units one of the leaf broadcasts
m1, which is received by the adjacent internal node. After 2 times units this
latter node broadcasts m2 (note that this broadcast happens at global time 4).
The message m2 is received by the root node, which resets its clock, and exactly
2 times unit after (the global time is now 6), one of the two internal nodes,
which remained in state q

init , broadcasts a message m3, allowing thus the root
node to reach q

f

(it receives m3 exactly two times units after the reception of
m2).

4. Undecidability with Dense Time

In this section, we show undecidability of the reachability problem in TAHN
for three di↵erent topologies, namely:

• STAR(2): star connectivity graphs of depth 2 (one root and several rays
with two nodes); the undecidability holds even if each process uses a single
clock;

• CLIQUE: clique topologies; for this case, we need at least two clocks per
process to get the undecidability;

• BOUNDED(5) : bounded path topologies with maximal simple path of length
at most 5; the undecidability holds even if each process uses a single clock.

In the first two cases, the undecidability results are obtained thanks to a re-
duction into the reachability problem for timed networks where processes are
equipped with two clocks. We will hence first recall the definition of this latter
model, which was originally presented in [2]. Afterwards, we will provide the
reduction allowing to lift the undecidability result for Timed Network to the
case of TAHN.

4.1. Timed Networks

In [2], the authors introduce a model called Timed Network (TN) which can
be used to describe a system consisting of an arbitrary number of processes,
each of which being a finite-state system operating on real-valued clocks. The
di↵erences between the TN model and TAHN can be summarized as follows:

1. A TN contains a distinguished controller that is a finite-state automaton
without any clocks [2] (note that adding clocks to the controller does not
a↵ect our results).

2. Each process in a TN may communicate with all the other processes and
hence it is not meaningful to describe connectivity graphs in the case of
TN.

3. Communication takes place through rendez-vous between fixed sets of pro-
cesses rather than broadcast messages.

Following [2], we provide the syntax and the semantics of Timed Networks.

9

4.1.1. Syntax
Definition 2. A Timed Network (TN) N is a tuple (Qctrl

, Q

proc

, X,R, q

init

ctrl

,

q

init

proc

) where Q

ctrl is a finite set of controller states, Q

proc is a finite set of

process states, X is finite set of clocks, q

init

ctrl

2 Q

ctrl is an initial controller
stater, qinit

proc

2 Q

proc is an initial process state and R is a finite set of rules. A
rule is of the form:

2

4
q0
!
q00

3

5

2

4
q1

g1 ! R1

q01

3

5 · · ·

2

4
qn

gn ! Rn

q0n

3

5

such that q0, q
0
0 2 Q

ctrl , and, q

i

, q

0
i

2 Q

proc, g

i

2 G(X) and R

i

2 2X for all
i 2 {1, . . . , n}.

4.1.2. Operational semantics
As for TAHN, we give the semantics associated to a TN in term of a timed

transition system. We consider a TN N =
�
Q

ctrl

, Q

proc

, X,R, q

init

ctrl

, q

init

proc

�
. A

configuration � is a tuple of the form (I, q,Q,X) with:

• I is a finite set of indices;

• q 2 Q

ctrl ;

• Q : I 7! Q

proc ;

• X : I 7! [X ! R�0].

Intuitively, the configuration refers to the controller whose state is q, and to a
finite set of processes, each one associated to an element of I. The mapping
Q describes the states of the processes and the mapping X their associated
clock values. More precisely, for i 2 I and x 2 X, X (i)(x) gives the value of
clock x in the process of index i. We use |�| to denote the number of processes
in �, i.e., |�| = |I|. Let CN be the set of configurations of N . A configuration
�

init = (I, q,Q,X) is said to be initial if q = q

init

ctrl

, Q(i) = q

init

proc

, and X (i)(x) = 0
for each i 2 I and x 2 X. This means that an execution of a timed network
starts from a configuration where the controller and all the processes are in
their initial states, and the clock values are all equal to 0. Note that there is an
infinite number of initial configurations, namely one for each finite index set I.

Before we give the formal definition of the transition relation associated to
N , let us explain intuitively the behaviour of a rule of the form:

2

4
q0
!
q00

3

5

2

4
q1

g1 ! R1

q01

3

5 · · ·

2

4
qn

gn ! Rn

q0n

3

5

Such a rule is enabled from a given configuration, if the state of the controller
is q0 and if there are n processes with states q1, · · · , qn whose clock values satisfy
the corresponding guards. The rule is then executed by simultaneously changing
the state of the controller to q

0
0, the states of the n processes to q

0
1, · · · , q0n and

by resetting the clocks belonging to the sets R1, . . . , Rn

.

10

The semantics associated to the TN N is given by the timed transition sys-
tem (CN ,�!N) where the transition relation �!N✓ CN ⇥ CN is defined as the
union of a discrete transition relation �!N ,d

, representing transitions induced
by the rules of N and a timed transition relation �!N ,t

which characterizes the
elapse of time.

We begin by describing the transition relation �!N ,d

✓ CN ⇥ CN . For this
matter, we define a transition relation �!N ,r

for each rule r 2 R of the TN
N . We consider a rule r described as above. Let � = (I, q,Q,X) and �

0 =
(I 0, q0,Q0

,X 0) be two configurations in CN . We have � �!N ,r

�

0 if and only
if I = I

0 and there exists an injection h : {1, . . . , n} ! I such that, for all
i 2 {1, . . . , n}:

1. q = q0, Q(h(i)) = q

i

and X (h(i)) |= g

i

(i.e., the rule r is enabled);
2. q

0 = q

0
0 and Q0(h(i)) = q

0
i

(i.e. the states of the processes are changed
according to r);

3. X 0(h(i)) = X (h(i))[R
i

] (i.e. a clock is reset to 0 if it occurs in the set R
i

,
otherwise its value remains unchanged).

4. Q0(j) = Q(j) and X 0(j) = X (j) for all j 2 I \ {h(i) | i 2 {1, . . . , n}}.

The discrete transition relation �!N ,d

is then equal to
S

r2R �!N ,r

.
We now provide the definition of the timed transition relation �!N ,t

✓ CN ⇥
CN . Given two configurations � = (I, q,Q,X) and �

0 = (I 0, q0,Q0
,X 0) in CN , we

have � �!N ,t

�

0 if and only if I 0 = I, q0 = q, Q0 = Q and there exists � 2 R�0

such that X 0(i)(x) = X (i)(x) + � for all i 2 I and all x 2 X. Hence, as in
TAHN, a timed transition has no e↵ect on the states of the di↵erent processes
but its e↵ect changes the value of the di↵erent clocks making them evolve at
the same rate.

Finally we define �!N to be �!N ,d

[�!N ,t

. Note that if � �!N �

0 then
the index sets of � and �

0 are identical (by definition of the transition relation)
and therefore |�| = |�0|. This reflects the fact that in the considered networks,
the number of processes is indeed parametric but once fixed it does not change
during an execution, in other words there is no dynamic creation or deletion of
processes.

4.1.3. State reachability problem
Similarly to the case of TAHN, we will present here the state reachability

problem for TN. Here also this problem is parameterized by the number of
processes involved in the execution, that is why we do not impose any bounds
on the size of the initial configurations and we investigate whether there exists
an initial configuration from which the system can reach another configuration
in which the controller is in a given control state (for instance an error state).

Let N =
�
Q

ctrl

, Q

proc

, X,R, q

init

ctrl

, q

init

proc

�
be a TN. We say that a configura-

tion �

n

in CN is reachable in N if there exists a finite path �0 �!N �1 �!N
· · · �!N �

n

in the transition system associated to N . As for TAHN, a con-
troller state q is said to be reachable in N if there is a reachable configuration
of the form (I, q,Q,X). The TN state reachability problem TN�Reach (K),
parametric in the a number of clocks K, is defined as follows:

11

Input: A TN N =
�
Q

ctrl

, Q

proc

, X,R, q

init

ctrl

, q

init

proc

�
with |X|  K and a con-

troller state q 2 Q

ctrl ;

Output: Is q reachable in N ?

As said earlier, Timed Networks have already been introduced in [2] where
results for the state reachability problems are also presented. These latter result
can be expressed as follows:

Theorem 2. [4]

1. TN�Reach (2) is undecidable.
2. TN�Reach (1) is decidable.

4.2. Two-Star Topologies

In this section we prove that the reachability problem for the star topology
is undecidable even when the rays are restricted to have length 2 and the nodes
are restricted to have a single clock. The proof is based on the encoding of a
generic TN N with two clocks per process into a protocol P of TAHNs. We
will refer to the clocks inside a process of N as x1 and x2 respectively. For
each state q in N , we will have a corresponding state (q) in the protocol P .
Furthermore, we will have a number of auxiliary states in P that we need to
perform the simulation. We omit state labels in the automata representation
when their names are not relevant.

Given a TN N =
�
Q

ctrl

, Q

proc

, X,R, q

init

ctrl

, q

init

proc

�
and a controller state q in

N , we define a protocol P with nbclocks(P) = 1 together with a local state (q)
satisfying the following property: there exists a T = (G,P) with G 2 STAR(2)
such that such that (q) is reachable in T i↵ q is reachable in N . The root of G
plays the role of the controller in N , while each ray in G plays the role of one
process in N . The local state of a process in N is stored in the internal node of
the corresponding ray. Furthermore, the two clocks x1 and x2 of a process are
represented respectively by the clock of the internal node and by the clock of
the leaf of the ray. For technical reasons, we require that the connectivity G of
the considered TAHNs has at least three rays needed in the initialization phase.
In case N has fewer than three processes, the additional rays will not simulate
any processes, and remain passive (except during the initialization phase; see
below).

Notation. We will assume without loss of generality that the guards present
in the TN N are conjunctions of predicates of the form k C x for k 2 N,
C 2 {=, <,, >,�}, and x 2 X. In the sequel, (e.g. Fig. 4, 5, and 6), we
will write g(x

j

 x) to denote the guard obtained by first projecting g on the
constraints involving only the variable x

j

(this is done by deleting the predicates
on the other variables), and then by replacing x

j

(a clock of N) with x (the
clock of P) in the resulting formula. For instance, if g is x1 � 2 ^ x2 = 4, then
g(x1 x) is equal to x � 2 and g(x2 x) equals x = 4. For a reset R, we will
write R(x

j

 x) for the reset {x} if x
j

2 R, or for ; otherwise, i.e., we map a

12

q

init

q

ok

(qinit
ctrl

)

(qinit
proc

)

true, ??ack, ; true, ??ack, ; true, ??ack, ;

true, ??ack, ; true, ??ack, ; true, ??ack, ;

true, !!ack, ; true, !!ack, ; true, !!ack, ; true, !!ack, ;

true, ??int, ; true, ??ctrl, ; true, !!ctrl, ;

true, !!leaf, ; true, !!int, ; x = 0, !!start, ;

true, ??leaf, ;

true, ??start, ;

Figure 3: Initializing the simulation

reset on x

j

to a reset on the clock variable x of P . For instance, if R = {x1},
then R(x1 x) = {x} and R(x2 x) = ;. We are now ready to describe the
simulation protocol. It consists of two phases.

Initialization. Recall that the nodes of a TAHN are identical in the sense
that they execute the same (predefined) protocol. This means that the nodes
are not a priori aware of their positions inside the network. The purpose of the
initialization phase (Fig. 3) is to identify the nodes that play the roles of the
controller and those that play the roles of the di↵erent processes.

As shown in Fig. 3, a node starts by broadcasting/receiving an ack message
to/from his neighbours. The messages of type ack are used for the election
phase. The elected node becomes the controller of the TN N . To be elected, a
node has to receive acknowledgements (messages ack) from at least three other
processes. This implies that only the root of our star configuration can be
elected. Indeed, it is the only node that is connected to more than two other
nodes (the internal nodes are connected to two other nodes while the leafs are
connected to only one other node). Notice that a node can become a controller
via several di↵erent sequences of receive and send actions, the important points
is that they contain three ??ack actions and one !!ack actions in any possible
order. Sending !!ack after ??ack-actions is necessary to synchronize with the

13

other nodes.
Once the root has become the controller, it will make the internal nodes

aware of their positions by sending the broadcast message ctrl. Due to the star
topology, this message is received only by the internal nodes. A node receiving
this broadcast message will initiate a subprotocol defined as follows.

(i) It changes local state to accept the role of internal node.

(ii) It makes the leaf of the ray aware of its position by broadcasting a message
int. Such a message is received only by the leaf of the ray and by the root
(controller). The root ignores the message.

(iii) The leaf broadcasts the acknowledgement message leaf that can only be
received by the internal node of the ray and goes to state q

ok.

(iv) The internal node changes state when it receives the acknowledgement
and declares itself ready for the next step.

Remark that the internal node and the leaf may choose to ignore performing
steps (ii) or (iv). In such a case we say that the protocol fails for the considered
ray, otherwise we declare the ray to be successful.

In the last step of the initialization, the root will send one more broadcast
where the following step take place:

(i) It changes local state to (qinit
ctrl

) which means that it is now simulating
the initial controller state.

(ii) It checks that its clock is equal to 0 which means that the initialization
phase has been performed instantaneously.

(iii) The internal nodes of the successful rays will change state to (qinit
proc

). The
rest of the nodes will remain passive throughout the rest of the simulation.

Now all the nodes are ready: the root of G in T is in the initial state of the
controller of N ; the internal nodes of the successful rays are in the initial states
of the processes of N ; the leafs are in state q

ok and all clocks have values equal
to 0.

Simulating Discrete Transitions. Below, we show how T simulates a rule
r of the form

2

4
q0

!
q

0
0

3

5

2

4
q1

g1 ! R1

q

0
1

3

5 · · ·

2

4
q

n

g

n

! R

n

q

0
n

3

5

The behaviour of the root, internal, and leaf nodes is detailed respectively in
Fig. 4, Fig. 5, and Fig. 6. At first, the root of G in T is in the state (q0) and
executes a transition to reset its clock to 0. The reset is used later to ensure
that a simulation step has taken no time. The simulation consists of di↵erent
phases, where in each phase the root tries to identify a ray that can play the

14

role of process k for 1  k  n. To find the first ray, it sends a broadcast
message !!selr1. An (internal) node that receives the message and whose local
state is q1 may either decide to ignore the message or to try to become the node
that simulates the first process in the rule. In the latter case it will enter a
temporary state from which it initiates a sub-protocol whose goal is to confirm
its status as the simulator of the first process. In doing so, the node guesses that
its clocks satisfy the values specified by the guard. If the guess is not correct it
will eventually be excluded from the rest of the simulation (will remain passive
in the rest of the simulation). At the end of this phase, exactly one node will
be chosen among the ones that have correctly guessed that their clocks satisfy
g1. The successful node will be the one that plays the role of the first process.
The sub-protocol proceeds as follows:

(i) The internal node checks whether the value of its clock satisfies the guard
g1. Recall that each node contains one clock. Since the guard g1 only
compares the clocks x1, x2 with constants, the conditions of g1 can be
tested on separate nodes. Namely a node v can deal with the sub-guard
involving x1 and another node w can deal with the sub-guard involving
clock x2. The condition is then satisfied if both v and w acknowledge a
certain request. If the clock of the node does not satisfy g1 (which means
that x1 does not satisfy g1), the node will remain passive from now on
(it has made the wrong guess). Otherwise, the node resets its clock if R1

contains x1, and then broadcasts a message (such a message is received
by the leaf of the ray).

(ii) The leaf checks whether the value of its clock satisfies the guard g1 (i.e.,
if x2 satisfies g1); if yes it resets its clock if x2 is included in R1, and then
broadcasts an acknowledgement.

(iii) Upon receiving the above acknowledgement, the internal node declares
itself ready for the next step by broadcasting an acknowledgement. At
the same time, it moves to new local state and waits for a last acknowl-
edgement from the root (described below) after which it will move to local
state (q01).

(iv) When the root receives the acknowledgement it sends a broadcast declar-
ing that it has successfully found a ray to simulate the first process. All
the nodes in temporary states will now enter local states from which they
remain passive. To prevent multiple nodes from playing the role of the first
process, the root enters an error state on reception of an acknowledgement
from more than one internal node.

The root now proceeds to identify the ray to simulate the second process. This
continues until all n processes have been identified. Then the root makes one
final move where the following events take place: (i) It moves its local state to
(q00). (ii) It sends a final broadcast where the node ready for simulating the
i

th process will now move to (q0
i

) for all i : 1  i  n (notice that there is at

15

most one such node for each i). (iii) It checks that its clock is equal to 0 (the
simulation of the rule has not taken any time).

q

r

i

q

deadlock

q

r

i+1

q

r

n+1 (q00)

(q0) q

r

1

true, !!selr
i

, ; true, ??ackr
i

, ; true, !!checkr
i

, ;

true, ??ackr
i

, ; true, ??readyr
i

, ;

x = 0, !!doner, ;

true, ⌧, {x}

Figure 4: Ray selection: root node

Simulating Timed Transitions. This is done in a straightforward manner
by letting time pass in T by the same amount as in N .

Putting together the di↵erent phases, we obtain a complete simulation of
a TN with two clocks per node. Since reachability of a given control location
(from an arbitrary initial configuration) is undecidable for TN, we deduce the
following negative result.

Theorem 3. TAHN�Reach (STAR(2), 1) is undecidable.

4.3. Cliques and Nodes with Two Clocks

We now show that the reachability problem for the clique topology is un-
decidable if each node manipulates two clocks. For this purpose, we build a
protocol P with nbclocks(P) = 2 which will simulate N on connectivity graphs
belonging to the clique topology. In a similar manner to the case of star topolo-
gies, the simulation consists of two phases.

Initialization Phase. The purpose of the initialization phase it to choose a
node that will simulate the controller. This choice is done non-deterministically
through a protocol that is initialized by a broadcast message. Notice that this
protocol exists in all the nodes since they run the same pre-defined protocol.
The first node which will perform the broadcast will become the controller (from
now on we refer to this node as the controller node). When the controller node
performs the above broadcast it moves to the state (qinit

ctrl

), while all the other
nodes will move to (qinit

proc

).

16

(q
i

)

(q0
i

)

true, ??selr
i

, ; true, ??checkr
i

, ;

true, !!ackr
i

, ;

true, ??checkr
i

, ;

g

i

(x1 x), !!checkr
i

, R

i

(x1 x)

true, ??readyr
i

, ;

true, !!readyr
i

, ;

true, ??doner, ;

Figure 5: Ray selection: internal node

q

ok

g

i

(x2 x), ??checkr
i

, R

i

(x2 x)

true, !!readyr
i

, ;
Figure 6: Ray selection: leaf node

17

Simulating Discrete Transitions. Below, we show how a rule of the form of
the previous sub-section is simulated. In a similar manner to the case of stars,
the controller node first resets its clock to 0. The simulation again consists of
di↵erent phases, where in each phase the controller node tries to identify a node
that can play the role of process i for 1  i  n. To find the first process it sends
a broadcast. A node that receives the broadcast, whose local state is q1, and
whose clocks (x1 and x2) satisfy the guard g1, may decide to ignore the message
or try to become the node that simulates the first process in the rule. In the
latter case, the node declares itself ready for the next step by broadcasting an
acknowledgement. At the same time, it moves to new local state and waits for a
last acknowledgement from the controller node (described below) after which it
will move to local state (q01). To prevent multiple nodes from playing the role
of the first process, the controller node enters an error state on reception of an
acknowledgement from more than one node. The controller node now proceeds
to identify the node to simulate the second process. This continues until all
n processes have been identified. Then the controller node performs the same
three steps as the ones in the final phase of the simulation described above for
stars.

By exploiting undecidability of control state reachability for Timed Net-
works, we obtain the following theorem.

Theorem 4. TAHN�Reach (CLIQUE, 2) is undecidable.

4.4. Bounded Path Topologies

Using the result of Theorem 3 we now show that the undecidability proof
for the reachability problem can be extended to bounded path topologies. The
result uses a reduction to the two-star case, thus we need to consider topologies
in which the simple paths can have 5 nodes in order to be able to rebuild stars
with rays of depth 2.

For such a reduction, we need a preliminary protocol that discovers a two-
star topology in a graph of arbitrary shape but simple paths of (at most) five
nodes. The discovery protocol first selects root, internal and leaf candidates
and then verifies that they are connected in the desired way by sending all
other nodes in their vicinities to a special null state.

The discovery protocol is defined as P with nbclocks(P) = 1 with q

init 2 Q

as initial state. We denote by x the clock used by P . We first define three
transitions labelled with empty event that non-deterministically select the role
of a each node: the root (control state q0), an internal node (control state r0)
or a leaf (control state s0) of the star topology. These three rules have then
following form: ⇣

q

init

, x = 0
⌧�! ;, q0

⌘

⇣
q

init

, x = 0
⌧�! ;, r0

⌘

⇣
q

init

, x = 0
⌧�! ;, s0

⌘

18

q0
null

true, ??⌃, ;

x = 0, !!root, ;

null

true, ??⌃, ;

x = 0, !!endroot, ;

q

F

x = 0, !!end, ;

Figure 7: Discovery protocol: node chosen as the root

The behaviour of the root node (state q0) is given in Figure 7. It broadcasts
message root to notify its neighbours that it is the root. A node in state q0

moves to an error state if it receives notifications/requests from other nodes.
This protocol ensures that all the nodes in state q0 connected to the root move
to an error state (remember that communication is synchronous). On reception
of a message of type root, a node in state r0 runs the protocol in Figure 8.
Specifically, it first reacts by sending ackroot. This message is needed to send
all of its neighbours in states derived from r0 in the null error state. In fact
if two adjacent nodes in state r0 receive a message root, the first one sending
ackroot will send the other one in the state null. The ackroot message is also
needed to ensure that an internal node is never connected to two di↵erent root
nodes. On reception of a message of type endroot from the root, the considered
node moves to state r00. By the above described properties, when a node reaches
state r

0
0, then it is connected to at most one root node, and it is not connected

to any node which was previously in state r0 and which is not in state null. At
this point several leaf nodes can still be connected to nodes in state r

0
0. The

last part of the protocol deals with this case.
Figures 9 and 10 show the handshaking protocol between leaf and internal

nodes. A node in state s0 sends a message leaf to its adjacent nodes. An
internal node can react to the message only in state r

0
0, otherwise it goes to an

error state. Furthermore, a leaf node that receives the leaf notification moves
to an error state. By construction, the following properties then hold.

19

r0
null

true, ??⌃ \ {root}, ;

null

true, ??⌃, ;

x = 0, ??root, ;

null

true, ??⌃ \ {endroot}, ;

x = 0, !!ackroot, ;

r

0
0

x = 0, ??endroot, ;

Figure 8: Discovery protocol: node chosen as an internal node (communication with the root)

s0
null

true, ??⌃ \ {ackroot}, ;

x = 0, !!leaf, ;

null

true, ??⌃, ;

x = 0, ??ackleaf, ;

s

F

x = 0, !!endleaf, ;

Figure 9: Discovery protocol: node chosen as a leaf

20

r

0
0null

true, ??⌃ \ {leaf}, ;

null

true, ??⌃, ;

x = 0, ??leaf, ;

null

true, ??⌃ \ {endleaf}, ;

x = 0, !!ackleaf, ;

null

true, ??⌃ \ {end}, ;

x = 0, ??endleaf, ;

r

F

x = 0, ??end, ;

Figure 10: Discovery protocol: node chosen as an internal one (communication with the leaf)

Proposition 1. In a TAHN T = (G,P) with G 2 BOUNDED(5), all configura-
tions � = (G,Q,X) reachable in T satisfy the following properties:

• for all nodes v 2 V such that Q(v) = q

F

, for all v0 2 V such that v ⇠ v

0,
we have Q(v0) = r

F

or Q(v0) = null,

• for all v 2 V such that Q(v) = r

F

, there exists two nodes v1, v2 2 V such
that v ⇠ v1, v ⇠ v2 and Q(v1) = q

F

and Q(v2) = s

F

and for all nodes
v

0 2 V \ {v1, v2}, v0 ⇠ v implies Q(v0) = null,

• for all v 2 V such that Q(v) = s

F

, there exists at most one vertex v

0 2 V

such that v ⇠ v

0 and Q(v0) 6= null and furthermore it is such that Q(v0) =
r

F

.

In other words if � is a configuration reachable in a TAHN T = (G,P) with
G 2 BOUNDED(5) then all the nodes in the state q

F

can be seen as the root
node of a star of depth 2 where the internal nodes are in state r

F

, the leaves
are in state s

F

, and all the other nodes connected to these nodes are in state
null and will not take part to the further communications. Hence from q

F

using the protocol proposed in the proof of Theorem 3, we can now simulate
the behaviour of a TN as if we were in a star of depth 2. Indeed, combining the
above described discovery protocol and the undecidability results for two-star
topology, we obtain the following theorem.

Theorem 5. TAHN�Reach (BOUNDED(5), 1) is undecidable.

Proof. We reduce reachability of a TN N with two clocks. Specifically,
we define a new protocol P 0 with a single clock that combines the discovery

21

protocol and the simulation protocol described in the proof of Theorem 3. The
final (non-null) states of the discovery protocol (namely q

F

, r
F

, and s

F

) become
the initial states of the simulation protocol. The following properties then hold:

• From Theorem 3, we know that there exists a protocol P and a TAHN
T = (G,P) with G 2 STAR(2) where it is possible to correctly simulate a
TN N .

• From Proposition 1, we know that any star of depth 2 can be obtained
with our pre-protocol. Furthermore, the protocol which uses a single clock
guarantees the existence of an initial configuration from which we can mark
(using states q

F

, r
F

, and s

F

) a subgraph in STAR(2) when the graphs of
the initial configurations belongs to BOUNDED(5).

Combining the two properties, we deduce that the there exists a protocol P 0

using a single clock and a TAHN T 0 = (G0
, P

0) with G

0 2 BOUNDED(5) which
can correctly simulate a N with two clocks per node. ⇤

5. Decidability with Dense Time

In the previous sections, we have shown that TAHN�Reach (STAR(2), 1) is
undecidable. We consider here two other topologies for which reachability be-
comes decidable when nodes have a single clock, namely the toplogies STAR(1)
and CLIQUE. For this we mix the technique, proposed in [2], to prove that
the reachability problem is decidable in Timed Networks where each process is
equipped with a single clock (see Theorem 2) and the one, used in [12], to show
that, for TAHN with no clock and restricted to cliques, the reachability problem
is decidable (see Theorem 1).

Our proof will be based on the following steps:

1. Define a symbolic way to represent graphs and their associated configura-
tions.

2. Exhibit a well-quasi-ordering over the symbolic configurations which cor-
responds to the inverse of set inclusion on the associated concrete config-
urations.

3. Show that it is possible to compute symbolically the predecessors of a
symbolic configuration.

4. Give an iterative method to compute all the elements from which a given
symbolic configuration can be reached. Termination is ensured by the
well-quasi-ordering of symbolic configurations.

5.1. Decidability of TAHN�Reach (CLIQUE, 1)
In the sequel, we fix a protocol P =

�
Q,X,⌃,R, q

init

�
.

22

5.1.1. Symbolic representation of configurations.
We recall that a TAHN is composed both by a connectivity graph G = (V,E)

and the protocol P and that the configurations of such a TAHN are of the form
(Q,X) where Q : V 7! Q and X : V 7! [X 7! R�0] is a function that assigns
to each node a clock valuation. We will now introduce a way to represent
symbolically connectivity graphs and associated configurations. Note that in
this part, we focus on TAHN whose connectivity graphs are cliques, hence we
only need to take into account the number of nodes in the graphs (the edges
can indeed be deduced from this information). The symbolic representation
we propose is very similar to the one from [2] used for the analysis of Timed
Networks, the main di↵erences being that in our model we do not have a special
process playing the role of controller, and the discrete symbolic predecessor
relation is di↵erent, since we do not deal with rendez-vous communication but
with broadcast.

In what follows, we denote by max the maximal constant occurring in the
guards of P . Furthermore for a quasi-order v, we use the notation a ⌘ b

whenever a v b and b v a (resp. ⌘0 for a quasi-order v0, and, ⌘
i

for v
i

).
A symbolic configuration ' for the protocol P is a tuple

�
m,Qsymb

,X symb

,v
�

where:

• m is a natural number so that {1, . . . ,m} is a set of indices for the processes
present in the network;

• Qsymb : {1, . . . ,m} 7! Q maps indices to protocol states;

• X symb : {1, . . . ,m} 7! {0, . . . ,max} maps process indices to a natural
number less or equal than the constant max;

• v is a total preorder on the set {1, . . . ,m} [{?,>} such that:

– ? and > are respectively the minimal and maximal elements of v
with ? 6= >;

– for j 2 {1, . . . ,m}, if X symb(j) = max then j ⌘ ? or j ⌘ >;
– for j 2 {1, . . . ,m}, if j ⌘ > then X symb(j) = max .

We denote by S
P

the set of symbolic configurations for P . The intuition be-
hind a symbolic configuration ' =

�
m,Qsymb

,X symb

,v
�
is the following: it

corresponds to a set of clique graphs and associated configurations where at
least m processes are involved, and each of this m process is given an index
j 2 {1, . . . ,m} such that Qsymb(j) is the state of the process, X symb(j) is either
the integral part of the clock value or max , and, the relation v provides an
ordering for the processes corresponding to the ordering of the fractional part of
their respective clock values. Finally, if j ⌘ ?, this means that the clock value
of process j is at most max and its fractional part is equal to 0, and, if j ⌘ >,
then the clock value of process j is strictly greater than max .

Note that the couple (X symb

,v) corresponds exactly to the clock regions for
the m clocks represented in the abstract configuration '. This region construc-
tion was originally introduced in [5] for the analysis of timed automaton since

23

it allows to get rid of the precise value of the clocks by keeping an abstraction
over the possible di↵erent values. It was then reused in [2] in the context of
timed networks equipped with a single clock. In this latter work, the authors
show how to adapt a quasi order over such abstract configurations, since we
need the same tool, we adopt in this work the same presentation for abstract
configurations.

As done in [2] for the case of Timed Networks, we formalize the previous
intuition by providing a formal definition of the set J'K of graphs and concrete
configurations represented by the symbolic configuration '. We consider a graph
G = (V,E) in CLIQUE and a configuration � = (Q,X) of the TAHN (G,P) and
a symbolic configuration ' =

�
m,Qsymb

,X symb

,v
�
of P . We have (G, �) 2 J'K

if and only if there exists an injective function h : {1, . . . ,m} 7! V such that for
all j, j0 2 {1, . . . ,m}:

• Q(h(j)) = Qsymb(j);

• min(max , bX (h(j))c) = X symb(j) (where bX (h(j))c denotes the integral
part of X (h(j)));

• j ⌘ ? if and only if X (h(j))  max and frac(X (h(j))) = 0 (where
frac(X (h(j))) denotes the fractional part of X (h(j)));

• j ⌘ > if and only if X (h(j)) > max ;

• if j 6⌘ > and j

0 6⌘ > then frac(X (h(j)))  frac(X (h(j0))) if and only if
j v j

0.

When it exists, such an injective function h will be called a mapping associated
to ((G, �), J'K). Note that in the above definition, we do not require the number
of nodes in G and the number of processes in ' to be the same, but only that
each process of ' can be matched with a process of the TAHN (G,P) in the
configuration �. For a set of symbolic configurations � ✓ S

P

, we denote by J�K
the set

S
'2�J'K.

We will now equip the set of symbolic configurations S
P

with a quasi-order

�. Given two symbolic configurations '1 =
⇣
m1,Qsymb

1 ,X symb

1 ,v1

⌘
and '2 =

⇣
m2,Qsymb

2 ,X symb

2 ,v2

⌘
, we have '1 � '2 if and only if there exists an injective

mapping g : {1, . . . ,m1} 7! {1, . . . ,m2} such that for all j, j0 2 {1, . . . ,m1}:

• Qsymb

2 (g(j)) = Qsymb

1 (j);

• X symb

2 (g(j)) = X symb

1 (j);

• g(j) ⌘2 ? if and only if j ⌘1 ?;

• g(j) ⌘2 > if and only if j ⌘1 >;

• g(j) v2 g(j0) if and only if j v1 j

0.

We have then the following proposition concerning this order.

24

Proposition 2.

1. Given '1,'2 2 S
P

, we have '1 � '2 if and only if J'2K ✓ J'1K.
2. (S

P

,�) is a well-quasi-order.

Proof. We will show the first point. Let '1 =
⇣
m1,Qsymb

1 ,X symb

1 ,v1

⌘
and

'2 =
⇣
m2,Qsymb

2 ,X symb

2 ,v2

⌘
be two symbolic configurations in S

P

.

Suppose that '1 � '2 and let g : {1, . . . ,m1} 7! {1, . . . ,m2} be the cor-
responding mapping associated to the definition of the quasi-order �. We
then take (G, �) 2 J'2K with G = (V,E) in CLIQUE and � = (Q,X) and let
h : {1, . . . ,m2} 7! V be the injective function associated to ((G, �), J'2K). It is
then clear that the composed function h � g : {1, . . . ,m1} 7! V is an injective
function matching the condition for (G, �) 2 J'1K. From this we deduce that
J'2K ✓ J'1K.

We assume that J'2K ✓ J'1K. We consider the graph G = ({v1, . . . , vm2}, E)
in CLIQUE and we build the configuration � = (Q,X) of the TAHN (G,P) in
order that it verifies Q(v

i

) = '2(i) for all i 2 {1, . . . ,m2} and X verifies for all
i, i

0 2 {1, . . . ,m2} the following points:

• if i ⌘2 > then X (v
i

) = max + 1;

• if i 6⌘2 > then bX (v
i

)c = X symb

2 (i);

• if i ⌘2 ? then frac(X (v
i

)) = 0;

• if i 6⌘2 ? then frac(X (v
i

)) > 0;

• if i 6⌘2 > and i

0 6⌘2 > and i v2 i

0 and i ⌘2 i

0 then frac(X (v
i

)) =
frac(X (v

i

0)));

• if i 6⌘2 > and i

0 6⌘2 > and i v2 i

0 and i 6⌘2 i

0 then frac(X (v
i

)) <

frac(X (v
i

0))).

We consider then the bijective function h2 : {1, . . . ,m2} 7! V such that
h2(i) = v

i

for all i 2 {1, . . . ,m2}. It is clear that h2 satisfies the di↵erent
conditions of a mapping associated to ((G, �), J'2K). Hence (G, �) 2 J'2K and
since J'2K ✓ J'1K, we also have (G, �) 2 J'1K. Let h1 : {1, . . . ,m1} 7! V

be the injective mapping associated to ((G, �), J'1K). We consider now the
composed function h

�1
2 � h1 : {1, . . . ,m1} 7! {1, . . . ,m2}. On the way we build

the pair (G, �) and the function h2 and by definition of the mapping associated to
((G, �), J'1K), one can easily deduce that the mapping g = h

�1
2 �h1 is e↵ectively

injective and satisfies the conditions required in the definition of the quasi-order
� and hence this reasoning allows to obtain '1 � '2.

For what concerns the proof that (S
P

,�) is a well-quasi-order, it can be
found in [2], where quasi identical symbolic configurations are used (and the
same quasi-order is defined), the only di↵erence being that, in our case, we do
not have a controller state in the symbolic configurations. ⇤

25

5.1.2. Computing the symbolic predecessors.
We describe next how to compute symbolically the set of predecessors of

the graphs and configurations described by a symbolic configuration. For a
symbolic configuration ' 2 S

P

, we will see how to build a finite set of symbolic
configurations corresponding to the union of the two following sets:

pre
d

(') = {(G, �) | G 2 CLIQUE and � 2 C(G,P) and
9�0 2 C(G,P) s.t. (G, �

0) 2 J'K and � =)(G,P),d �

0}
pre

t

(') = {(G, �) | G 2 CLIQUE and � 2 C(G,P) and
9�0 2 C(G,P) s.t. (G, �

0) 2 J'K and � =)(G,P),t �
0}

Hence pre
d

(') characterizes the symbolic predecessors for the discrete transition
relation and pre

t

(') does the same for the timed transition relation. We will
in fact show that it is possible to build a finite set of symbolic configurations �
such that

J�K = pre
d

(') [pre
t

(')

First we begin by the predecessors obtained by considering the discrete
transition relation. Following the idea used in [2] for Timed Networks, we
begin with seeing how to test whether a guard is satisfied by the clock value
of a process in the symbolic configuration. For a guard g 2 G(X) (we recall
that |X| = 1) in which the maximal constant is max , a symbolic configuration
' =

�
m,Qsymb

,X symb

,v
�
and a natural number j 2 {1, . . . ,m}, we define the

relation (', j) |= g inductively as follows:

• (', j) |= k  x for k 2 {0, . . . ,max} i↵ k  X symb(j);

• (', j) |= k < x for k 2 {0, . . . ,max} i↵ either k < X symb(j) or (k =
X symb(j) and ? v j and j 6⌘ ?);

• (', j) |= k � x for k 2 {0, . . . ,max} i↵ either k > X symb(j) or (k =
X symb(j) and j ⌘ ?);

• (', j) |= k > x for k 2 {0, . . . ,max} i↵ k > X symb(j);

• (', j) |= k = x for k 2 {0, . . . ,max} i↵ k = X symb(j) and j ⌘ ?;

• (', j) |= g1 ^ g2 i↵ (', j) |= g1 and (', j) |= g1;

• for what concerns the negation, we assume that there are pushed inwards
in the standard way before applying the definition.

Adapting the proof proposed in [2] for a similar result, we can deduce the
following lemma about the satisfiability relation |= on symbolic configurations.

Lemma 1. Let ' =
�
m,Qsymb

,X symb

,v
�
be a symbolic configuration, G 2

CLIQUE be a connectivity clique and � = (Q,X) be a concrete configuration
such that (G, �) 2 J'K and let g be a guard in G(X) (for which the maximal
appearing constant is max). Then for any mapping h associated to ((G, �), J'K)
and j 2 {1, . . . ,m}, we have that (', j) |= g if and only if X (h(j)) |= g.

26

We will now show, for each rule r 2 R of P and each symbolic configu-
ration ' 2 S

P

, how to compute the set Pre(r,') of symbolic configurations
corresponding to the symbolic predecessors of ' with respect to the rule r. Let

r =
⇣
q, g

e�! R, q

0
⌘
be a rule of the protocol P and ' =

�
m,Qsymb

,X symb

,v
�

be a symbolic configuration. We now provide the conditions for a symbolic con-

figuration '2 =
⇣
m2,Qsymb

2 ,X symb

2 ,v2

⌘
to belong to the set Pre(r,'). This

definition is done by a case analysis on the message labeling the rule r. We
have '2 2 Pre(r,') i↵ m  m2  m+ 1 and one of the following conditions is
satisfied:

1. e =!!a and there exists j 2 {1, . . . ,m2} such that, if m2 = m + 1, then
j = m+ 1, and such that Qsymb

2 (j) = q and X symb

2 (j) |= g and such that
the following conditions are satisfied: :

• if m2 = m, then Qsymb(j) = q

0 and

– if R = ; then X symb(j) = X symb

2 (j) and j ⌘ ? i↵ j ⌘2 ?, and,
j ⌘ > i↵ j ⌘2 >;

– if R 6= ; then X symb(j) = 0 and j ⌘ ?;
• for all i 2 {1, . . . ,m2} such that i 6= j we have:

– either, there does not exists in R a rule
⇣
q

00
, g

0 ??a�! R

0
, q

000
⌘
such

that Qsymb

2 (i) = q

00 and X symb

2 (i) |= g

0, then we have Qsymb

2 (i) =

Qsymb(i) and X symb

2 (i) = X symb(i), and, i ⌘ ? i↵ i ⌘2 ?, and,
i ⌘ > i↵ i ⌘2 >;

– or, there exists in R a rule of the form
⇣
q

00
, g

0 ??a�! R

0
, q

000
⌘
such

that Qsymb

2 (i) = q

00 and X symb

2 (i) |= g

0 and Qsymb(i) = q

000 and:

⇤ either R0 = ; and X symb(i) = X symb

2 (i) and i ⌘ ? i↵ i ⌘2 ?,
and, i ⌘ > i↵ i ⌘2 >;

⇤ or, R0 6= ; and X symb(i) = 0 and i ⌘ ?.
• for all i, i0 2 {1,m}, if i 6⌘ ? and i

0 6⌘ ?, then i v2 i

0 i↵ i v i

0.

2. e = ⌧ and there exists j 2 {1, . . . ,m2} such that, if m2 = m + 1, then
j = m+ 1, and such that Qsymb

2 (j) = q and X symb

2 (j) |= g and such that
the following conditions are satisfied: :

• if m2 = m, then Qsymb(j) = q

0 and

– if R = ; then X symb(j) = X symb

2 (j) and j ⌘ ? i↵ j ⌘2 ?, and,
j ⌘ > i↵ j ⌘2 >;

– if R 6= ; then X symb(j) = 0 and j ⌘ ?;
• for all i 2 {1, . . . ,m2} such that i 6= j, we have Qsymb

2 (i) = Qsymb(i)

and X symb

2 (i) = X symb(i), and, i ⌘ ? i↵ i ⌘2 ?, and, i ⌘ > i↵
i ⌘2 >.

• for all i, i0 2 {1,m}, if i 6⌘ ? and i

0 6⌘ ?, then i v2 i

0 i↵ i v i

0.

27

The intuition behind the definition of the set Pre(r,') is that first we con-
sider only rules performing a broadcast or a local action, because the rules
labelled with receptions are performed together with a broadcast. Then for a

rule
⇣
q, g

e�! R, q

0
⌘
we need to ensure that, in the set of predecessors, the con-

trol state q is present, for this reason, either we add a process to the symbolic
configuration (when m2 = m+1) which will perform the broadcast or the inter-
nal action, or, we consider that a process present in ' does this action (in that
case m2 = m). It is useless to add additional receiver nodes in the symbolic
representation of configurations. They will produce redundant configurations.

In the case of a broadcast, we have to ensure that all the processes that could
react, have reacted to the broadcast message, whereas in the case of an empty
event, we need to ensure that the state of the other processes stays unchanged
in the symbolic configuration. Finally, in Pre(r,'), we have to include all the
possible symbolic clock mappings which satisfy the conditions of the fired rules,
as well as the associated possible reset of the second clocks.

Note that by definition of symbolic configurations, we know that there exists
a finite set of symbolic configurations of the form

�
m,Qsymb

,X symb

,v
�
for a

fixedm, this allows us to deduce that Pre(r,'0) can be computed since it is finite.
Furthermore, by definition of pre(') and by the way we build the set Pre(r,'),
we can show that the symbolic configuration

S
r2R Pre(r,') represents symbol-

ically all the configuration in pre
d

('). In fact the previous construction covers
all the possible cases. This allows us to state the next result.

Lemma 2.

• Pre(r,') is computable for all rules r 2 R.

• pre
d

(') = J
S

r2R Pre(r,')K.

Example. We show an example of computation for the set Pre(r,'). For this
purpose, we use the protocol given in Figure 1 of Section 3. We take the sym-
bolic configuration ' = ({1}, {1 7! q

f

}, {1 7! 2},? ⌘ 1 v >) with a single pro-
cess whose associated state is q

f

and its associated symbolic clock value is 2

and we consider the rule r =
⇣
q

init

, (x > 1)
!!m3�! ;, q2

⌘
. Then in Pre(r,'), we

have the symbolic configuration ({1, 2}, {1 7! q4, 2 7! q

init}, {1 7! 2, 2 7! 2},
? ⌘ 1 v 2 v >). In fact, it is possible to have predecessors from the symbolic
configuration ' considering the rule r but, for this, we need to add a process
to the symbolic configurations, which will represent the process performing the
broadcast of m3. Note that on the other hand, if we took the following sym-
bolic configuration '

0 = ({1}, {1 7! q4}, {1 7! 2},? ⌘ 1 v >) instead of ', then
the set Pre(r,'0) would have been empty. In fact, it is not possible to have
configurations with processes in state q4 and associated clock value equal to 2
after the transition r has been fired, because the broadcast of the message m3

would have sent all such processes in state q

f

(since we are considering clique
connectivity graphs exclusively).

28

For what concerns the set pre
t

('), the rules of the systems are not taken
into account and hence in the case of TAHN computing this set is exactly the
same as in Timed Networks, we can consequently reuse the result proved in [2].

Lemma 3. [2] There exists a computable finite set of symbolic configurations
� such that J�K = pre

t

(').

Sketch of proof We can in fact characterize the symbolic configurations be-
longing to the set �. For a configuration ' =

�
m,Qsymb

,X symb

,v
�
a configura-

tion '2 =
⇣
m2,Qsymb

2 ,X symb

2 ,v2

⌘
will belong to the set � representing pre

t

(')

if it has the same number of process (i.e. m = m2), the state mapping is the
same (i.e. Qsymb

2 = Qsymb) and for what concerns X symb

2 and the relation v2

over fractional part, they can be deduced from X symb and v by iteratively mak-
ing a rotation in the order v and in the same time by decreasing the integral
part of a process whose fractional part is 0 (i.e. the number of this process is
equivalent to ?). Since the details of this construction are exactly the same as
in Section 6.2 of [2], we do not provide them here. ⇤

According to the two previous lemmas, for a symbolic configuration ' we
can compute a finite set of predecessor symbolic configurations of '. This is
summed up by the next lemma.

Lemma 4. There exists a computable finite set of symbolic configurations Pre(')
such that JPre(')K = pre

d

(') [pre
t

(').

5.1.3. Solving TAHN�Reach (CLIQUE, 1)
We now show how the facts that we have a well-quasi-order on the set of

symbolic configurations which is related to the inclusion of sets of configuration
(see Proposition 2) and that we can reason symbolically to compute the symbolic
predecessors are enough to solve TAHN�Reach (CLIQUE, 1).

For this purpose, we need one more tool to manipulate sets of symbolic
configurations. Given two sets of symbolic configurations �1,�2 ✓ S

P

, we
define the symbolic union of these two sets �1 t �2 as follows: ' 2 �1 t �2 i↵
(' 2 �1) or (' 2 �2 and there does not exist '0 2 �1 such that '0 � '). Note
that there are more than one set respecting these conditions, but each time we
do the symbolic union we choose non-deterministically one of them.

From Proposition 2, we deduce the following lemma.

Lemma 5. J�1 t �2K = J�1K [J�2K

Proof. Assume (G, �) 2 J�1 t �2K, then there exists ' 2 �1 t �2 such that
(G, �) 2 J'K, and since by definition of t we have ' 2 �1 [�2, we deduce that
(G, �) 2 J�1K [J�2K.

Assume now (G, �) 2 J�1K [J�2K, then there exists ' 2 �1 [�2 such that
(G, �) 2 J'K. We consider then '

0 2 �1 t �2 such that '0 � ' (by definition of

29

t such a '

0 exists). Then thanks to the first item of Proposition 2, we deduce
(G, �) 2 J'0K. Consequently (G, �) 2 J�1 t �2K. ⇤

We show that if we compute iteratively the symbolic predecessors of a sym-
bolic configuration, then such a computation will converge after a finite number
of iterations. We define, for a symbolic configuration ' 2 S

P

, the following
sequence of sets of symbolic configurations (Pi

'

)
i2N:

• P0
'

= {'};

• Pi+1
'

= Pi

'

t
F

'

02Pi
'
Pre('0)

The next statement shows that the computation of the Pi

'

converges after
a finite number of steps and furthermore that the obtained set characterize all
the configurations from which it is possible to reach a configuration in J'K. The
second point is quite obvious and the first point is obtained thanks to the fact
that (S

P

,�) is a well-quasi-order as said by Proposition 2.

Lemma 6. There exists N 2 N such that Pi

'

= PN

'

for all i � N .

Proof. We reason by contradiction and suppose that for all i 2 N, we have
Pi+1
'

6= Pi

'

. Since Pi+1
'

= Pi

'

t
F

'

02Pi
'
Pre('0), by definition of the operator t,

this means that for all i 2 N, there exists '
i+1 such that '

i+1 2
F

'

02Pi
'
Pre('0)

and for which there does not exist '00 2 Pi

'

such that '00 � '

i+1. We consider
then the infinite sequence ('

i

)
i2N\{0} of symbolic configurations in S

P

. By
construction, this infinite sequence is such that for all j � 1 there does not exist
i � 1 such that i < j and '

i

� '

j

. This is a contradiction with the claim of
Proposition 2 which says that (S

P

,�) is a well-quasi-order. ⇤
In the sequel we will denote P

'

the set PN

'

defined by the previous lemma.
Note that a consequence of this lemma is that such a set is finite and from
Lemma 4, we know it can be e↵ectively computed. Furthermore, we have also
the following result which states the completeness and soundness of the symbolic
reasoning.

Lemma 7.

1. For all (G, �) 2 J'K, if � is reachable in T = (G,P) from the initial
configuration �0 then (G, �0) 2 JP

'

K.
2. For all (G, �0) 2 JP

'

K, there exists a reachable configuration � in T =
(G,P) such that (G, �) 2 J'K.

Proof. Let (G, �) 2 J'K. Suppose that � is reachable in T = (G,P) from the
initial configuration �0. This means that there exists from�0 a finite path of the
form �0 =)T �1 =)T · · · =)T �

n

in T with �

n

= �. But thanks to Lemma 4,
fixing '

n

= ',we know that for all i 2 {0, . . . , n� 1}, there exists '
i

such that
'

i

2 Pre('
i+1) and (G, �

i

) 2 J'
i

K. Then using Lemma 5 and the definition of
P
'

, we deduce that (G, �0) 2 JP
'

K.

30

Similarly, if we suppose (G, �0) 2 JP
'

K, thanks to Lemma 4 and 5 and by
definition of P

'

, we know that there exists a finite path of the form �0 =)T
�1 =)T · · · =)T �

n

in T = (G,P) such that (G, �

n

) 2 J'K. ⇤
For a control state q 2 Q, we build the (finite) set of symbolic configurations

�
q

such that a symbolic configuration ' =
�
m,Qsymb

,X symb

,v
�
belongs to

this set if and only if m = 1 and Qsymb(1) = q. And we define P�q as the
set

S
'2�q

P
'

. Using the previous lemma, we can deduce that there exists a

TAHN T = (G,P) with G 2 CLIQUE such that q is reachable in T i↵ we have

a symbolic configuration '0 2 P�q such that '0 =
⇣
m0,Qsymb

0 ,X symb

0 ,v0

⌘

verifies the following points:

• Qsymb

0 (i) = q

init for all i 2 {1, . . . ,m0};

• X symb

0 (i) = 0 for all i 2 {1, . . . ,m0};

• i ⌘0 ? for all i 2 {1, . . . ,m0}.

Note that this last condition can be e↵ectively tested on the set of symbolic
configurations P�q which is finite and computable. Hence this allows us to
state the main result of this section.

Theorem 6. TAHN�Reach (CLIQUE, 1) is decidable.

5.2. Decidability of TAHN�Reach (STAR(1), 1)
A similar positive result can be obtained for TAHN with 1 clock restricted to

star connectivity graphs of depth 1. The only di↵erence with the previous result
is that in a star of depth 1 we have to distinguish the root (the central node)
from the leaves. In fact, when the root performs a broadcast, it is transmitted
to all the leaf nodes, but when a leaf performs it, only the root can receive it.
However the previous proof can be easily adapted to this case. The main trick
consists in using symbolic configurations of the form

�
m,Qsymb

,X symb

,v
�
, as

for the case of cliques, except that this time the index of the processes will go
from 0 to m and 0 will be the index of the central node. The rest of the proof
is then very similar to the previous construction; the bigger di↵erence being in
the computation of symbolic discrete predecessors, where one need to make the
di↵erence with a broadcast from the process 0 and one from the other processes.
This allows us to state our second decidability result for the reachability problem
restricted to protocols equipped with a single clock.

Theorem 7. TAHN�Reach (STAR(1), 1) is decidable.

We point out the fact, that such a reasoning could not be adapted for star
topologies of depth strictly bigger than 1, because in that case we would need to
have a relation in the symbolic configurations to know which process is connected
to which other processes, and such a relation will break the possibility to have
a well-quasi-order on the symbolic configurations (as a matter of fact, we have
seen previously that the reachability problem is undecidable when considering
protocols with a single clocks and star topologies of depth 2).

31

6. Decidability with Discrete Time

In this section we consider the state reachability problem for Discrete Time
Ad Hoc Networks (DTAHN). In this model clocks range over the natural num-
bers instead of the reals. When using discrete time, it is enough to consider time
steps that advance the clocks one unit per time. Furthermore, we can restrict
the valuation of clocks to the finite range ⌦ = {0, . . . , µ} where µ = max+1 and
max is the maximum constant used in the protocol rules. This follows from the
fact that, as soon as the clock associated to variable x reaches a value greater
than or equal to µ, guards of the form x > c [resp. x < c] remain enabled
[resp. disabled] forever. Therefore, beyond µ we need not distinguish between
di↵erent values for the same clock [4].

Given a protocol P and a topology G = (V,E), a configuration � of the
associated DTAHN D is a pair (Q,X) defined as for TAHN except that the clock
valuation mapping is of the form X : V 7! [X 7! ⌦]. We denote by CD the set of
configuration of D. Initial configurations are defined as for TAHN. In the sequel,
to simplify the handling of transition guards, without loss of generality we will
assume that guards occurring in rules of a protocol P =

�
Q,X,⌃,R, q

init

�
have

form
V

x2X

x � a

g

x

^ x  b

g

x

with a

x

, b

x

2 {0, . . . ,max} for all x 2 X. This
normal form is well-defined since clocks have always an explicit lower bound
(which can be 0) and in case they do not have an explicit upper bound we
set it to the constant µ. Since clock values range in {0, . . . , µ}, the previous
restriction on guards does not a↵ect the semantics. Furthermore, it is possible
to encode disjunctions and negations by adding multiple rules between the same
two states.

The semantics of the DTAHN D built over a protocol P is given by the
transition system (CD,=)D). The transition relation =)D✓ CD⇥CD is similar
to the one of TAHN for the discrete transition and by replacing the time step
by a discrete time step. For configurations � = (Q,X) and �

0 = (Q0
,X 0), we

write � =)D �

0 i↵ these two configurations are in relation following the local or
broadcast rules defined for TAHN, or via a discrete time step defined as follows:
For all v 2 V and x 2 X, the following conditions are satisfied: Q(�0) = Q(�),
X 0(v)(x) = X (v)(x) + 1, if X (v)(x) < µ X 0(v)(x) = X (v)(x) = µ, otherwise.

q

init

, 0 q

init

, 0

q

init

, 0q

init

, 0

=)D
q

init

, 2 q

init

, 2

q

init

, 2q

init

, 2

=)D
q1, 2 q3, 0

q

init

, 2q

init

, 2

=)D

q1, 3 q3, 2

q

init

, 3q

init

, 3

=)D
q1, 3 q3, 2

q4, 0q

init

, 3

Figure 11: An example of discrete time execution

32

Example.. On Figure 11, we present the example of a discrete time execution
for the DTAHN composed of the protocol given in Figure 1 and of the graph
represented in the Figure 11. As we will see later, it is often convenient to
represent the graph together with the configuration. Note that we have labelled
the node of the graph with the associated control states and clock value (the
protocol of Figure 1 is equipped of a single clock). This run corresponds to the
following step: a discrete time step of two units, then a broadcast of message
m1 then a discrete time steps of two units and finally a broadcast of message
m2 . Note that we perform the second time step, some clocks get stucked to
the maximal value 3 as described by the operational semantics for DTAHN.

For a topology class Top and K � 0, DTAHN�Reach (Top,K) denotes the
state reachability problem for the new model. We show next that state reach-
ability is decidable when restricting the topology to the class of bounded path
graphs BOUNDED(N) for some N > 1.

In the sequel we consider a DTAHN D built over a protocol P . We first
introduce an ordering between the configurations with connectivity graph. For
this purpose, it is convenient to embed the connectivity graph G in the repre-
sentation of a configuration. Specifically, we consider extended configurations
defined by triples of the form � = (G,Q,X). Given two (extended) configura-
tions � = (G,Q,X) with G = (V,E) and �

0 = (G0
,Q0

,X 0) with G

0 = (V 0
, E

0)
in CD, we will write � � �

0 i↵ there exists an injective function h : V 7! V

0

such that: 8u, u0 2 V , (u, u0) 2 E if and only if (h(u), h(u0)) 2 E

0, and 8u 2 V ,
Q(u) = Q0(h(u)) and X (u) = X 0(h(u)).

In the sequel we will restrict ourselves to configurations whose graphs belong
to BOUNDED(N) for some N > 1. We define CN

D as the set of configurations
{(G,Q,X) 2 CD | G 2 BOUNDED(N)} and (CD,�) as the ordering over the
configurations of D. For a set of configuration S ✓ CD of the DTAHN D, we
denote Pre(S) the set {� 2 CD | � =)D �

0
, �

0 2 S}. The following properties
then holds.

Proposition 3. The following properties hold:
(1) (CN

D ,�) is a wqo for all N > 1.
(2) For � in CD, we can algorithmically compute a finite set B such that " B =
Pre("{�}).

Property (1) follows from the observation that � is the induced subgraph re-
lation for graphs with finitely many labels and from the wqo property of this
relation proved by Ding in [14]. Properties (2) follows from the results for un-
timed AHN in [11]. To extend the algorithm for computing a basis for Pre("�0)
described in [11] to discrete time steps we observe that, since the range of clocks
is restricted to the interval ⌦, we just need to collect all configurations obtained
by subtracting in the configuration �

0 the same constant value � � 0 s.t. the
resulting clock values remain all greater or equal than zero.

Example. Consider a configuration of the protocol of Figure 1 containing a
single node whose associated control state is q

f

and with clock value equal to 2.

33

q4, 2 q

init

, 2 q4, 2 q

init

, 3

Figure 12: Example of predecessors

To compute predecessors for this configuration, we assume that we are working
over graph in BOUNDED(2). To reach q

f

, a process needs to receive a message
m3. Therefor we need to extend the configuration (ensuring we remain in the
topology BOUNDED(2)) with an additional node that corresponds to a process
from which this message has been broadcasted. The resulting configurations
are shown in Figure .

From proposition 3, we can apply the general results in [3] to decide state
reachability via a backward search algorithm working on upward closed sets of
extended configurations represented by their finite basis. The following theorem
then holds.

Theorem 8. DTAHN�Reach (BOUNDED(N),K) is decidable for N � 1,K � 0.

7. Related Work

In [20] German and Sistla propose a general framework for parameterized
verification of concurrent systems based on counting abstractions and reduc-
tions to Petri nets-like formalisms. The German-Sistla model is defined for fully
connected topologies, individual processes modelled via finite-state automata
and communication based on rendez-vous synchronization. Parameterized ver-
ification of concurrent systems in which the underlying communication topol-
ogy is modelled as a special class of graphs, e.g., rings, have been proposed in
[15, 16, 7, 6]. In [15] Emerson and Namjoshi provide small model properties
(cuto↵ properties) for a token-passing protocols in unidirectional rings that can
be applied to prove fragments of indexed CTL⇤ properties. The results have
been extended by Aminof et al. in [6]. Decidability for token passing protocols
for arbitrary graphs have been studied in [7, 6].

Parameterized verification for broadcast communication has been studied
in [15, 17]. A forward, possibly non terminating, reachability algorithm has
been proposed in [15]. In [17] Esparza, Finkel and Mayr give a reduction of
the problem to coverability in an extension of Petri nets with transfer arcs.
Coverability is decidable in this model. The property can be proved by applying
the general results in [3, 19].

34

In [11, 12] the authors study decidability issues for parameterized verification
of a concurrent model with broadcast communication and communication topol-
ogy restricted by a graph, called AHN. The model is an untimed abstraction
that can be applied to specify protocols used for Ad Hoc Networks. Variations of
the model with node and link failures, asynchronous communication, and local
mailboxes has been studied in [10, 13, 9]. In [8] Clemente et al. give decidability
results for di↵erent classes of topologies for systems defined by communicating
automata with FIFO and bag channels.

Model checking for timed automata has been applied to verify protocols for
ad hoc networks with a fixed number of nodes in [18]. Models with a discrete
global clock and lazy exploration of configurations of fixed size has been consid-
ered in [24]. Formal specification languages for timed models of ad hoc networks
have been proposed, e.g., in [22]. In contrast to these works, we consider here
computability issues for verification of timed ad hoc networks with parametric
initial configurations.

Decidability of some cases is proved by resorting to an extension of Timed
Networks with Transfer. In the untimed case the combination of rendez-vous
and transfer is considered in a model called datanets, an untimed extension of
Petri nets in which processes have data taken from an ordered domain [21].

This paper extends with detailed proofs the preliminary work presented at
FORMATS ’11 [1].

8. Conclusions

We have studied local state reachability for Timed Ad Hoc Networks in
di↵erent classes of topologies and considering the number of clocks of each node
as a parameter. Fig. 13 shows a summary of our analysis. We also mention
decidability for DTAHN on cliques since, as for bounded paths, it derives from
an application of the theory of wsts. Undecidability for DTAHN on graphs with
bounded diameter follows instead from the result obtained in the untimed case
in [12].

UNDECIDABLE

DECIDABLE

CLIQUE(2)
CLIQUE(1)

STAR(2,1)

STAR(1,1)

DISCRETE CLIQUE(N) N�1

DISCRETE BOUNDED(N,K) N�1 K�1

DISCRETE BOUNDED DIAMETER(N,1) N�3

BOUNDED(N,1) N�5

Figure 13: Decidability and undecidability results for TAHN.

[1] P. A. Abdulla, G. Delzanno, O. Rezine, A. Sangnier, and Riccardo Traverso.
On the verification of timed ad hoc networks. In FORMATS, pages 256–
270, 2011.

35

[2] P. A. Abdulla and B. Jonsson. Model checking of systems with many
identical timed processes. TCS, 290(1):241–264, 2003.

[3] P.A. Abdulla, K. Cerans, B. Jonsson, and Y.K. Tsay. General decidabil-
ity theorems for infinite-state systems. In LICS’96, pages 313–321. IEEE
Computer Society, 1996.

[4] P.A. Abdulla, J. Deneux, and P. Mahata. Multi-clock timed networks. In
LICS’04, pages 345–354. IEEE Computer Society, 2004.

[5] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[6] B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model
checking of token-passing systems. In Verification, Model Checking, and
Abstract Interpretation - 15th International Conference, VMCAI 2014, San
Diego, CA, USA, January 19-21, 2014, Proceedings, pages 262–281, 2014.

[7] E. M. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network
decomposition. In CONCUR 2004 - Concurrency Theory, 15th Interna-
tional Conference, London, UK, August 31 - September 3, 2004, Proceed-
ings, pages 276–291, 2004.

[8] L. Clemente, F. Herbreteau, and G. Sutre. Decidable topologies for com-
municating automata with FIFO and bag channels. In CONCUR 2014
- Concurrency Theory - 25th International Conference, CONCUR 2014,
Rome, Italy, September 2-5, 2014. Proceedings, pages 281–296, 2014.

[9] G. Delzanno, A. Sangnier, and R. Traverso. Parameterized verification
of broadcast networks of register automata. In Reachability Problems -
7th International Workshop, RP 2013, Uppsala, Sweden, September 24-26,
2013 Proceedings, pages 109–121, 2013.

[10] G. Delzanno, A. Sangnier, R. Traverso, and G. Zavattaro. On the com-
plexity of parameterized reachability in reconfigurable broadcast networks.
In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012, Hy-
derabad, India, pages 289–300, 2012.

[11] G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of
ad hoc networks. In CONCUR’10, volume 6269 of LNCS. Springer, 2010.

[12] G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in
the parameterized verification of ad hoc networks. In FoSSaCS’11, volume
6604 of LNCS, pages 441–455. Springer, 2011.

[13] G. Delzanno and R. Traverso. Decidability and complexity results for ver-
ification of asynchronous broadcast networks. In Language and Automata
Theory and Applications - 7th International Conference, LATA 2013, Bil-
bao, Spain, April 2-5, 2013. Proceedings, pages 238–249, 2013.

36

[14] G. Ding. Subgraphs and well quasi ordering. J. of Graph Theory, 16(5):489–
502, 1992.

[15] E. Allen Emerson and K. S. Namjoshi. On model checking for non-
deterministic infinite-state systems. In Thirteenth Annual IEEE Sympo-
sium on Logic in Computer Science, Indianapolis, Indiana, USA, June
21-24, 1998, pages 70–80, 1998.

[16] E. Allen Emerson and K. S. Namjoshi. On reasoning about rings. Int. J.
Found. Comput. Sci., 14(4):527–550, 2003.

[17] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast pro-
tocols. In LICS’99, pages 352–359. IEEE Computer Society, 1999.

[18] A. Fehnker, L. van Hoesel, and A. Mader. Modelling and verification of
the LMAC protocol for wireless sensor networks. In IFM’07, volume 4591
of LNCS, pages 253–272. Springer, 2007.

[19] A. Finkel and Ph. Schnoebelen. Well-structured transition systems every-
where! Theor. Comput. Sci., 256(1-2):63–92, 2001.

[20] S. M. German and A. Prasad Sistla. Reasoning about systems with many
processes. J. ACM, 39(3):675–735, 1992.

[21] R. Lazic, T. Newcomb, J. Ouaknine, A.W. Roscoe, and J. Worrell. Nets
with tokens which carry data. Fund. Inf., 88(3):251–274, 2008.

[22] M. Merro, F. F. Ballardin, and E. Sibilio. A timed calculus for wireless
systems. In Proc. of the 3rd Conference on Fundamentals of Software En-
gineering (FSEN’09), volume 5961 of LNCS, pages 228–243. Springer, 2010.

[23] M. Saksena, O. Wibling, and B. Jonsson. Graph grammar modeling and
verification of Ad Hoc Routing Protocols. In TACAS’08, volume 4963 of
LNCS, pages 18–32. Springer, 2008.

[24] A. Singh, C. R. Ramakrishnan, and S. A. Smolka. Query-based model
checking of ad hoc network protocols. In CONCUR’09, volume 5710 of
LNCS, pages 603–619. Springer, 2009.

37

Distributed local strategies in broadcast networks∗

Nathalie Bertrand1, Paulin Fournier2, and Arnaud Sangnier3

1 Inria Rennes Bretagne Atlantique

2 ENS Rennes, Univ Rennes 1

3 LIAFA, Univ Paris Diderot, Sorbonne Paris Cité, CNRS

Abstract

We study the problems of reaching a specific control state, or converging to a set of target states,
in networks with a parameterized number of identical processes communicating via broadcast.
To reflect the distributed aspect of such networks, we restrict our attention to executions in
which all the processes must follow the same local strategy that, given their past performed
actions and received messages, provides the next action to be performed. We show that the
reachability and target problems under such local strategies are NP-complete, assuming that the
set of receivers is chosen non-deterministically at each step. On the other hand, these problems
become undecidable when the communication topology is a clique. However, decidability can be
regained for reachability under the additional assumption that all processes are bound to receive
the broadcast messages.

1998 ACM Subject Classification F.3 Logics and Meanings of Programs, F.1.1 Models of Com-
putation

Keywords and phrases Broadcast Networks, Parameterized Verification, Local strategies

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Parameterized models for distributed systems. Distributed systems are nowadays ubiquitous
and distribution is one of the main paradigms in the conception of computing systems.
Conceiving, analyzing, debugging and verifying such systems are tedious tasks which lately
received an increased interest from the formal methods community. Considering parametric
models with an unknown number of identical processes is a possible approach to tame
distributed systems in which all processes share the same code. It has the advantages to allow
one to establish the correctness of a system independently of the number of participants,
and to ease bugs detection by the possibility to adapt the number of processes on demand.

In their seminal paper on distributed models with many identical entities [14], German
and Sistla represent the behavior of a network by finite state machines interacting via ‘ren-
dezvous’ communications. Variants have then been proposed, to handle different commu-
nication means, like broadcast communication [11], token-passing [6, 2], message passing [5]
or shared memory [12]. In his nice survey on such parameterized models [10], Esparza
shows that minor changes, such as the presence or absence of a controller in the system,
can drastically modify the complexity of the verification problems. Another perspective for
parametric systems has been proposed by Bollig who studied their expressive power with
respect to logics over Message Sequence Charts [4].

∗ This work is partially supported by the ANR national research program ANR-14-CE28-0002 PACS.

© Nathalie Bertrand and Paulin Fournier and Arnaud Sangnier;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

2 Local strategies in broadcast networks

Broadcast protocols. Among the various parametric models of networks, broadcast protocols,
originally studied by Esparza et al. [11], have later been analyzed under a new viewpoint,
leading to new insights on the verification problems. Specifically, a low level model to rep-
resent the main characteristics of ad-hoc networks has been proposed [8]: the network is
equipped with a communication topology and processes communicate via broadcast to their
neighbors. It was shown that, given a protocol represented by a finite state machine per-
forming internal actions, broadcasts and receptions of messages, the problem of deciding
whether there exists an initial communication topology from which one of the processes can
reach a specific control state is undecidable. The same holds for the target problem, which
asks whether all processes can converge to a set of target states. For both the reachability
and the target problems, decidability can however be regained, by considering communic-
ation topologies that can change non-deterministically at any moment [7]. Another option
to recover decidability of the reachability problem is to restrict the topologies to clique
graphs [9], yielding a model equivalent to broadcast protocols.

Local distributed strategies. In this paper, we consider the reachability and target problems
under a new perspective, which we believe could also be interesting for other ‘many identical
processes’ models. In such models, the protocol executed by each process is often described
by a finite state machine that can be non-deterministic. Therefore it may happen that two
processes behave differently, even if they have the same information on what has happened
so far in an execution. To forbid such non-truly distributed behaviors, we constrain processes
to take the same decisions in case they fired the same sequence of transitions so far. We
thus study the reachability and target problems in broadcast protocols restricted to local
strategies. Interestingly, the notably difficult distributed controller synthesis problem [15]
is relatively close to the problem of existence of a local strategy. Indeed a local strategy
corresponds to a local controller for the processes executing the protocol and whose role is
to resolve the non-deterministic choices.

Our contributions. First we show that the reachability and target problems under local
strategies in reconfigurable broadcast networks are NP-complete. To obtain the upper
bound, we prove that local strategies can be succinctly represented by a finite tree of poly-
nomial size in the size of the input protocol. This result is particularly interesting, because
deciding the existence of a local strategy is intrinsically difficult. Indeed, even with a fixed
number of processes, the locality constraint cannot be simply tested on the induced transition
system, and a priori local strategies may need unbounded memory. From our decidability
proofs, we derive an upper bound on the memory needed to implement the local strategies.
We also give cutoffs, i.e. upper bounds on the minimal number of processes needed to reach
or converge to target states. Second we show the two problems to be undecidable when
the communication topology is a clique. Moreover, the undecidability proof of the target
problem holds even if the locality assumption is dropped. However, the reachability prob-
lem under local strategies in clique is decidable (yet non-primitive recursive) for complete
protocols, i.e. when receptions are always possible from every state.

Due to lack of space, omitted details and proofs can be found in the companion research
report [3].

2 Networks of reconfigurable broadcast protocols

In this paper, given i, j ∈ N such that i ≤ j, we let [i..j] = {k | i ≤ k ≤ j}. For a set E and
a natural ℓ > 0, let Eℓ be the set of vectors v of size ℓ over E. For a vector v ∈ Eℓ and
i ∈ [1..ℓ], v[i] is the i-th component of v and |v| = ℓ its size. The notation VE stands for

N. Bertrand and P. Fournier and A. Sangnier 3

the infinite set
⋃

ℓ∈N\{0} Eℓ of all vectors over E. We will use the notation M(E) to denote
the set of multi-sets over E.

2.1 Syntax and semantics

We begin by presenting our model for networks of broadcast protocols. Following [8, 9, 7],
we assume that each process in the network executes the same (non-deterministic) broadcast
protocol given by a finite state machine where the actions are of three kinds: broadcast of
a message m (denoted by !!m), reception of a message m (denoted by ??m) and internal
action (denoted by ε).

! Definition 1. A broadcast protocol is a tuple P = (Q, q0, Σ, ∆) with Q a finite set of control
states; q0 ∈ Q the initial control state; Σ a finite message alphabet and ∆ ⊆ Q×({!!m, ??m |
m ∈ Σ} ∪ {ε}) × Q a finite set of edges.

We denote by A(q) the set {(q, ε, q′) ∈ ∆} ∪ {(q, !!m, q′) ∈ ∆} containing broadcasts
and internal actions (called active actions) of P that start from state q. Furthermore, for
each message m ∈ Σ, we denote by Rm(q) the set {(q, ??m, q′) ∈ ∆} containing the edges
that start in state q and can be taken on reception of message m. We say that a broadcast
protocol is complete if for every q ∈ Q and every m ∈ Σ, Rm(q) ̸= ∅. Whether protocols
are complete or not may change the decidability status of the problems we consider (see
Section 4).

We now define the semantics associated with such a protocol. It is common to represent
the network topology by an undirected graph describing the communication links [7]. Since
the topology may change at any time (such an operation is called reconfiguration), we decide
here to simplify the notations by specifying, for each broadcast, a set of possible receivers that
is chosen non-deterministically. The semantics of a network built over a broadcast protocol
P = (Q, q0, Σ, ∆) is given by a transition system TP = (Γ, Γ0, →) where Γ = VQ is the set of
configurations (represented by vectors over Q); Γ0 = V{q0} is the set of initial configurations
and →⊆ Γ × N × ∆ × 2N × Γ is the transition relation defined as follows: (γ, p, δ, R, γ′) ∈→

(also denoted by γ
p,δ,R
−−−→ γ′) iff |γ| = |γ′| and p ∈ [1..|γ|] and R ⊆ [1..|γ|] \ {p} and one of

the following conditions holds:

Internal action: δ = (γ[p], ε, γ′[p]) and γ′[p′] = γ[p′] for all p′ ∈ [1..|γ|] \ {p} (the p-th
process performs an internal action).

Communication: δ = (γ[p], !!m, γ′[p]) and (γ[p′], ??m, γ′[p′]) ∈ ∆ for all p′ ∈ R such
that Rm(γ[p′]) ̸= ∅ , and γ′[p′′] = γ[p′′] for all p′′ ∈ [1..|γ|] \ (R ∪ {p}) and for all
p′′ ∈ R such that Rm(γ[p′′]) = ∅ (the p-th process broadcasts m to all the processes in
the reception set R).

Obviously, when an internal action is performed, the reception set R is not taken into
account. We point out the fact that the hypothesis |γ| = |γ′| implies that the number of pro-
cesses remains constant during an execution (there is no creation or deletion of processes).
Yet, TP is an infinite state transition system since the number of possible initial configura-
tions is infinite. An execution of P is then a finite sequence of consecutive transitions in TP

of the form θ = γ0
p0,δ0,R0−−−−−→ γ1 . . .

pℓ,δℓ,Rℓ−−−−−→ γℓ+1 and we denote by Θ[P] (or simply Θ when
P is clear from context) the set of all executions of P. Furthermore, we use nbproc(θ) = |γ0|
to represent the number of processes involved in the execution θ.

4 Local strategies in broadcast networks

2.2 Local strategies and clique executions

Our goal is to analyze executions of broadcast protocols under local strategies, where each
process performs the same choices of edges according to its past history (i.e. according to
the edges of the protocol it has fired so far).

A finite path in P is either the empty path, denoted by ϵ, or a non-empty finite sequence
of edges δ0 · · · δℓ such that δ0 starts in q0 and for all i ∈ [1..ℓ], δi starts in the state in which
δi−1 ends. For convenience, we say that ϵ ends in state q0. We write Path(P) for the set of
all finite paths in P.

For an execution θ ∈ Θ[P], we define, for every p ∈ [1..nbproc(θ)], the past of process p
in θ (also referred to as its history), written πp(θ), as the finite path in P that stores the
sequences of edges of P taken by p along θ. We can now define local strategies which allow
us to focus on the executions in which each process performs the same choice according
to its past. A local strategy σ for P is a pair (σa, σr) of functions specifying, given a
history, the next active action to be taken, and the reception edge to choose when receiving
a message, respectively. Formally σa : Path(P) → (Q × ({!!m | m ∈ Σ} ∪ {ε}) × Q)
satisfies, for every ρ ∈ Path(P) ending in q ∈ Q, either A(q) = ∅ or σa(ρ) ∈ A(q). Whereas
σr : Path(P) × Σ → (Q × {??m | m ∈ Σ} × Q) satisfies, for every ρ ∈ Path(P) ending in
q ∈ Q and every m ∈ Σ, either Rm(q) = ∅ or σr(ρ, m) ∈ Rm(q).

Since our aim is to analyze executions where each process behaves according to the same
local strategy, we now provide the formal definition of such executions. Given a local strategy
σ, we say that a path δ0 · · · δℓ respects σ if for all i ∈ [0..ℓ − 1], we have δi+1 = σa(δ0 . . . δi)
or δi+1 = σr(δ0 · · · δi, m) for some m ∈ Σ. Following this, an execution θ respects σ if for
all p ∈ [1..nbproc(θ)], we have that πp(θ) respects σ (i.e. we have that each process behaves
as dictated by σ). Finally we define ΘL ⊆ Θ as the set of local executions (also called local
semantics), that is executions θ respecting a local strategy.

We also consider another set of executions where we assume that every message is broad-
cast to all the processes of the network (apart from the emitter). Formally, an execution θ =

γ0
p0,δ0,R0−−−−−→ . . .

pℓ,δℓ,Rℓ−−−−−→ γℓ+1 is said to be a clique execution if Rk = [1, . . . , nbproc(θ)] \ {pk}
for every k ∈ [0..ℓ]. We denote by ΘC the set of clique executions (also called clique se-
mantics). Note that clique executions of broadcast networks have been studied in [9] and
that such networks correspond to broadcast protocols with no rendez-vous [11]. We will also
consider the intersection of these subsets of executions and write ΘLC for the set ΘL ∩ ΘC

of clique executions which respect a local strategy.

2.3 Verification problems

In this work we study the parameterized verification of the reachability and target properties
for broadcast protocols restricted to local strategies. The first one asks whether there exists
an execution respecting some local strategy and that eventually reaches a configuration
where a given control state appears, whereas the latter problem seeks for an execution
respecting some local strategy and that ends in a configuration where all the control states
belong to a given target set. We consider several variants of these problems depending on
whether we restrict to clique executions or not and to complete protocols or not.

For an execution θ = γ0
p0,δ0,R0−−−−−→ γ1 . . .

pℓ,δℓ,Rℓ−−−−−→ γℓ+1, we denote by End(θ) = {γℓ+1[p] |
p ∈ [1..nbproc(θ)]} the set of states that appear in the last configuration of θ. Reach[S],
the parameterized reachability problem for executions restricted to S ∈ {L, C, LC} is defined
as follows:
Input: A broadcast protocol P = (Q, q0, Σ, ∆) and a control state qF ∈ Q.

N. Bertrand and P. Fournier and A. Sangnier 5

Output: Does there exist an execution θ ∈ ΘS such that qF ∈ End(θ)?
In previous works, the parameterized reachability problem has been studied without the
restriction to local strategies; in particular the reachability problem on unconstrained exe-
cutions is in PTIME [7] and Reach[C] is decidable and Non-Primitive Recursive (NPR) [9, 11]
(it is in fact Ackermann-complete [16]).

Target[S], the parameterized target problem for executions restricted to S ∈ {L, C, LC}
is defined as follows:
Input: A broadcast protocol P = (Q, q0, Σ, ∆) and a set of control states T ⊆ Q.
Output: Does there exist an execution θ ∈ ΘS such that End(θ) ⊆ T?
It has been shown that a generalization of the target problem, without restriction to local
strategies, can be solved in NP [7]. In this work, we focus on executions under local strategies
and we obtain the results presented in the following table:

Reach[L] Reach[LC] Target[L] Target[LC]

NP-complete
[Thm. 7]

Undecidable [Thm. 9]
NP-complete

[Thm. 8]
Undecidable

[Thm. 9]
Decidable and NPR for complete

protocols [Thm. 11]

Most of the problems listed in the above table are monotone: if, in a network of a given
size, an execution satisfying the reachability or target property exists, then, in any bigger
network, there also exists an execution satisfying the same property.

! Proposition 2. Let θ be an execution in ΘL [resp. ΘLC]. For every N ≥ nbproc(θ),
there exists θ′ in ΘL [resp. ΘLC] such that nbproc(θ′) = N and End(θ) = End(θ′) [resp.
End(θ) ⊆ End(θ′)].

This monotonicity property allows us to look for cutoffs, i.e. minimal number of processes
such that a local execution with a given property exists. In this work, we provide upper-
bounds on these cutoffs for Reach[L] (Proposition 6) and Target[L] (Theorem 8.2). For
Reach[LC] restricted to complete protocols, given the complexity of the problem, such an
upper-bound would be non-primitive recursive and thus would not be of any practical use.

2.4 Illustrative example

q0 q1 qFq2q′
F

q3 q4 qT

!!mε

??m ??
m

??m??m

??m !!m

??m??m

ε

ε

ε

Figure 1 Example of a broadcast protocol.

To illustrate the notions of local strategies and clique executions, we provide an example
of a broadcast protocol in Fig. 1. On this protocol no clique execution can reach state
qF : as soon as a process in q0 sends message m, all the other processes in q0 receive this
message, and move to q3, because of the clique topology. An example of a clique execution
is: (q0, q0, q0, q0) → (q1, q3, q3, q3) (where we omit the labels over →). However, there exists
a local execution reaching qF : (q0, q0) → (q1, q0) → (qF , q1). This execution respects a local
strategy since, from q0 with empty past, the first process chooses the edge broadcasting m

6 Local strategies in broadcast networks

with empty reception set and in the next step the second process, also with empty past,
performs the same action, broadcasting the message m to the first process. On the other
hand, no local strategy permits to reach q′

F . Indeed, intuitively, to reach q′
F , in state q0

one process with empty past needs to go to q1 and another one to q2, which is forbidden
by locality. Finally (q0, q0, q0) → (q1, q0, q3) → (q1, q1, q4) → (qT, qT, qT) is a local execution
that targets the set T = {qT}.

3 Verification problems for local executions

We begin with studying the parameterized reachability and target problems under local
executions, i.e. we seek for a local strategy ensuring either to reach a specific control state,
or to reach a configuration in which all the control states belong to a given set.

3.1 Solving Reach[L]

To obtain an NP-algorithm for Reach[L], we prove that there exists a local strategy to reach
a specific control state if and only if there is a local strategy which can be represented thanks
to a finite tree of polynomial size; the idea behind such a tree being that the paths in the tree
represent past histories and the edges outgoing a specific node represent the decisions of the
local strategy. The NP-algorithm will then consist in guessing such finite tree of polynomial
size and verifying if it satisfies some conditions needed to reach the specified control state.

Representing strategies with trees. We now define our tree representation of
strategies called strategy patterns, which are standard labelled trees with labels on the
edges. Intuitively a strategy pattern defines, for some of the paths in the associated pro-
tocol, the active action and receptions to perform.

A strategy pattern for a broadcast protocol P = (Q, q0, Σ, ∆) is a labelled tree T =
(N, n0, E, ∆, lab) with N a finite set of nodes, n0 ∈ N the root, E ⊆ N × N the edge
relation and lab : E → ∆ the edge-labelling function. Moreover T is such that if e1 · · · eℓ is
a path in T , then lab(e1) · · · lab(eℓ) ∈ Path(P), and for every node n ∈ N : there is at most
one edge e = (n, n′) ∈ E such that lab(e) is an active action; and, for each message m, there
is at most one edge e = (n, n′) ∈ E such that lab(e) is a reception of m.

Since all labels of edges outgoing a node share a common source state (due to the
hypothesis on labelling of paths), the labelling function lab can be consistently extended to
nodes by letting lab(n0) = q0 and lab(n) = q for any (n′, n) ∈ E with lab((n′, n)) = (q′, a, q).

The strategy pattern represented in Fig. 2, for the broadcast protocol from Fig. 1, illus-
trates that strategy patterns somehow correspond to under-specified local strategies. For
example, from node n1 (labelled by q1) no reception of message m is specified, and from
node n5 (labelled by q4) no reception and no active action are specified.

n0

n1 n2

n3

n4 n6 n8

n5

n7(q0, !!m, q1)

(q0, ?
?m, q3)

(q3, ??m, q4)

(q1, ε, q1) (q1, ??m, qF)

(q3, ε, q3) (q3, ??m, q4) (q4, !!m, qT)

Figure 2 A strategy pattern for the broadcast protocol depicted Fig. 1.

N. Bertrand and P. Fournier and A. Sangnier 7

More generally, given P a broadcast protocol, and T a strategy pattern for P with edge-
labelling function lab, a local strategy σ = (σa, σr) for P is said to follow T if for every
path e1 · · · eℓ in T , the path ρ = lab(e1) · · · lab(eℓ) in P respects σ. Notice that any strategy
pattern admits at least one local strategy that follows it.

Reasoning on strategy patterns. We now show that one can test directly on a
strategy pattern whether the local strategies following it can yield an execution reaching a
specific control state. An admissible strategy pattern for P = (Q, q0, Σ, ∆) is a pair (T, ≺)
where T = (N, n0, E, ∆, lab) is a strategy pattern for P and ≺⊆ N ×N is a strict total order
on the nodes of T such that:

(1) for all (n, n′) ∈ E we have n ≺ n′;
(2) for all e = (n, n′) ∈ E, if lab(e) = (lab(n), ??m, lab(n′)) for some m ∈ Σ, then there exists

e1 = (n1, n′
1) in E such that n′

1 ≺ n′ and lab(e1) = (lab(n1), !!m, lab(n′
1)).

In words, (1) states that ≺ respects the natural order on the tree and (2) that every node
corresponding to a reception of m should be preceded by a node corresponding to a broadcast
of m.

The example of strategy pattern on Fig. 2 is admissible with the order ni ≺ nj if i < j,
whereas for any order including n3 ≺ n1 it is not admissible (a broadcast of m should precede
n3). In general, given a strategy pattern T and a strict total order ≺, checking whether
(T, ≺) is admissible can be done in polynomial time (in the size of the pattern).

In order to state the relation between admissible strategy patterns and local strategies,
we define lab(T) = {lab(n) | n ∈ N} as the set of control states labelling nodes of T and
Occur(θ) = {γi[p] | i ∈ [0..ℓ+1] and p ∈ [1..nbproc(θ)]} as the set of states that appear along
an execution θ = γ0 → · · · → γℓ+1. The next proposition tells us that admissible strategy
patterns are necessary and sufficient to represent the sets of states that can be reached under
local strategies.

! Proposition 3. For all Q′ ⊆ Q, there exists an admissible strategy pattern (T, ≺) such
that lab(T) = Q′ iff there exists a local strategy σ and an execution θ such that θ respects σ
and Q′ = Occur(θ), furthermore σ follows T .

Minimizing admissible strategy patterns. For (T, ≺) an admissible strategy pat-
tern, we denote by last(T, ≺) the maximal node w.r.t. ≺ and we say that (T, ≺) is qF -
admissible if lab(last(T, ≺)) = qF . We now show that there exist polynomial size witnesses
of qF -admissible strategy patterns. The idea is to keep only relevant edges that either lead
to a node labelled by qF or that permit a broadcast of a new message. Intuitively, a min-
imal strategy pattern guarantees that (1) there is a unique node labelled with qF , (2) in
every subtree there is either a node labelled by qF or a broadcast of a new message (i.e. a
broadcast of a message that has not been seen previously with respect to the order ≺), and
(3) a path starting and ending in two different nodes labelled by the same state, cannot be
compressed without losing a new broadcast or a path towards qF (by compressing we mean
replacing the first node on the path by the last one). These hypotheses allow us to seek only
for qF -admissible strategy patterns of polynomial size.

! Proposition 4. If there exists a qF -admissible strategy pattern for P, then there is one of
size at most (2|Σ| + 1) · (|Q| − 1) and of height at most (|Σ| + 1) · |Q|.

By Proposition 3, there exists an execution θ ∈ ΘL such that qF ∈ Occur(θ) iff there exists
a qF -admissible strategy pattern and thanks to Proposition 4 it suffices to look only for qF -
admissible strategy patterns of size polynomial in the size of the broadcast protocol. A non-

8 Local strategies in broadcast networks

deterministic polynomial time algorithm for Reach[L] consists then in guessing a strategy
pattern of polynomial size and an order and then verifying whether it is qF -admissible.

! Theorem 5. Reach[L] is in NP.

We can furthermore provide bounds on the minimal number of processes and on the
memory needed to implement local strategies. Given a qF -admissible strategy pattern one
can define an execution following the pattern such that each reception edge of the pattern
is taken exactly once and active actions may be taken multiple times but in a row. Such an
execution needs at most one process per reception edge. Together with the bound on the
size of the minimal strategy patterns (see Proposition 4), this yields a cutoff property on the
minimal size of network to reach the final state. Moreover the past history of every process
in this execution is bounded by the depth of the tree, hence we obtain an upper bound on
the size of the memory needed by each process for Reach[L].

! Proposition 6. If there exists an execution θ ∈ ΘL such that qF ∈ Occur(θ), then there
exists an execution θ′ ∈ ΘL such that qF ∈ Occur(θ′) and nbproc(θ′) ≤ (2|Σ| + 1) · (|Q| − 1)
and |πp(θ′)| ≤ (|Σ| + 1) · |Q| for every p ∈ [1..nbproc(θ′)].

q0q′
1q′

2· · ·q′
r+1 q1 · · · qk

ε!!x1

!!¬x1

!!x2

!!¬x2

!!xr

!!¬xr

??ℓ1
1

??ℓ1
2

??ℓ1
3

??ℓ2
1

??ℓ2
2

??ℓ2
3

??ℓk
1

??ℓk
2

??ℓk
3

Figure 3 Encoding a 3-SAT formula into a broadcast protocol.

By reducing 3-SAT, one can furthermore show Reach[L] to be NP-hard. Let φ =∧
1≤i≤k(ℓi

1 ∨ℓi
2 ∨ℓi

3) be a 3-SAT formula such that ℓi
j ∈ {x1, ¬x1, . . . , xr, ¬xr} for all i ∈ [1..k]

and j ∈ {1, 2, 3}. We build from φ the broadcast protocol P depicted at Fig. 3. Under this
construction, φ is satisfiable iff there is an execution θ ∈ ΘL such that qk ∈ Occur(θ).
The local strategy hypothesis ensures that even if several processes broadcast a message
corresponding to the same variable, all of them must take the same decision so that there
cannot be any execution during which both xi and ¬xi are broadcast. It is then clear that
control state qk can be reached if and only if each clause is satisfied by the set of broadcast
messages. Together with Theorem 5, we obtain the precise complexity of Reach[L].

! Theorem 7. Reach[L] is NP-complete.

3.2 Solving Target[L]

Admissible strategy patterns can also be used to obtain an NP-algorithm for Target[L].
As we have seen, given an admissible strategy pattern, one can build an execution where
the processes visit all the control states present in the pattern. When considering the target
problem, one also needs to ensure that the processes can afterwards be directed to the target
set. To guarantee this, it is possible to extend admissible strategy patterns with another
order on the nodes which ensures that (a) from any node there exists a path leading to
the target set and (b) whenever on this path a reception is performed, the corresponding
message can be broadcast by a process that will only later on be able to reach the target.

We formalize now this idea. For T ⊆ Q a set of states, a T-coadmissible strategy pattern
for P = (Q, q0, Σ, ∆) is a pair (T,✁) where T = (N, n0, E, ∆, lab) is a strategy pattern for

N. Bertrand and P. Fournier and A. Sangnier 9

P and ✁ ⊆ N × N is a strict total order on the nodes T such that for every node n ∈ N
with lab(n) /∈ T there exists an edge e = (n, n′) ∈ E with n ✁ n′ and either:

lab(e) = (lab(n), ε, lab(n′)) or,

lab(e) = (lab(n), !!m, lab(n′)) or,

lab(e) = (lab(n), ??m, lab(n′)) and there exists an edge e1 = (n1, n′
1) ∈ E such that

n ✁ n1, n ✁ n′
1 and lab(e1) = (q1, !!m, q′

1).

Intuitively the order ✁ in a T-coadmissible strategy pattern corresponds to the order in
which processes must move along the tree towards the target; the conditions express that
any node with label not in T has an outgoing edge that is feasible. In particular, a reception
of m is only feasible before all edges carrying the corresponding broadcast are disabled.

A strategy pattern T equipped with two orderings ≺ and ✁ is said to be T-biadmissible
whenever (T, ≺) is admissible and (T,✁) is T-coadmissible. To illustrate the construction

n0

n1

n2

n5 n6

n3 n4

(q0, ??m, q3)

(q0, !!m, q1)

(q3, ??m, q4) (q4, !!m, qT)

(q1, ε, q1) (q1, ??m, qT)

Figure 4 A T-coadmissible strategy pattern on the example protocol of Fig. 1.

of T-coadmissble patterns, we give in Fig. 4 an example pattern, that, equipped with the
natural order ni ✁nj iff i < j, is T-coadmissible for T = {qT}. Indeed all leaves are labelled

with a target state, and the broadcast edge n5
(q4,!!m,qT)
−−−−−−−→ n6 allows all processes to take

the corresponding reception edges. This T-coadmissible pattern is in particular obtained
from the execution (q0, q0, q0) → (q1, q3, q0) → (q1, q3, q0) → (qT, q4, q1) → (qT, q4, q1) →
(qT, qT, qT). Notice that ✁ is not an admissible order, because n1 ✁ n2, however there are
admissible orders for this pattern, for example the order n0 ≺ n2 ≺ n3 ≺ n4 ≺ n1 ≺ n5 ≺ n6.

As for Reach[L], one can show polynomial size witnesses of T-biadmissible strategy
patterns exist, yielding an NP-algorithm for Target[L]. Also, the size of minimal T-
biadmissible strategy patterns gives here also a cutoff on the number of processes needed to
satisfy the target condition, as well as an upper bound on the memory size.

! Theorem 8. 1. Target[L] is NP-complete.

2. If there exists an execution θ ∈ ΘL such that End(θ) ⊆ T, then there exists an execution
θ′ ∈ ΘL such that End(θ′) ⊆ T and nbproc(θ′) ≤ 16|Σ| · |Q| + 4|Σ| · (|Q| − |T| + 1) and
|πp(θ′)| ≤ 4|Σ| · |Q| + 2(|Q| − |T|) + 1 for every p ≤ nbproc(θ′).

! Remark. The NP-hardness derives from the fact that the target problem is harder than
the reachability problem. To reduce Reach[L] to Target[L], one can add the broadcast of
a new message from qF , and its reception from any state to qF .

Another consequence of this simple reduction is that Target[L] in NP yields another
proof that Reach[L] is in NP, yet the two proofs of NP-membership allowed us to give an
incremental presentation, starting with admissible strategy patterns, and proceeding with
co-admissible strategy patterns.

10 Local strategies in broadcast networks

4 Verification problems for local clique executions

4.1 Undecidability of Reach[LC] and Target[LC]

Reach[LC] and Target[LC] happen to be undecidable and for the latter, even in the
case of complete protocols. The proofs of these two results are based on a reduction from
the halting problem of a two counter Minsky machine (a finite program equipped with two
integer variables which can be incremented, decremented and tested to zero). The main idea
consists in both cases in isolating some processes to simulate the behavior of the machine
while the other processes encode the values of the counters.

Thanks to the clique semantics we can in fact isolate one process. This is achieved by
setting the first transition to be the broadcast of a message start whose reception makes all
the other process change their state. Hence, thanks to the clique semantics, there is only one
process that sends the message start, such process, called the controller, will be in charge
of simulating the transitions of the Minsky machine. The clique semantics is also used to
correctly simulate the increment and decrement of counters. For instance to increment a
counter, the controller asks whether a process simulating the counter can be moved from
state 0 to state 1 and if it is possible, relying on the clique topology only one such process
changes its state (the value of the counter is then the number of processes in state 1). In
fact, all the processes will receive the request, but the first one answering it, will force the
other processes to come back to their original state, ensuring that only one process will move
from state 0 to 1.

The main difficulty is that broadcast protocols (even under the clique semantics) cannot
test the absence of processes in a certain state (which would be needed to simulate a test to 0
of one of the counters). Here is how we overcome this issue for Target[LC]: the controller,
when simulating a zero-test, sends all the processes with value 1 into a sink error state and
the target problem allows to check for the reachability of a configuration with no process
in this error state (and thus to test whether the controller has ‘cheated’, i.e. has taken a
zero-test transition whereas the value of the associated counter was not 0). We point out
that in this case, restricting to local executions is not necessary, we get in fact as well that
Target[C] is undecidable.

For Reach[LC], the reduction is more tricky since we cannot rely on a target set of states
to check that zero-test were faithfully simulated. Here in fact we will use two controllers.
Basically, before sending a start message, some processes will be able to go to a waiting state
(thanks to an internal transition) from which they can become controller and in which they
will not receive any messages (this is where the protocol needs to be incomplete). Then we
will use the locality hypothesis to ensure that two different controllers will simulate exactly
the same run of the Minsky machine twice and with exactly the same number of processes
encoding the counters. Restricting to local strategies guarantees the two runs to be identical,
and the correctness derives from the fact that if in the first simulation the controller ‘cheats’
while performing a zero-test (and sending as before some processes encoding a counter
value into a sink state), then in the second simulation, the number of processes encoding
the counters will be smaller (due to the processes blocked in the sink state), so that the
simulation will fail (because there will not be enough processes to simulate faithfully the
counter values).

! Theorem 9. Reach[LC] is undecidable and Target[LC] restricted to complete protocol
is undecidable.

The undecidability proof for Reach[LC] strongly relies on the protocol being incomplete.

N. Bertrand and P. Fournier and A. Sangnier 11

Indeed, in the absence of specified receptions, the processes ignore broadcast messages and
keep the same history, thus allowing to perform twice the same simulation of the run.
In contrast, for complete protocols, all the processes are aware of all broadcast messages,
therefore one cannot force the two runs to be identical. In fact, the reachability problem is
decidable for complete protocols, as we shall see in the next section.

4.2 Decidability of Reach[LC] for complete protocols

To prove the decidability of Reach[LC] for complete protocols, we abstract the behavior of
a protocol under local clique semantics by counting the possible number of different histories
in each control state.

We identify two cases when the history of processes can differ (under local clique se-
mantics): (1) When a process p performs a broadcast, its history is unique for ever (since
all the other processes must receive the emitted message); (2) A set of processes sharing the
same history can be split when some of them perform a sequence of internal actions and the
others perform only a prefix of that sequence.

From a complete broadcast protocol P = (Q, q0, Σ, ∆) we build an abstract transition
system T LC

P = (Λ, λ0, ⇒) where configurations count the number of different histories in
each control state. More precisely the set of abstract configurations is Λ = M(Q × {m, s} ×
{!!ok, !!no}) × {ε, !!}. Abstract configurations are thus pairs where the first element is a
multiset and the second element is a flag in {ε, !!}. The latter indicates the type of the next
actions to be simulated (sequence of internal actions or broadcast): it prevents to simulate
consecutively two incoherent sequences of internal actions (with respect to the local strategy
hypothesis). For the former, an element (q, s, !!ok) in the multiset represents a single process
(flag s) in state q with a unique history which is allowed to perform a broadcast (flag !!ok).
An element (q, m, !!no) represents many processes (flag m) in state q, all sharing the same
unique history and none of them is allowed to perform a broadcast (flag !!no). The initial
abstract configuration λ0 is then ({{(q0, m, !!ok)}}, ε). In the sequel we will write HM for
the set M(Q × {m, s} × {!!ok, !!no}) of history multisets, so that Λ = HM × {ε, !!}, and
typical elements of HM are denoted M, M′, etc.

In order to provide the definition of the abstract transition relation ⇒, we need to
introduce new notions, and notations. An ε-path ρ in P from q to q′ is either the empty
path (and in that case q = q′) or it is a non-empty finite path δ0 · · · δn that starts in q, ends
in q′ and such that all the δi’s are internal transitions.

An ε-path ρ in P is said to be a prefix of an ε-path ρ′ if ρ ̸= ρ′ and either ρ is the empty
path or ρ = δ0 · · · δn and ρ′ = δ0 · · · δnδn+1 . . . δn+m for some m > 0. Since we will handle
multisets, let us give some convenient notations. Given E a set, and M a multiset over E, we
write M(e) for the number of occurrences of element e ∈ E in M. Moreover, card(M) stands
for the cardinality of M: card(M) =

∑
e∈E M(e). Last, we will write ⊕ for the addition on

multisets: M ⊕ M′ is such that for all e ∈ E, (M ⊕ M′)(e) = M(e) + M′(e).

The abstract transition relation ⇒∈ Λ × Λ is composed of two transitions relations: one
simulates the broadcast of messages and the other one sequences of internal transitions.
This will guarantee an alternation between abstract configurations flagged with ε and the
ones flagged with !!. Let us first define ⇒!!⊆ (HM × {!!}) × (HM × {ε}) which simulates
a broadcast. We have (M, !!) ⇒!! (M′, ε) iff there exists (q1, !!m, q2) ∈ ∆ and fl1 ∈ {s, m}
such that

1. M(q1, fl1, !!ok) > 0

12 Local strategies in broadcast networks

2. there exists a family of functions G indexed by (q, fl, b) ∈ Q × {m, s} × {!!ok, !!no}, such
that G(q,fl,b) : [1..M(q, fl, b)] → HM, and:

M
′ = {{q2, s, !!ok}} ⊕

⊕

{(q,fl,b)|M(q,fl,b) ̸=0}

⊕

i∈[1..M(q,fl,b)]

G(q,fl,b)(i)

and such that for each (q, fl, b) verifying M(q, fl, b) ̸= 0, for all i ∈ [1..M(q, fl, b)], the
following conditions are satisfied:

a. if fl1 = s, card(G(q1,fl1,!!ok)(1)) = 0 and if fl1 = m, then there exists q′ ∈ Q such that
G(q1,fl1,!!ok)(1) = {{(q′, fl1, !!ok)}} and such that (q, ??m, q′) ∈ ∆;

b. if (q, fl, b) ̸= (q1, fl1, !!ok) or i ̸= 1, then there exists q′ ∈ Q such that G(q,fl,b)(i) =
{{(q′, fl, !!ok)}} and such that (q, ??m, q′) ∈ ∆.

Intuitively to provide the broadcast, we need to find a process which is ‘allowed’ to perform
a broadcast and which is hence associated with an element (q1, fl1, !!ok) in M. The transition
(q1, !!m, q2) tells us which broadcast is simulated. Then the functions G(q,fl,b) associate with
each element of the multiset M of the form (q, fl, b) a single element which can be reached
thanks to a reception of the message m. Of course this might not hold for an element of
the shape (q1, s, !!ok) if it is the one chosen to do the broadcast since it represents a single
process, and hence this element moves to q2. Note however that if fl1 = m, then (q1, m, !!ok)
represents many processes, hence the one which performs the broadcast is isolated, but the
many other ones have to be treated for reception of the message. Note also that we use here
the fact that since an element (q, m, b) represents many processes with the same history, all
these processes will behave the same way on reception of the message m.

We now define ⇒ε⊆ (HM × {ε}) × (HM × {!!}) which simulates the firing of sequences
of ε-transitions. We have (M, ε) ⇒ε (M′, !!) iff there exists a family of functions F indexed
by (q, fl, b) ∈ Q × {m, s} × {!!ok, !!no}, such that F(q,fl,b) : [1..M(q, fl, b)] → HM, and

M
′ =

⊕

{(q,fl,b)|M(q,fl,b) ̸=0}

⊕

i∈[1..M(q,fl,b)]

F(q,fl,b)(i)

and such that for each (q, fl, b) verifying M(q, fl, b) ̸= 0, for all i ∈ [1..M(q, fl, b)], we have:

1. card(F(q,fl,b)(i)) ≥ 1 and if fl = s, card(F(q,fl,b)(i)) = 1;
2. If F(q,fl,b)(i)(q

′, fl ′, b′) ̸= 0, then fl ′ = fl;
3. There exists a pair (q!!, fl !!) ∈ Q × {m, s} such that:

F(q,fl,b)(i)(q!!, fl !!, !!ok) = 1
for all (q′, fl ′) ̸= (q!!, fl !!) F(q,fl,b)(i)(q

′, fl ′, !!ok) = 0;
There exists a ε-path ρ!! from q to q!!.

4. For all (q′, fl ′) such that F(q,fl,b)(i)(q
′, fl ′, !!no) = k > 0, there exists k different ε-paths

(strict) prefix of ρ!! from q to q′.

Intuitively the functions F(q,fl,b) associate with each element (q, fl, b) of the multiset M a set
of elements that can be reached via internal transitions. We recall that each such element
represents a set (or a singleton if fl = s) of processes sharing the same history. Condition 1.
states that if there are multiple processes (fl = m) then they can be matched to more states
in the protocol, but if it is single (fl = s) it should be matched by an unique state. Condition
2. expresses that if an element in M represents many processes, then all its images represent
as well many processes. Conditions 3. and 4. deal with the locality assumption. Precisely,
condition 3. states that among all the elements of M′ associated with an element of M, one

N. Bertrand and P. Fournier and A. Sangnier 13

and only one should be at the end of a ε-path, and only one process associated with this
element will be allowed to perform a broadcast. This justifies the use of the flag !!ok. Last,
condition 4. concerns all the other elements associated to this element of M: their flag is
set to !!no (they cannot perform a broadcast, because the local strategy will force them to
take an internal transition), and their state should be on the previously mentioned ε-path.

As announced, we define the abstract transitive relation by ⇒=⇒ε ∪ ⇒!!. Note that by
definition we have a strict alternation of transitions of the type ⇒ε and of the type ⇒!!. An
abstract local clique execution of P is then a finite sequence of consecutive transitions in T LC

P

of the shape ξ = λ0 ⇒ λ1 · · · ⇒ λℓ+1. As for concrete executions, if λℓ+1 = (Mℓ+1, tℓ+1)
we denote by End(ξ) = {q | ∃fl ∈ {m, s}.∃b ∈ {!!ok, !!no}.Mℓ+1(q, fl, b) > 0} the set of states
that appear in the end configuration of ξ.

As an example, a possible abstract execution of the broadcast protocol from Fig. 1 is:
({{(q0, m, !!ok)}}, ε) ⇒ ({{(q0, m, !!no), (q2, m, !!no), (q2, m, !!ok)}}, !!). This single-step exe-
cution represents that among the processes in q0, some processes will take an internal action
to q2 and loop there with another internal action (they are represented by the element
(q2, m, !!ok)), others will only move to q2 taking a single internal action (they are repres-
ented by (q2, m, !!no)), and finally some processes will stay in q0 (they are represented by
(q0, m, !!no)); note that these processes are not able to perform a broadcast, because due to
the local strategy hypothesis, they committed to firing the internal action leading to q2.

Another example of an abstract execution is: ({{(q0, m, !!ok)}}, ε) ⇒ ({{(q0, m, !!ok)}}, !!)
⇒ ({{(q1, s, !!ok), (q3, m, !!ok)}}, ε) ⇒ ({{(q1, s, !!ok), (q3, m, !!no), (q3, m, !!ok)}}, ε). Here in
the first step, no process performs internal actions, in the second step one of the processes
in q0 broadcasts m, moves to q1 and we know that no other process will ever share the same
history, it is hence represented by (q1, s, !!ok); then all the other processes with the same his-
tory represented by (q0, m, !!ok) must receive m and move to q3, they are hence represented
by (q3, m, !!ok). The last step represents that some processes perform the internal action
loop on q3.

The definition of the abstract transition system T LC
P ensures a correspondence between

abstract local clique executions and local clique executions in P. Formally:

! Lemma 10. Let qF ∈ Q. There exists an abstract local clique execution ξ of P such that
qF ∈ End(ξ) iff there exists a local clique execution θ ∈ ΘLC such that qF ∈ End(θ).

Given the abstract transition system T LC
P , in order to show that Reach[LC] is decidable,

we then rely on the theory of well-structured transition systems [1, 13]. Indeed, the natural
order on abstract configurations is a well-quasi-order compatible with the transition relation
⇒ of T LC

P (bigger abstract configurations simulate smaller ones) and one can compute pre-
decessors of upward-closed sets of configurations. This allows us to conclude that, in T LC

P ,
the set of all predecessors of a configuration where qF appears is effectively computable, so
that we can decide whether qF is reachable in T LC

P , hence, thanks to the previous lemma,
in P.

We also show that Reach[LC] is non-primitive recursive thanks to a PTIME reduction
from Reach[C] (which is Ackermann-complete [16]) to Reach[LC]. We exploit the fact that
the only difference between the semantics C and LC is that in the latter, processes with the
same history take the same decision. We simulate this in C with a gadget which assigns a
different history to each individual process at the beginning of the protocol making hence
the reachability problem for C equivalent to the one with LC semantics.

! Theorem 11. Reach[LC] restricted to complete protocols is decidable and NPR.

14 Local strategies in broadcast networks

5 Conclusion

We considered reconfigurable broadcast networks under local strategies that rule out execu-
tions in which processes with identical local history behave differently. Under this natural
assumption for distributed protocols, the reachability and target problems are NP-complete.
Moreover, we gave polynomial bounds on the cutoff and on the memory needed by strategies.
When the communication topology is a clique, both problems become undecidable. Decid-
ability is recovered for reachability if we further assume that protocols are complete.

To the best of our knowledge, this is the first attempt to take into account the local
viewpoint of the processes in parameterized distributed systems. It could be interesting to
study how the method we propose in this work can be adapted to parameterized networks
equipped with other means of communication (such as rendez-vous [14] or shared memory
[12]). In the future we also plan to deal with properties beyond simple reachability objectives,
as for example linear or branching time properties.

References

1 Parosh A. Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. Algorithmic analysis
of programs with well quasi-ordered domains. Inf. Comput., 160(1-2):109–127, 2000.

2 Benjamin Aminof, Swen Jacobs, Ayrat Khalimov, and Sasha Rubin. Parameterized model
checking of token-passing systems. In Proc. of VMCAI’14, volume 8318 of LNCS, pages
262–281, 2014.

3 Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Distributed local
strategies in broadcast networks. Research report, HAL, CNRS, France, July 2015.
https://hal.inria.fr/hal-01170796.

4 Benedikt Bollig. Logic for communicating automata with parameterized topology. In Proc.
of CSL-LICS’14, page 18. ACM, 2014.

5 Benedikt Bollig, Paul Gastin, and Jana Schubert. Parameterized verification of commu-
nicating automata under context bounds. In Proc. of RP’14, volume 8762 of LNCS, pages
45–57, 2014.

6 Edmund M. Clarke, Muralidhar Talupur, Tayssir Touili, and Helmut Veith. Verification by
network decomposition. In Proc. of CONCUR’04, volume 3170 of LNCS, pages 276–291,
2004.

7 Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, and Gianluigi Zavattaro. On the
complexity of parameterized reachability in reconfigurable broadcast networks. In Proc. of
FSTTCS’12, volume 18 of LIPIcs, pages 289–300. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2012.

8 Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized verification of
ad hoc networks. In Proc. of CONCUR’10, volume 6269 of LNCS, pages 313–327. Springer,
2010.

9 Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. On the power of cliques in
the parameterized verification of ad hoc networks. In Proc. of FoSSaCS’11, volume 6604
of LNCS, pages 441–455. Springer, 2011.

10 Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verification
(invited talk). In Proc. of STACS’14, volume 25 of LIPIcs, pages 1–10. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2014.

11 Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast protocols.
In Proc. of LICS’99, pages 352–359. IEEE Computer Society, 1999.

N. Bertrand and P. Fournier and A. Sangnier 15

12 Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of asyn-
chronous shared-memory systems. In Proc. of CAV’13, volume 8044 of LNCS, pages 124–
140, 2013.

13 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63–92, 2001.

14 Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes.
J. ACM, 39(3):675–735, 1992.

15 Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize. In
Proc. of FOCS’90, pages 746–757. IEEE Computer Society, 1990.

16 Sylvain Schmitz and Philippe Schnoebelen. The power of well-structured systems. In Proc.
of CONCUR’13, volume 8052 of LNCS, pages 5–24. Springer, 2013.

Reachability in Networks of Register Protocols
under Stochastic Schedulers�†

Patricia Bouyer

1
, Nicolas Markey

1
, Mickael Randour

‡2
,

Arnaud Sangnier

3
, and Daniel Stan

1

1 LSV – CNRS, ENS Cachan & University Paris-Saclay – France

2 Computer Science Department – Université Libre de Bruxelles – Belgium

3 IRIF – University Paris Diderot & CNRS – France

Abstract
We study the almost-sure reachability problem in a distributed system obtained as the asyn-
chronous composition of N copies (called processes) of the same automaton (called protocol),
that can communicate via a shared register with finite domain. The automaton has two types of
transitions: write-transitions update the value of the register, while read-transitions move to a
new state depending on the content of the register. Non-determinism is resolved by a stochastic
scheduler. Given a protocol, we focus on almost-sure reachability of a target state by one of the
processes. The answer to this problem naturally depends on the number N of processes. How-
ever, we prove that our setting has a cut-o� property: the answer to the almost-sure reachability
problem is constant when N is large enough; we then develop an EXPSPACE algorithm deciding
whether this constant answer is positive or negative.

1998 ACM Subject Classification F.1.1 Models of Computation, F.3.1 Specifying and Verifying
and Reasoning about Programs, C.2.2 Network Protocols

Keywords and phrases Networks of Processes, Parametrized Systems, Stochastic Scheduler,
Almost-sure Reachability, Cut-O� Property

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Verification of systems with many identical processes. It is a classical pattern in distributed
systems to have a large number of identical components running concurrently (a.k.a. networks
of processes). In order to verify the correctness of such systems, a naive option consists
in fixing an upper bound on the number of processes, and applying classical verification
techniques on the resulting system. This has several drawbacks, and in particular it gives
no information whatsoever about larger systems. Another option is to use parameterized-
verification techniques, taking as a parameter the number of copies of the protocol in the
system being considered. In such a setting, the natural question is to find and characterize,
if it exists, an infinite set of parameter values for which the system is correct. Not only the
latter approach is more general, but it might also turn out to be easier and more e�cient,
since it involves orthogonal techniques.

�
A full version of the paper is available on Arxiv [7]

†
This work has been partly supported by ERC Starting grant EQualIS (FP7-308087) and by European

FET project Cassting (FP7-601148) by the ANR research program PACS (ANR-14-CE28-0002).

‡
F.R.S.-FNRS Postdoctoral Researcher.

© Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

23:2 Reachability in Networks of Register Protocols under Stochastic Schedulers

Di�erent means of communication lead to di�erent models. A seminal paper on para-
meterized verification of such distributed systems is the work of German and Sistla [17].
In this work, the authors consider networks of processes all following the same finite-state
automaton; the communication between processes is performed thanks to rendez-vous com-
munication. Various related settings have been proposed and studied since then, which
mainly di�er by the way the processes communicate. Among those, let us mention broadcast
communication [15, 10], token-passing [8, 2], message passing [6], shared register with ring
topologies [1], or shared memory [16]. In his nice survey on such parameterized models [14],
Esparza shows that minor changes in the setting, such as the presence of a controller in the
system, might drastically change the complexity of the verification problems. The relative
expressiveness of some of those models has been studied recently in [3], yielding several
reductions of the verification problems for some of those classes of models.

Asynchronous shared-memory systems. We consider a communication model where the
processes asynchronously access a shared register, and where read and write operations on this
register are performed non-atomically. A similar model has been proposed by Hague in [18],
where the behavior of processes is defined by a pushdown automaton. The complexity of some
reachability and liveness problems for shared-memory models have then been established
in [16] and [11], respectively. These works consider networks in which a specific process, called
the leader, runs a di�erent program, and address the problem whether, for some number
of processes, the leader can satisfy a given reachability or liveness property. In the case
where there is no leader, and where processes are finite-state, the parameterized control-state
reachability problem (asking whether one of the processes can reach a given control state) can
be solved in polynomial time, by adapting the approach of [9] for lossy broadcast protocols.

Fairness and cut-o� properties. In this work, we further insert fairness assumptions in the
model of parameterized networks with asynchronous shared memory, and consider reachability
problems in this setting. There are di�erent ways to include fairness in parameterized models.
One approach is to enforce fairness expressed as a temporal-logic properties on the executions
(e.g., any action that is available infinitely often must be performed infinitely often); this is
the option chosen for parameterized networks with rendez-vous [17] and for systems with
disjunctive guards (where processes can query the states of other processes) in [4]. We follow
another choice, by equipping our networks with a stochastic scheduler that, at each step of the
execution, assigns the same probability to the available actions of all the processes. From a
high-level perspective, both forms of fairness are similar. However, expressing fairness via
temporal logic allows for very regular patterns (e.g., round-robin execution of the processes),
whereas the stochastic approach leads to consider all possible interleavings with probability 1.
Under this stochastic scheduler assumption, we focus on almost-sure reachability of a given
control state by any of the processes of the system. More specifically, as in [4], we are
interested in determining the existence of a cut-o�, i.e., an integer k such that networks
with more than k processes almost-surely reach the target state. Deciding the existence
and computing such cut-o�s is important for at least two aspects: first, it ensures that the
system is correct for arbitrarily large networks; second, if we are able to derive a bound on
the cut-o�, then using classical verification techniques we can find the exact value of the
cut-o� and exactly characterize the sizes of the networks for which the behavior is correct.

Our contributions. We prove that for finite-state asynchronous shared-memory protocols
with a stochastic scheduler, and for almost-sure reachability of some control state by some
process of the network, there always exists a positive or negative cut-o�; positive cut-o�s are
those above which the target state is reached with probability 1, while negative cut-o�s are
those above which the target state is reached with probability strictly less than 1. Notice

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan 23:3

that both cut-o�s are not complement of one another, so that our result is not trivial.
We then prove that the “sign” (positive or negative) of a cut-o� can be decided in

EXPSPACE, and that this problem is PSPACE-hard. Finally, we provide lower and upper
bounds on the values of the cut-o�s, exhibiting in particular protocols with exponential
(negative) cut-o�. Notice how these results contrast with classical results in related areas: in
the absence of fairness, reachability can be decided in polynomial time, and in most settings,
when cut-o�s exist, they generally have polynomial size [4, 13, 12].

2 Presentation of the model and of the considered problem

2.1 Preliminaries.
Let S be a finite set. A multiset over S is a mapping µ : S æ N. The cardinality of a
multiset µ is |µ| =

q
sœS µ(s). The support µ of µ is the subset ‹ ™ S s.t. for all s œ S,

it holds s œ ‹ if, and only if, µ(s) > 0. For k œ N, we write NS
k for the set of multisets of

cardinality k over S, and NS for the set of all multisets over S. For any s œ S and k œ N,
we write sk for the multiset where sk(s) = k and sk(sÕ) = 0 for all sÕ ”= s. We may write s

instead of s1 when no ambiguity may arise. A multiset µ is included in a multiset µÕ, written
µ ı µÕ, if µ(s) Æ µÕ(s) for all s œ SÕ. Given two multisets µ and µÕ, their union µ ü µÕ is
still a multiset s.t. (µ ü µÕ)(s) = µ(s) + µÕ(s) for all s œ S. Assuming µ ı µÕ, the di�erence
µÕ ° µ is still a multiset s.t. (µÕ ° µ)(s) = µÕ(s) ≠ µ(s).

A quasi-order ÈA, ∞Í is a well quasi-order (wqo for short) if for every infinite sequence
of elements a1, a2, . . . in A, there exist two indices i < j such that ai ∞ aj . For instance,
for n > 0, ÈNn, ÆÍ (with lexicographic order) is a wqo. Given a set A with an ordering ∞
and a subset B ™ A, the set B is said to be upward closed in A if for all a1 œ B and
a2 œ A, in case a1 ∞ a2, then a2 œ B. The upward-closure of a set B (for the ordering ∞),
denoted by ø∞(B) (or sometimes ø(B) when the ordering is clear from the context), is the
set {a œ A | ÷b œ B s.t. b ∞ a}. If ÈA, ∞Í is a wqo and B is an upward closed set in A, there
exists a finite set of minimal elements {b1, . . . , bk} such that B = ø{b1, . . . , bk}.

2.2 Register protocols and associated distributed system.
We focus on systems that are defined as the (asynchronous) product of several copies of the
same protocol. Each copy communicates with the others through a single register that can
store values from a finite alphabet.

I Definition 1. A register protocol is given by P = ÈQ, D, q0, T Í
Q is a finite set of control locations;
D is a finite alphabet of data for the shared register;
q0 œ Q is an initial location;
T ™ Q ◊ {R, W} ◊ D ◊ Q is the set of transitions of the protocol. Here R means read
the content of the shared register, while W means write in the register.

In order to avoid deadlocks, it is required that each location has at least one outgoing
transition. We also require that whenever some R-transition (q, R, d, qÕ) appears in T , then
for all d œ D, there exists at least one qd œ Q such that (q, R, d, qd) œ T . The size of the
protocol P is given by |Q| + |T |.

I Example 1.a. Figure 1 displays a small register protocol with four locations, over an
alphabet of data D = {0, 1, 2}. In this figure (and in the sequel), omitted R-transitions
(e.g., transitions R(1) and R(2) from q0) are assumed to be self-loops. When the register

CVIT 2016

23:4 Reachability in Networks of Register Protocols under Stochastic Schedulers

contains 0, this protocol may move from initial location q0 to location q1. From there it can
write 1 in the register, and then move to q2. From q2, as long as the register contains 1, the
process can either stay in q2 (with the omitted self-loop R(1)), or write 2 in the register and
jump back to q1. It is easily seen that if this process executes alone, it cannot reach state qf .

We now present the semantics of distributed systems associated with our register protocols.
We consider the asynchronous composition of several copies of the protocol (the number
of copies is not fixed a priori and can be seen as a parameter). We are interested in the
behavior of such a composition under a fair scheduler. Such distributed systems involve two
sources of non-determinism: first, register protocols may be non-deterministic; second, in
any configuration, all protocols have at least one available transition, and non-determinism
arises from the asynchronous semantics. In the semantics associated with a register protocol,
non-determinism will be solved by a randomized scheduler, whose role is to select at each
step which process will perform a transition, and which transition it will perform among the
available ones. Because we will consider qualitative objectives (almost-sure reachability),
the exact probability distributions will not really matter, and we will pick the uniform one
(arbitrary choice). Note that we assume non-atomic read/write operations on the register, as
in [18, 16, 11]. More precisely, when one process performs a transition, then all the processes
that are in the same state are allowed to also perform the same transition just after, in fact
write are always possible, and if a process performs a read of a specific value, since this read
does not alter the value of the register, all processes in the same state can perform the same
read (until one process performs a write). We will see later that dropping this hypothesis
has a consequence on our results. We now give the formal definition of such a system.

The configurations of the distributed system built on register protocol P = ÈQ, D,

q0, T Í belong to the set � = NQ ◊ D. The first component of a configuration is a multiset
characterizing the number of processes in each state of Q, whereas the second component
provides the content of the register. For a configuration “ = Èµ, dÍ, we denote by st(“) the
multiset µ in NQ and by data(“) the data d in D. We overload the operators defined over
multisets; in particular, for a multiset ” over Q, we write “ ü ” for the configuration Èµ ü ”, dÍ.
Similarly, we write “ for the support of st(“).

A configuration “Õ = ÈµÕ, dÕÍ is a successor of a configuration “ = Èµ, dÍ if, and only if,
there is a transition (q, op, dÕÕ, qÕ) œ T such that µ(q) > 0, µÕ = µ ° q ü qÕ and either op = R

and d = dÕ = dÕÕ, or op = W and dÕ = dÕÕ. In that case, we write “ æ “Õ. Note that since
µ(q) > 0 and µÕ = µ ° q ü qÕ, we have necessarily |µ| = |µÕ|. In our system, we assume
that there is no creation or deletion of processes during an execution, hence the size of
configurations (i.e., |st(“)|) remains constant along transitions. We write �k for the set of
configurations of size k. For any configuration “ œ �k, we denote by Post(“) ™ �k the set of
successors of “, and point out that such a set is finite and non-empty.

Now, the distributed system SP associated with a register protocol P is a discrete-time
Markov chain È�, PrÍ where Pr : � ◊ � æ [0, 1] is the transition probability matrix defined
as follows: for all “ and “Õ œ �, we have Pr(“, “Õ) = 1

|Post(“)| if “ æ “Õ, and Pr(“, “Õ) = 0
otherwise. Note that Pr is well defined: by the restriction imposed on the transition

q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Figure 1 Example of a register protocol with D = {0, 1, 2}.

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan 23:5

relation T of the protocol, we have 0 < |Post(“)| < Œ for all configuration “, and hence we
also get �“Õœ�Pr(“, “Õ) = 1. For a fixed integer k, we define the distributed system of size k

associated with P as the finite-state discrete-time Markov chain Sk
P = È�k, PrkÍ, where Prk

is the restriction of Pr to �k ◊ �k.
We are interested in analyzing the behavior of the distributed system for a large number of

participants. More precisely, we are interested in determining whether almost-sure reachability
of a specific control state holds when the number of processes involved is large. We are
therefore seeking a cut-o� property, which we formalize in the following.

A finite path in the system SP is a finite sequence of configurations “0 æ “1 . . . æ “k.
In such a case, we say that the path starts in “0 and ends in “k. We furthermore write
“ æú “Õ if, and only if, there exists a path that starts in “ and ends in “Õ. Given a location qf ,
we denote by J⌃qf K the set of paths of the form “0 æ “1 . . . æ “k for which there is i œ [0; k]
such that st(“i)(qf) > 0. Given a configuration “, we denote by P(“, J⌃qf K) the probability
that some paths starting in “ belong to J⌃qf K in SP . This probability is well-defined since
the set of such paths is measurable (see e.g., [5]). Given a register protocol P = ÈQ, D,

q0, T Í, an initial register value d0, and a target location qf œ Q, we say that qf is almost-surely
reachable for k processes if P(Èqk

0 , d0Í, J⌃qf K) = 1.

I Example 1.b. Consider again the protocol depicted in Fig. 1, with initial register content 0.
As we explained already, for k = 1, the final state is not reachable at all, for any scheduler
(here as k = 1, the scheduler only has to solve non-determinism in the protocol).

When k = 2, one easily sees that the final state is reachable: it su�ces that both processes
go to q2 together, from where one process may write value 2 in the register, which the
other process can read and go to qf . Notice that this does not ensure that qf is reachable
almost-surely for this k (and actually, it is not; see Example 1.c).

We aim here at finding cut-o�s for almost-sure reachability, i.e., we seek the existence of
a threshold such that almost-sure reachability (or its negation) holds for all larger values.

I Definition 2. Fix a protocol P = ÈQ, D, q0, T Í, d0 œ D, and qf œ Q. An integer k œ N is a
cut-o� for almost-sure reachability (shortly a cut-o�) for P , d0 and qf if one of the following
two properties holds:

for all h Ø k, we have P(Èqh
0 , d0Í, J⌃qf K) = 1. In this case k is a positive cut-o�;

for all h Ø k, we have P(Èqh
0 , d0Í, J⌃qf K) < 1. Then k is a negative cut-o�.

An integer k is a tight cut-o� if it is a cut-o� and k ≠ 1 is not.

Notice that from the definition, cut-o�s need not exist for a given distributed system.
Our main result precisely states that cut-o�s do always exist, and that we can decide their
nature.

I Theorem 3. For any protocol P, any initial register value d0 and any target location qf ,
there always exists a cut-o� for almost-sure reachability, whose value is at most doubly-
exponential in the size of P. Whether it is a positive or a negative cut-o� can be decided in
EXPSPACE, and is PSPACE-hard.

I Remark. When dropping the condition on non-atomic read/write operations , and allowing
transitions with atomic read/write operations (i.e. one process is ensured to perform a read
and a write operation without to be interrupted by another process), the existence of a
cut-o� (Theorem 3) is not ensured. This is demonstrated with the protocol of Fig. 2 : one
easily checks (e.g., inductively on the number of processes, since processes that end up in q2
play no role anymore) that state qf is reached with probability 1 if, and only if, the number
of processes is odd.

CVIT 2016

23:6 Reachability in Networks of Register Protocols under Stochastic Schedulers

q0

q1

q2

qf

R(0)
W (1)

R(1)
W (0)

R(1);W (2)

R(2);W (0)

R(0)

Figure 2 Example of a register protocol with atomic read/write operations.

s0 s1 s2 . . . sn≠1 snW (0)

R(0)

W (1)

R(1)

W (2)

R(2) R(n≠2) R(n≠1)

W (n≠1)

Figure 3 A “filter” protocol Fn for n > 0.

3 Properties of register protocols

3.1 Example of a register protocol
We illustrate our model with a family of register protocols (Fn)n>0, depicted in Fig. 3. For a
fixed n, protocol Fn has n + 1 states and n di�erent data; intuitively, in order to move
from si to si+1, two processes are needed: one writes i in the register and goes back to s0,
and the second process can proceed to si+1 by reading i. Since backward transitions to s0 are
always possible and since states can always exit s0 by writing a 0 and reading it afterwards,
no deadlock can ever occur so the main question remains to determine if sn is reachable by
one of the processes as we increase the number of initial processes. As shown in Lemma 4,
the answer is positive: Fn has a tight linear positive cut-o�; it actually behaves like a “filter”,
that can test if at least n processes are running together. We exploit this property later in
Section 4.4.

I Lemma 4. Fix n œ N. The “filter” protocol Fn, depicted in Fig. 3, with initial register
value 0 and target location sn, has a tight positive cut-o� equal to n.

3.2 Basic results
In this section, we consider a register protocol P = ÈQ, D, q0, T Í, its associated distributed
system SP = È�, PrÍ, an initial register value d0 œ D and a target state qf œ Q. We define a
partial order ∞ over the set � of configurations as follows: Èµ, dÍ ∞ ÈµÕ, dÕÍ if, and only if,
d = dÕ and µ = µÕ and µ ı µÕ. Note that with respect to the classical order over multisets,
we require here that the supports of µ and µÕ be the same (we add in fact a finite information
to hold for the comparison). We know from Dickson’s lemma that ÈNQ, ıÍ is a wqo and since
Q, D and the supports of multisets in NQ are finite, we can deduce the following lemma.

I Lemma 5. È�, ∞Í is a wqo.

We will give some properties of register protocols, but first we introduce some further
notations. Given a set of configuration � ™ �, we define Preú(�) and Postú(�) as follows:

Preú(�) = {“ œ � | ÷“Õ œ �.“ æú “Õ} Postú(�) = {“Õ œ � | ÷“ œ �.“ æú “Õ}

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan 23:7

We also define the set Jqf K of configurations we aim to reach as {“ œ � | st(“)(qf) > 0}.
It holds that “ œ Preú(Jqf K) if, and only if, there exists a path in J⌃qf K starting in “.

As already mentioned, when Èµ, dÍ æ ÈµÕ, dÕÍ in SP , then |µ| = |µÕ|, i.e., the multisets µ

and µÕ have the same cardinality. This implies that given k > 0, the set Postú({Èqk
0 , d0Í}) is

finite (remember that Q and D are finite). As a consequence, for a fixed k, checking whether
P(Èqk

0 , d0Í, J⌃qf K) = 1 can be easily achieved by analyzing the finite-state discrete-time
Markov chain Sk

P [5].

I Lemma 6. Let k > 0. We have P(Èqk
0 , d0Í, J⌃qf K) = 1 if, and only if, Postú({Èqk

0 , d0Í}) ™
Preú(Jqf K).

The di�culty here precisely lies in finding such a k and in proving that, once we
have found one correct value for k, all larger values are correct as well (to get the cut-o�
property). Characteristics of register protocols provide us with some tools to solve this
problem. We base our analysis on reasoning on the set of configurations reachable from
initial configurations in ø{Èq0, d0Í} (the upward closure of {Èq0, d0Í} w.r.t. ∞), remember
that since the order È�, ∞Í requires equality of support for elements to be comparable, we
have that ø{Èq0, d0Í} =

t
kœN\{0}{Èqk

0 , d0Í}. We begin by showing that this set of reachable
configurations and the set of configurations from which Jqf K is reachable are both upward-
closed. Thanks to Lemma 5, they can be represented as upward closures of finite sets.
To show that Postú(ø{Èq0, d0Í}) is upward-closed, we prove that register protocols enjoy the
following monotonicity property. A similar property is given in [11] and derives from the
non-atomicity of operations.

I Lemma 7. Let “1, “2, and “Õ
2 be configurations in �. If “1 æú “2 and “2 ∞ “Õ

2, then there
exists “Õ

1 œ � such that “Õ
1 æú “Õ

2 and “1 ∞ “Õ
1.

We point out that Preú(Jqf K) is clearly upward-closed, since if Jqf K can be reached from
some configuration “, it can also be reached by a larger configuration by keeping the extra
copies idle. As a corollary:

I Lemma 8. Postú(ø{Èq0, d0Í}) and Preú(Jqf K) are upward-closed sets in È�, ∞Í.

3.3 Existence of a cut-o�
From Lemma 8, and from the fact that È�, ∞Í is a wqo, there must exist two finite sequences
of configurations (◊i)1ÆiÆn and (÷i)1ÆiÆm such that Postú(ø{Èq0, d0Í}) = ø{◊1, . . . , ◊n} and
Preú(Jqf K) = ø{÷1, . . . , ÷m}. By analyzing these two sequences, we now prove that any
register protocol has a cut-o� (for any initial register value and any target location).

We let �, �Õ ™ � be two upward-closed sets (for ∞). We say that � is included in �Õ

modulo single-state incrementation whenever for every “ œ �, for every q œ “, there is some
k œ N such that “ ü qk œ �Õ. Note that this condition can be checked using only comparisons
between minimal elements of � and �Õ. In particular, we have the following lemma.

I Lemma 9. Postú(ø{Èq0, d0Í}) is included in Preú(Jqf K) modulo single-state incrementation
if, and only if, for all i œ [1; n], and for all q œ ◊i, there exists j œ [1; m] such that
data(◊i) = data(÷j) and ◊i = ÷j and st(÷j)(qÕ) Æ st(◊i)(qÕ) for all qÕ œ Q \ {q}.

Using the previous characterization of inclusion modulo single-state incrementation for
Postú(ø{Èq0, d0Í}) and Preú(Jqf K) together with the result of Lemma 6, we are able to provide
a first characterization of the existence of a negative cut-o�.

CVIT 2016

23:8 Reachability in Networks of Register Protocols under Stochastic Schedulers

I Lemma 10. If Postú(ø{Èq0, d0Í}) is not included in Preú(Jqf K) modulo single-state incre-
mentation, then max1ÆiÆn(|st(◊i)|) is a negative cut-o�.

We now prove that if the condition of Lemma 10 fails to hold, then there is a positive
cut-o�.In order to make our claim precise, for every i œ [1; n] and for any q œ ◊i, we let
di,q = max{(|st(÷j)(q) ≠ st(◊i)(q)|) | 1 Æ j Æ m and ◊i = ÷j}.

I Lemma 11. If Postú(ø{Èq0, d0Í}) is included in Preú(Jqf K) modulo single-state increment-
ation, then max1ÆiÆn(|st(◊i)| +

q
qœ◊i

di,q) is a positive cut-o�.

The last two lemmas entail our first result:

I Theorem 12. Any register protocol admits a cut-o� (for any given initial register value
and target state).

4 Detecting negative cut-o�s

We develop an algorithm for deciding whether a distributed system associated with a register
protocol has a negative cut-o�. Thanks to Theorem 12, this can also be used to detect
the existence of a positive cut-o�. Our algorithm relies on the construction and study of
a symbolic graph, as we define below: for any given protocol P, the symbolic graph has
bounded size, but can be used to reason about arbitrarily large distributed systems built
from P. It will store su�cient information to decide the existence of a negative cut-o�.

4.1 k-bounded symbolic graph
In this section, we consider a register protocol P = ÈQ, D, q0, T Í, its associated distributed
system SP = È�, PrÍ, an initial register value d0 œ D, and a target location qf œ Q of P.
With P , we associate a finite-state graph, called symbolic graph of index k, which for k large
enough contains enough information to decide the existence of a negative cut-o�.

I Definition 13. Let k be an integer. The symbolic graph of index k associated with P and
d0 is the transition system G = ÈV, v0, EÍ where

V = NQ
k ◊ 2Q ◊ D contains triples made of a multiset of states of Q of size k, a subset

of Q, and the content of the register; the multiset (called concrete part hereafter) is used
to exactly keep track of a fixed set of k processes, while the subset of Q (the abstract
part) encodes the support of the arbitrarily many remaining processes;
v0 = Èqk

0 , {q0}, {d0}Í;
transitions are of two types, depending whether they involve a process in the concrete part
or a process in the abstract part. Formally, there is a transition Èµ, S, dÍ æ ÈµÕ, SÕ, dÕÍ
whenever there is a transition (q, O, dÕÕ, qÕ) œ T such that d = dÕ = dÕÕ if O = R and
dÕ = dÕÕ if O = W , and one of the following two conditions holds:

either SÕ = S and q ı µ (that is, µ(q) > 0) and µÕ = µ ° q ü qÕ;
or µ = µÕ and q œ S and SÕ œ {S \ {q} fi {qÕ}, S fi {qÕ}}.

The symbolic graph of index k can be used as an abstraction of distributed systems made
of at least k + 1 copies of P: it keeps full information of the states of k processes, and only
gives the support of the states of the other processes. In particular, the symbolic graph of
index 0 provides only the states appearing in each configuration of the system.

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan 23:9

I Example 1.c. Consider the protocol depicted in Fig. 1. Its symbolic graph of index 0 is
depicted in Fig. 4 (where self-loops have been omitted). Notice that the final state (representing
all configurations containing qf) is reachable from any state of this symbolic graph. However,
our original protocol P of Fig. 1 does not have a positive cut-o� (assuming initial register
value 0): indeed, with positive probability, a single process will go to q1 and immediately
writes 1 in the register, thus preventing any other process to leave q0; then one may check
that the process in q1 alone cannot reach qf , so that the probability of reaching qf from qk

0 is
strictly less than 1, for any k > 0. This livelock is not taken into account in the symbolic
graph of index 0, because from any configuration with support {q0, q1} and register data equal
to 1, the symbolic graph has a transition to the configuration with support {q0, q1, q2}, which
only exists in the concrete system when there are at least two processes in q1. As we prove in
the following, analyzing the symbolic graph for a su�ciently large index guarantees to detect
such a situation.

{q0}, 0
{q1}, 1

{q1}, 0

{q1}, 2{q2}, 1

{q0, q1}, 0

{q0, q1}, 1

{q0, q1}, 2{q0, q2}, 1

{q0, q1, q2}, 1 {q0, q1, q2}, 2

{q1, q2}, 1 {q1, q2}, 2

all sets
containing

qf

Figure 4 Symbolic graph (of index 0) of the protocol of Fig. 1 (self-loops omitted).

For any index k, the symbolic graph achieves the following correspondence:

I Lemma 14. Given two states Èµ, S, dÍ and ÈµÕ, SÕ, dÕÍ, there is a transition from Èµ, S, dÍ
to ÈµÕ, SÕ, dÕÍ in the symbolic graph G of index k if, and only if, there exist multisets ” and ”Õ

with respective supports S and SÕ, and such that Èµ ü ”, dÍ æ ÈµÕ ü ”Õ, dÕÍ in SP .

4.2 Deciding the existence of a negative cut-o�
We now explain how the symbolic graph can be used to decide the existence of a negative
cut-o�. As said in Lemma 8, the set Preú(Jqf K) is upward-closed in È�, ∞Í and there is a finite
set of configurations {÷i = Èµi, diÍ | 1 Æ i Æ m} such that Preú(Jqf K) = ø{÷i | 1 Æ i Æ m}.
We let K = max{st(÷i)(q) | q œ Q, 1 Æ i Æ m}. We show in this part that for our purpose,
it is enough to consider the symbolic graph of index K · |Q| and in the next section, we
provide a bound on K.

I Lemma 15. There is a negative cut-o� for P, d0 and qf if, and only if, there is a node in
the symbolic graph of index K · |Q| that is reachable from ÈqK·|Q|

0 , {q0}, d0Í but from which
no configuration involving qf is reachable.

Proof. We begin with the converse implication, assuming that there is a state Èµ, S, dÍ in the
symbolic graph of index K · |Q| that is reachable from (qK·|Q|

0 , {q0}, d0) and from which no
configuration in Jqf K is reachable. Applying Lemma 14, there exist multisets ”0 = qN

0 and ”,
with respective supports {q0} and S, such that Èµ ü ”, dÍ is reachable from ÈqK·|Q|

0 ü ”0, d0Í.
If location qf was reachable from Èµ ü ”, dÍ in the distributed system, then there would exist

CVIT 2016

23:10 Reachability in Networks of Register Protocols under Stochastic Schedulers

a path from Èµ, S, dÍ to a state involving qf in the symbolic graph, which contradicts our
hypothesis. By Lemma 7, it follows that such a configuration Èµ ü ”Õ, dÍ — which cannot
reach qf — can be reached from ÈqK·|Q|

0 ü qN Õ

0 , d0Í for any N Õ Ø N : hence it cannot be the
case that qf is reachable almost-surely for any N Õ Ø N . Therefore there cannot be a positive
cut-o�, which implies that there is a negative one (from Theorem 12).

Conversely, assume that there is a negative cut-o�: then for some N > K · |Q|, the dis-
tributed system SN

P with N processes has probability less than 1 of reaching Jqf K from qN
0 .

This system being finite, there must exist a reachable configuration Èµ, dÍ from which qf

is not reachable [5]. Hence Èµ, dÍ /œ Preú(Jqf K), entailing that for all i Æ m, there is a
location qi such that µ(qi) < µi(qi) Æ K. Then there must exist a reachable state ÈŸ, S, dÍ
of the symbolic graph of index K · |Q| for which Ÿ(qi) = µ(qi) and qi /œ S, for all 1 Æ i Æ m:
it indeed su�ces to follow the path from ÈqN

0 , d0Í to Èµ, dÍ while keeping track of the processes
that end up in some qi in the concrete part; this is possible because the concrete part has
size at least K · |Q|.

It remains to be proved that no state involving qf is reachable from ÈŸ, S, dÍ in the symbolic
graph. If it were the case, then by Lemma 14, there would exist ” with support S such that
Jqf K is reachable from ÈŸ ü ”, dÍ in the distributed system. Then ÈŸ ü ”, dÍ œ Preú(Jqf K),
so that for some 1 Æ i Æ m, (Ÿ ü ”)(qi) Ø µi(qi), which is not possible as Ÿ(qi) < µi(qi) and
qi is not in the support S of ”. This contradiction concludes the proof. J

I Remark. Besides the existence of a negative cut-o�, this proof also provides us with an
upper bound on the tight cut-o�, as we shall see in Section 5.

4.3 Complexity of the algorithm
We now consider the complexity of the algorithm that can be deduced from Lemma 15.
Using results by Racko� on the coverability problem in Vector Addition Systems [19],
we can bound K – and consequently the size of the needed symbolic graph – by a double-
exponential in the size of the protocol. Therefore, it su�ces to solve a reachability problem
in NLOGSPACE [20] on this doubly-exponential graph: this boils down to NEXPSPACE with
regard to the protocol’s size, hence EXPSPACE by Savitch’s theorem [20].

I Theorem 16. Deciding the existence of a negative cut-o� is in EXPSPACE.

4.4 PSPACE-hardness for deciding cut-o�s
Our proof is based on the encoding of a linear-bounded Turing machine [20]: we build a
register protocol for which there is a negative cut-o� if, and only if, the machine reaches its
final state qhalt with the tape head reading the last cell of the tape.

I Theorem 17. Deciding the existence of a negative cut-o� is PSPACE-hard.

Write n for the size of the tape of the Turing machine. We assume (without loss of
generality) that the machine is deterministic, and that it accepts only if it ends in its halting
state qhalt while reading the last cell of the tape. Our reduction works as follows: some
processes of our network will first be assigned an index i in [1; n] indicating the cell of the
tape they shall encode during the simulation. The other processes are stuck in the initial
location, and will play no role. The state q and position j of the head of the Turing machine
are stored in the register. During the simulation phase, when a process is scheduled to play,
it checks in the register whether the tape head is on the cell it encodes, and in that case it
performs the transition of the Turing machine. If the tape head is not on the cell it encodes,

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan 23:11

the process moves to the target location (which we consider as the target for the almost-sure
reachability problem). Finally, upon seeing (qhalt, n) in the register, all processes move to
a (n + 1)-filter protocol Fn+1 (similar to that of Fig. 3) whose last location sn+1 is the
aforementioned target location.

If the Turing machine halts, then the corresponding run can be mimicked with exactly one
process per cell, thus giving rise to a finite run of the distributed system where n processes
end up in the (n + 1)-filter (and the other processes are stuck in the initial location); from
there sn+1 cannot be reached. If the Turing machine does not halt, then assume that there is
an infinite run of the distributed system never reaching the target location. This run cannot
get stuck in the simulation phase forever, because it would end up in a strongly connected
component from which the target location is reachable. Thus this run eventually reaches
the (n + 1)-filter, which requires that at least n + 1 processes participate in the simulation
(because with n processes it would simulate the exact run of the machine, and would not
reach qhalt, while with fewer processes the tape head could not go over cells that are not
handled by a process). Thus at least n + 1 processes would end up in the (n + 1)-filter, and
with probability 1 the target location should be reached.

5 Bounds on cut-o�s

5.1 Existence of exponential tight negative cut-o�s
We exhibit a family of register protocols that admits negative cut-o� exponential in the
size of the protocol. The construction reuses ideas from the PSPACE-hardness proof. Our
register protocol has two parts: one part simulates a counter over n bits, and requires a token
(a special value in the register) to perform each step of the simulation. The second part is
used to generate the tokens (i.e., writing 1 in the register). Figure 5 depicts our construction.
We claim that this protocol, with # as initial register value and qf as target location, admits
a negative tight cut-o� larger than 2n: in other terms, there exists N > 2n such that the
final state will be reached with probability strictly less than 1 in the distributed system made
of at least N processes (starting with # in the register), while the distributed system with
2n processes will reach the final state almost-surely. In order to justify this claim, we explain
now the intuition behind this protocol.

We first focus on the first part of the protocol, containing nodes named ai, bi, ci, di

and si. This part can be divided into three phases: the initialization phase lasts as long as
the register contains #; the counting phase starts when the register first contains halt; the
simulation phase is the intermediate phase.

During the initialization phase, processes move to locations ai and tok, until some process
in tokwrites 1 in the register (or until some process reaches qf , using a transition from ai

to qf while reading #).
Write “0 for the configuration reached when entering the simulation phase (i.e., when 1

is written in the register for the first time). We assume that st(“0)(ai) > 0 for some i, as
otherwise all the processes are in tok, and they all will eventually reach qf . Now, we notice
that if st(“0)(ai) = 0 for some i, then location dn cannot be reached, so that no process
can reach the counting phase. In that case, some process (and actually all of them) will
eventually reach qf . We now consider the case where st(“0)(ai) Ø 1 for all i. One can prove
(inductively) that di is reachable when st(“0)(tok) Ø 2i. Hence dn, and thus also s0, can
be reached when st(“0)(tok) Ø 2n. Assuming qf is not reached, the counting phase must
never contain more than n processes, hence we actually have that st(“0)(ai) = 1. With this
new condition, s0 is reached if, and only if, st(“0)(tok) Ø 2n. When the latter condition

CVIT 2016

23:12 Reachability in Networks of Register Protocols under Stochastic Schedulers

init tok

sent

sink

W (1)

R(halt)

a1

b1

c1

d1

R(1)

W (0)

R(1)

W (2)

a2

b2

c2

d2

R(2)

W (0)

R(2)

W (3)

an

bn

cn

dn

R(n)

W (0)

R(n)

R(#)

s0 s1 s2 sn qfW (f0)

R(f0)

W (f1)

R(f1)

W (f2)

R(f2) R(fn≠1) R(fn)

R(m),m”=halt

R(i)
i ”=1

R(#)

R(i)
i ”=2

R(i)
i ”=n

R(i)
i ”=1

R(i)
i ”=2

R(i)
i ”=n

R(halt)
R(fi),iœ[0,n]

W (halt)

Figure 5 Simulating an exponential counter: grey boxes contain the nodes used to encode the

bits of the counter; yellow nodes at the bottom correspond to the filter module from Fig. 3; purple

nodes tok, sentand sinkcorrespond to the second part of the protocol, and are used to produce

tokens. Missing read edges are assumed to be self-loops.

is not true, qf will be reached almost-surely, which proves the second part of our claim:
the final location is reached almost-surely in systems with strictly less than n + 2n copies of
the protocol.

We now consider the case of systems with at least n + 2n processes. We exhibit a finite
execution of those systems from which no continuation can reach qf , thus proving that qf is
reached with probability strictly less than 1 in those systems. The execution is as follows:
during initialization, for each i, one process enters ai; all other processes move to tok, and
one of them write 1 in the register. The n processes in the simulation phase then simulate
the consecutive incrementations of the counter, consuming one token at each step, until
reaching dn. At that time, all the processes in tokmove to sent, and the process in dn

writes halt in the register and enters s0. The processes in the simulation phase can then
enter s0, and those in sent can move to sink. We now have n processes in s0, and the other
ones in sink. According to Lemma 4, location qf cannot be reached from this configuration,
which concludes our proof.

I Theorem 18. There exists a family of register protocols which, equipped with an initial
register value and a target location, admit negative tight cut-o�s whose size are exponential
in the size of the protocol.

I Remark. The question whether there exists protocols with exponential positive cut-o�s
remains open. The family of filter protocols described at Section 3.1 is an example of
protocols with a linear positive cut-o�.

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan 23:13

5.2 Upper bounds on tight cut-o�s
The results (and proofs) of Section 4 can be used to derive upper bounds on tight cut-o�s.
We make this explicit in the following theorem.

I Theorem 19. For a protocol P = ÈQ, D, q0, T Í equipped with an initial register value d0 œ D

and a target location qf œ Q, the tight cut-o� is at most doubly-exponential in |P|.

6 Conclusions and future works

We have shown that in networks of identical finite-state automata communicating (non-
atomically) through a single register and equipped with a fair stochastic scheduler, there
always exists a cut-o� on the number of processes which either witnesses almost-sure
reachability of a specific control-state (positive cut-o�) or its negation (negative cut-o�).
This cut-o� determinacy essentially relies on the monotonicity induced by our model, which
allows to use well-quasi order techniques. By analyzing a well-chosen symbolic graph, one can
decide in EXPSPACE whether that cut-o� is positive, or negative, and we proved this decision
problem to be PSPACE-hard. This approach allows us to deduce some doubly-exponential
bounds on the value of the cut-o�s. Finally, we gave an example of a network in which
there is a negative cut-o�, which is exponential in the size of the underlying protocol. Note
however that no such lower-bound is known yet for positive cut-o�s.

We have several further directions of research. First, it would be nice to fill the gap
between the PSPACE lower bound and the EXPSPACE upper bound for deciding the nature
of the cut-o�. We would like also to investigate further atomic read/write operations, which
generate non-monotonic transition systems, but for which we would like to decide whether
there is a cut-o� or not. Finally, we believe that our techniques could be extended to more
general classes of properties, for instance, universal reachability (all processes should enter a
distinguished state), or liveness properties.

References
1 C. Aiswarya, Benedikt Bollig, and Paul Gastin. An automata-theoretic approach to the

verification of distributed algorithms. In Luca Aceto and David de Frutos-Escrig, editors,
Proceedings of the 26th International Conference on Concurrency Theory (CONCUR’15),
volume 42 of Leibniz International Proceedings in Informatics, pages 340–353. Leibniz-
Zentrum für Informatik, September 2015. doi:{10.4230/LIPIcs.CONCUR.2015.340}.

2 Benjamin Aminof, Swen Jacobs, Ayrat Khalimov, and Sasha Rubin. Parametrized model
checking of token-passing systems. In Kenneth L. McMillan and Xavier Rival, editors, Pro-
ceedings of the 15th International Workshop on Verification, Model Checking, and Abstract
Interpretation (VMCAI’14), volume 8318 of Lecture Notes in Computer Science, pages
262–281. Springer-Verlag, January 2014. doi:{10.1007/978-3-642-54013-4_15}.

3 Benjamin Aminof, Sasha Rubin, and Florian Zuleger. On the expressive power of communic-
ation primitives in parameterised systems. In Martin Davis, Ansgar Fehnker, Annabelle K.
McIver, and Andrei Voronkov, editors, Proceedings of the 20th International Conference
Logic Programming and Automated Reasoning (LPAR’15), volume 9450 of Lecture Notes
in Computer Science, pages 313–328. Springer-Verlag, November 2015.

4 Simon Außerlechner, Swen Jacobs, and Ayrat Khalimov. Tight cuto�s for guarded protocols
with fairness. In Barbara Jobstmann and K. Rustan M. Leino, editors, Proceedings of the
17th International Workshop on Verification, Model Checking, and Abstract Interpretation
(VMCAI’16), volume 9583 of Lecture Notes in Computer Science, pages 476–494. Springer-
Verlag, January 2016. doi:{10.1007/978-3-662-49122-5_23}.

CVIT 2016

23:14 Reachability in Networks of Register Protocols under Stochastic Schedulers

5 Christel Baier and Joost-Pieter Katoen. Principles of Model-Checking. MIT Press, May
2008.

6 Benedikt Bollig, Paul Gastin, and Len Schubert. Parameterized verification of commu-
nicating automata under context bounds. In Joël Ouaknine, Igor Potapov, and James
Worrell, editors, Proceedings of the 8th Workshop on Reachability Problems in Computa-
tional Models (RP’14), volume 8762 of Lecture Notes in Computer Science, pages 45–57.
Springer-Verlag, September 2014. doi:{10.1007/978-3-319-11439-2_4}.

7 Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan.
Reachability in networks of register protocols under stochastic schedulers. CoRR,
abs/1602.05928, 2016. URL: http://arxiv.org/abs/1602.05928.

8 Edmund M. Clarke, Muralidhar Talupur, Tayssir Touili, and Helmut Veith. Verification
by network decomposition. In Philippa Gardner and Nobuko Yoshida, editors, Proceedings
of the 15th International Conference on Concurrency Theory (CONCUR’04), volume 3170
of Lecture Notes in Computer Science, pages 276–291. Springer-Verlag, August-September
2004. doi:{10.1007/978-3-540-28644-8_18}.

9 Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, and Gianluigi Zavattaro. On the
complexity of parameterized reachability in reconfigurable broadcast networks. In Deepak
D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, Proceedings of the
32nd Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’12), volume 18 of Leibniz International Proceedings in Informatics, pages 289–
300. Leibniz-Zentrum für Informatik, December 2012. doi:LIPIcs.FSTTCS.2012.289.

10 Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized verification
of ad hoc networks. In Paul Gastin and François Laroussinie, editors, Proceedings of
the 21st International Conference on Concurrency Theory (CONCUR’10), volume 6269
of Lecture Notes in Computer Science, pages 313–327. Springer-Verlag, September 2010.
doi:{10.1007/978-3-642-15375-4_22}.

11 Antoine Durand-Gasselin, Javier Esparza, Pierre Ganty, and Rupak Majumdar. Model
checking parameterized asynchronous shared-memory systems. In Daniel Kroening and
Corina S. Pasareanu, editors, Proceedings of the 27th International Conference on Computer
Aided Verification (CAV’15), volume 9206 of Lecture Notes in Computer Science, pages 67–
84. Springer-Verlag, July 2015. doi:{10.1007/978-3-319-21690-4_5}.

12 E. Allen Emerson and Vineet Kahlon. Reducing model checking of the many to the few. In
David McAllester, editor, Proceedings of the 17th International Conference on Automated
Deduction (CADE’00), volume 1831 of Lecture Notes in Artificial Intelligence, pages 236–
254. Springer-Verlag, June 2000. doi:{10.1007/10721959_19}.

13 E. Allen Emerson and Kedar Namjoshi. On reasoning about rings. International
Journal of Foundations of Computer Science, 14(4):527–550, August 2003. doi:{10.1142/
S0129054103001881}.

14 Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verification
(invited talk). In Ernst W. Mayr and Natacha Portier, editors, Proceedings of the 31st
Symposium on Theoretical Aspects of Computer Science (STACS’14), volume 25 of Leib-
niz International Proceedings in Informatics, pages 1–10. Leibniz-Zentrum für Informatik,
March 2014. doi:{10.4230/LIPIcs.STACS.2014.1}.

15 Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast protocols.
In Proceedings of the 14th Annual Symposium on Logic in Computer Science (LICS’99),
pages 352–359. IEEE Comp. Soc. Press, July 1999. doi:{10.1109/LICS.1999.782630}.

16 Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of asyn-
chronous shared-memory systems. In Natasha Sharygina and Helmut Veith, editors, Pro-
ceedings of the 25th International Conference on Computer Aided Verification (CAV’13),

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel Stan 23:15

volume 8044 of Lecture Notes in Computer Science, pages 124–140. Springer-Verlag, July
2013. doi:{10.1007/978-3-642-39799-8_8}.

17 Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes.
Journal of the ACM, 39(3):675–735, July 1992.

18 Matthew Hague. Parameterised pushdown systems with non-atomic writes. In Supratik
Chakraborty and Amit Kumar, editors, Proceedings of the 31st Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS’11), volume 13
of Leibniz International Proceedings in Informatics, pages 457–468. Leibniz-Zentrum für
Informatik, December 2011. doi:{10.4230/LIPIcs.FSTTCS.2011.457}.

19 Charles Racko�. The covering and boundedness problems for vector addition systems.
Theoretical Computer Science, 6:223–231, 1978. doi:{10.1016/0304-3975(78)90036-1}.

20 Michael Sipser. Introduction to the theory of computation. PWS Publishing Company,
1997.

CVIT 2016

Regular transformations of data words through
origin information ?

Antoine Durand-Gasselin1?? and Peter Habermehl2

1 Aix Marseille Université, CNRS & Centrale Marseille
Antoine.Durand-Gasselin@centrale-marseille.fr

2 IRIF, Univ. Paris Diderot & CNRS
Peter.Habermehl@liafa.univ-paris-diderot.fr

Abstract. We introduce a class of transformations of finite data words
generalizing the well-known class of regular finite string transformations
described by MSO-definable transductions of finite strings. These trans-
formations map input words to output words whereas our transforma-
tions handle data words where each position has a letter from a finite al-
phabet and a data value. Each data value appearing in the output has as
origin a data value in the input. As is the case for regular transformations
we show that our class of transformations has equivalent characteriza-
tions in terms of deterministic two-way and streaming string transducers.

1 Introduction

The theory of transformations of strings (or words) over a finite alphabet has
attracted a lot of interest recently. Courcelle [8] defined finite string transforma-
tions in a logical way using Monadic second-order definable graph transductions.
Then, a breakthrough was achieved in [9] where it was shown that these transfor-
mations are equivalent to those definable by deterministic two-way finite trans-
ducers on finite words. In [1] deterministic streaming string transducers (SST)
on finite words were introduced. This model is one-way but it is equipped with
string variables allowing to store words. It is equivalent [1] to the deterministic
two-way finite transducers and to MSO-definable transformations. Interestingly,
the motivation behind SST was the more powerful SDST model [2]. SDST work
on data words, i.e. words composed of couples of letters from a finite alphabet
and an infinite data domain. However, they do not have the same nice theoretical
properties as SST, for example they are not closed under composition because
SDST have data variables allowing to store data values and compare data values
with each other. Furthermore, there is no equivalent logical characterization.

In this paper, analogously to the case of string transformations of finite words,
we obtain a class of transformations of finite data words which has an MSO
characterization as well as equivalent characterizations in terms of deterministic

? This work was supported in part by the VECOLIB project (ANR-14-CE28-0018)
and by the PACS project (ANR-14-CE28-0002).

?? Part of this work was done while this author was at Technical University Munich.

2 A. Durand-Gasselin and P. Habermehl

two-way transducers and streaming transducers. To achieve this, we allow storing
of data values in the transducers but not comparison.

As an example we consider the transformation taking a finite input word over
{#, a, b} starting and finishing with a #, together with associated data values
from the integers, like

�#ab#abb#
124 5 671 4

�
and produces as output the word where (1)

#’s are left unchanged, and between successive #’s (2) words w in {a, b}⇤ are
transformed into wR

w where wR denotes the reverse image of w, and (3) the data
value associated to each a is the value of the first # and the value for b’s is the
value of the second #. So, the output for the example word is

�#baab#bbaabb#
15115 5 445544 4

�
.

It is clear how a deterministic two-way transducer with the ability of storing
data values can realize this transformation: it stores the first data value (1) in
a data variable while outputting

�#
1

�
, then goes to the second #, stores the

corresponding data value (5) in a second data variable, and goes back one by
one while producing

�
ba

51

�
. Then, it turns around at the first #, goes again to the

second # producing
�
ab

15

�
and restarts the same process.

Now, to realize this transformation with a deterministic streaming string
transducer one has to make with the fact that they can only go through the
input word once from left to right. Nevertheless we will introduce a model which
can realize the described transformation: in between two #0

s it stores the so-far
read string and its reverse in a data word variable. As the data value of the
second #0 is not known in the beginning it uses a data parameter p instead. For
example, before the second #, the stored word will be

�
baab

p11p

�
. When reading the

second #, it then replaces p everywhere by 5 and stores the result in another
data word variable. The same repeats for the rest of the word until the end is
reached and the output contained in a data word variable.

The same transformation can also be described logically. To define trans-
formations on data words, a natural choice would be to use transducers with
origin information and their corresponding MSO transductions studied in [6].
Basically, their semantics also takes into account information about the origin
of a letter in the output, i.e. the position in the input from which it originates.
Obviously, this can be generalized to data values by defining the data value of
each output position as the data value in the input position from where the out-
put originated. This definition is however not expressive enough to handle our
example, since an input position can only be the origin of a bounded number of
output positions but the data values attached to (unboundedly many) a’s and
b’s between two successive #’s come from the same two input positions.

Therefore, in this paper, we first introduce a logical characterization of word
transformations with generalized origin information. Our logical characterization
is an extension of classical MSO transductions with an additional functional
MSO defined relation that maps each element of the interpretation (symbols
of the output word) to an element of the interpreted structure (symbols of the
input word). This generalization naturally defines transformations of data words;
the data value at a given position of the output is the data value carried at
the corresponding position in the input. This su�ces to define the previously
described example transformation.

Regular transformations of data words 3

Interestingly, our class of transformations is captured by a natural model of
deterministic two-way transducers extended with data variables whose values can
neither be tested nor compared. By adding data word variables (as in streaming
string transducers) containing data values and parameters, we then manage,
while preserving determinism, to restrict that model to a one-way model. Data
parameters are placeholders for data values which can be stored in data word
variables and later replaced by concrete data values. We show that this one-way
model can be captured by MSO to achieve the equivalence of all three models.

2 MSO interpretations with MSO origin relation

2.1 Words, strings and data words

For S a set of symbols, we denote by S

⇤ the set of finite words (i.e. the set of
finite sequences of elements of S) over S. Given a word w, we can refer to its
length (|w|), its first symbol (w[0]), the symbol at some position i < |w| in the
word (w[i]), some of its subwords (e.g. w[i:j] with 0  i  j < |w|, the subword
between positions i and j) etc. In this paper, we only consider finite words.

An alphabet (typically denoted ⌃ or �) is a finite set of symbols. Further-
more, we use a (potentially infinite) set of data values called �. In the sequel,
we use string to refer to a (finite) word over a finite alphabet and data word to
refer to a word over the cartesian product of a finite alphabet and a set of data
values. Since symbols of data words consist of a letter (from the finite alphabet)
and a data value, we can naturally refer to the data value at some position in a
data word, or the string corresponding to some data word. Conversely a string
together with a mapping from its position to � forms a data word.

A string w (over alphabet ⌃) is naturally seen as a directed node-labeled
graph (rather than considering edges only connecting two successive positions,
we take the transitive closure: thus the graph is a finite linear order). The graph
is then seen as an interpreted relational structure whose domain is the positions
of w, with a binary edge predicate <, and a monadic predicate for each letter of
⌃. We denote S

⌃

the signature consisting of <
/2 and �

/1 for each � 2 ⌃.
Any string over alphabet ⌃ is an interpretation over a finite domain of S

⌃

,
conversely any interpretation of S

⌃

is a string if (1) its domain is finite, (2) <

defines a linear order and (3) at every position exactly one monadic predicate
holds. We remark that (2) and (3) can be expressed as monadic second order
(MSO) sentences. Two interpretations are isomorphic i↵ they are the same string.

With this logic based approach we have a very simple classical characteriza-
tion of regular languages: a language L over alphabet ⌃ is regular i↵ there exists
an MSO sentence ' (over signature S

⌃

) such that the set of interpretations of
S
⌃

with finite domain satisfying ' is the set of strings in L.

2.2 MSO interpretations

Using this model theoretic characterization of strings, we can define a class of
transformations of strings. For the sake of clarity we consider transformations

4 A. Durand-Gasselin and P. Habermehl

of strings over alphabet ⌃ to strings over alphabet � . We now define an MSO
interpretation of S

�

in S
⌃

, as |� |+2 MSO formulas over signature S
⌃

: '
<

with
two free first-order variables and '

dom

and ('
�

)
�2�

with one free first-order
variable. Any interpretation I

⌃

(of the signature S
⌃

) defines an interpretation
of the structure S

�

: its domain is the set of elements of the domain of I
⌃

satisfying '
dom

in I
⌃

, and the interpretation of the predicates over that domain
is given by the truth value of each of the other MSO formulas.

An important remark is that if the interpretation I
⌃

has finite domain, then
so will the constructed interpretation of S

�

. Also, since we can express in MSO
(over the signature S

�

) that the output structure is a string (with (2) and (3)),
we can also express in MSO over the signature S

⌃

that the output structure is a
string, hence we can decide whether for any input string our MSO interpretation
produces a string.

Above, we presented the core idea of Courcelle’s definition [8] of MSO graph
transductions. Courcelle further introduces the idea of interpreting the output
structure in several copies of the input structures. To define such a transduction,
we need to fix a finite set C of copies, the domain of the output structure will
thus be a subset of the cartesian product of the domain of the input structure
with the set of copies. The transduction consists of |C|2 + (|� |+1)|C|+1 MSO
formulas over the input structure:

– the sentence '
indom

that states whether the input structure is in the input
domain of the transduction,

– formulas 'c

dom

(with one free first-order variable) for each c in C, each stating
whether a node x in copy c is a node of the output structure,

– formulas 'c

�

(also with one free first-order variable), for each c 2 C and each
↵ 2 � which states whether a node x in copy c is labelled by ↵,

– and formulas 'c,d

<

(with two free first-order variables, namely x, y) that states
whether there exists an edge from x in copy c to y in copy d.

The semantics of these transformations naturally provides a notion of origin:
by definition a node of the output structure is a position x in the copy c of the
input structure (such that 'c

dom

(x) is true).

2.3 Transduction of data words

Data words cannot be represented as finite structures (over a finite signature)
but they can be seen as strings together with a mapping of positions to data
values.

To define a data word transduction, we take a string transduction that we
extend with an MSO relation between positions in the input word and positions
in the output word. Formally we extend the definition of MSO transduction with
|C| MSO formulas (with two free first-order variables) 'c

orig

(x, y), which we call
the origin formulas, stating that position x in copy c (in the output string)
corresponds to position y in the input string. We further impose that for any
input word in the domain of the transformation and any x and c 2 C such that

Regular transformations of data words 5

x in copy c is in the output of the transformation, there exists exactly one y that
validates 'c(x, y). We remark that this restriction can be ensured in MSO (over
the input structure). Then, the data value at each output position is defined to
be the data value at the corresponding input position.

We call MSOT the class of string transformations defined as MSO inter-
pretations, and MSOT+O the class of data word transformation defined as
MSO interpretations together with origin formulas. We remark that this def-
inition of origin captures the usual origin information in the sense of [6] by
fixing 'c

orig

(x, y) ⌘ (x = y).

2.4 The running example

Two copies su�ce to define the transformation for the running example. For
clarity, we do not represent the ordering relation <, but rather the successor
relation.

input: # b a a b # b b a a b b #

copy 1: # b a a b # b b a a b b #

copy 2: b a a b b b a a b b

'

indom

states the input word starts and ends with a #. '1
dom

(x) is true (every
node in the first copy is part of the output), while '2

dom

(x) = ¬#(x) tests the
letter in the input at that position is not a #. The labeling formulas are the
identity ('1

a

(x) = a(x),...) —the behaviour of the formula outside the output
domain is considered irrelevant. '1,1

<

(x, y) = x < y, and '2,2
<

(x, y) checks if there
is a #-labeled position between position x and y (in the input): if so it ensures
that x < y, if not it ensures x > y. '1,2(x, y) and '1,2(x, y) also distinguish cases
whether there is a #-labeled position between x and y or not.

The origin information MSO formulas happen here to be the same for the
two copies 'i(x, y) making cases on the letter x: if it is an a (resp. a b) it ensures
y is the first #-labeled position before (resp. after) position x.

2.5 Properties

Defining word transformations through MSO interpretations yields some nice
properties:

Theorem 1. MSOT+O is closed under composition.

Proof. MSOT is naturally closed under composition: given 2 mso transduc-
tions T1 and T2, (using C1 and C2 copies) we can define T1 � T2 as the MSO-
interpretation T1 of the MSO-interpretation T2 of the original structure, which
is an MSO-interpretation over C1 ⇥ C2 copies.

In order to show the compositional closure of MSOT+O, it now su�ces to
define the origin information for the composition of two transductions T1 and T2

6 A. Durand-Gasselin and P. Habermehl

in MSOT+O. It is clear how to define formulas 'c

orig

that relate a position in
the output with a position in the input, from the origin formulas of T1 and T2.
We just need to show these origin formulas are functional; a fact that we easily
derive from the functionality of the origin formulas of T1 and T2.

The (MSO)-typechecking problem of a transformation is defined as follows:

Input: Two MSO sentences '
pre

,'

post

and an MSOT+O transformation T

Output: Does w |= '

pre

imply that T (w) |= '

post

?

It consists in checking whether some property on the input implies a property
on the output, those properties are here expressed in MSO.

Theorem 2. MSO-typechecking of MSOT+O is decidable.

Proof. An MSO formula can not reason about data values. Therefore it is suf-
ficient to show that MSO-typechecking of MSOT is decidable. Since the output
is defined as an MSO interpretation of the input, it is easy to convert an MSO
formula on the output into an MSO formula on the input. We just need to check
whether the input property implies that converted output property, on any input
word, which is checking the universality of an MSO formula over finite strings.

2.6 MSO k-types

Since we present a generalisation of the classical MSO string transductions, the
machine models that are expressively equivalent to our logical definition will be
extensions of the classical machine models.

To show later that these logical transformations are captured by finite state
machines, we use the notion of MSO k-types. We crucially use this notion (more
precisely Theorem 3) to prove in Section 3 that we only need a finite number of
data variables (Lemma 1) to store data values originating from the input.

Given a string w, we define its k-type as the set of MSO sentences of quantifier
depth at most k (i.e. the maximum nesting of quantifiers is at most k) that hold
for w. A crucial property is that the set of MSO k-types (which we denote
⇥

k

) is finite and defines an equivalence relation over strings which is a monöıd
congruence of finite index. We refer the reader to [11] for more details.

These k-indexed congruences satisfy the following property: two k-equivalent
strings will satisfy the same quantifier depth k MSO sentence.

We can extend this notion to MSO formulas with free first-order variables.

Theorem 3. Given two strings w1 and w2 each with two distinguished positions
x1, y1 and x2, y2. (w1, (x1, y1)) and (w2, (x2, y2)) satisfy the same MSO formulas
with quantifier depth at most k and two free first order variables if:

– w1[x1] = w2[x2] and w1[y1] = w2[y2]
– x1, y1 and x2, y2 occur in the same order in w1 and w2 (with the special case

that if x1 = y1, then x2 = y2).
– The k-types of the two (strict) prefixes are the same, and the k-types of the

two (strict) su�xes are the same, as well as the k-types of the two (strict)
subwords between the two positions.

Proof. Immediate with Ehrenfeucht-Fräıssé games.

Regular transformations of data words 7

3 Two-way transducers on data words

Two-way deterministic transducers on strings are known to be equivalent to MSO
string transductions [9]. Since we process data words and output data words, we
will naturally extend this model with a finite set of data variables. Notice that
the data values in the input word do not influence the finite string part of the
output. Therefore the transition function of the transducer may not perform any
test on the values of those data variables. However the output word will contain
some (if not all) data values of the input word, therefore the model may store
some data value appearing in the input word in some variable, and when an
output symbol is produced, this is done (deterministically) by combining some
letter of the output alphabet together with the data value contained in some
data variable.

We start by defining the classical two-way deterministic finite-state trans-
ducers (2dft) (with input alphabet ⌃ and output alphabet �) as a deterministic
two-way automaton whose transitions are labeled by strings over � . The image
of a string w by a 2dft A is defined (if w admits a run) as the concatenation of
all the labels of the transitions along that run.

Definition 1. A 2dft is a tuple (⌃,�, Q, q0, F, �) where:

– ⌃ and � are respectively the finite input and output alphabets (`,a /2 ⌃)

– Q is the finite set of states, q0 the initial state, and F the set of accepting
states

– � : Q ⇥ (⌃ [{`,a}) ! Q ⇥ {+1,�1} ⇥ �

⇤ is the (two-way, � ⇤-labeled)
transition function

A (finite) run of a 2dft A over some string w is a finite sequence ⇢ of pairs of
control states Q and positions in [�1, |w|] (where �1 is supposed to be labeled by
` and |w| by a), such that: ⇢(0) = (0, q0), ⇢(|⇢|�1) 2 N⇥F and at any position
k < |⇢|� 1 in the run, if we denote ⇢(k) = (i

k

, q

k

) and ⇢(k+ 1) = i

k+1, qk+1, we
have that �(q

k

, w(i
k

)) = (q
k+1, ik+1 � i

k

, u

k+1) for some u

k+1 2 � ⇤. Informally
+1 corresponds to moving to the right in the input string and �1 to moving to
the left. The output of A over w is simply the string u1u2 . . . u|⇢|�1. We denote
T (A) the (partial) transduction from ⌃

⇤ to � ⇤ defined by A.
Notice that not every input string admits a finite run (since the transducer

might get stuck or loop), but if w admits a finite run, it is unique and has length
at most |Q|(|w|+2), as this run visits any position at most |Q| times. Therefore a
run can also be defined as a mapping from positions of `wa to Q

|Q| (sequences
of states of length at most |Q|).

The next theorem states the equivalence between transformations defined by
this two-way machine model and the logical definition of string transformations.

Theorem 4. [9] Any string transformation from ⌃

⇤ to � ⇤ defined by a 2dft can
be defined as an MSO interpretation of � ⇤ in ⌃⇤ and vice versa.

8 A. Durand-Gasselin and P. Habermehl

Now we define our two-way machine model, two-way deterministic finite-state
transducer with data variables (2dftv) for data word transformations. We simply
extend the 2dft by adding some data variables whose values are deterministically
updated at each step of the machine.

Definition 2. A 2dftv is a tuple (⌃,�,�, Q, q0, F, V, µ, �) where:

– ⌃ and � are respectively the input and output alphabets (`,a /2 ⌃),
– � is the (infinite) data domain,
– Q is the finite set of states, q0 the initial state, and F the set of accepting

states,
– V a finite set of data variables with a designated variable curr 2 V ,
– µ : Q⇥⌃ ⇥ (V \ {curr})! V is the data variable update function,
– � : Q⇥ (⌃ [{`,a})! Q⇥ {+1,�1}⇥ (� ⇥ V)⇤ is the (two-way, (� ⇥ V)⇤-

labeled) transition function.

We can define the semantics of a 2dftv like the semantics of an 2dft by
extending the notion of run. Here, a run is labeled by positions and states but
also by a valuation of the variables, i.e. a partial function � which assigns to
variables from V values from �. This partial function is updated in each step
(while reading a symbol di↵erent from the endmarkers ` or a) according to µ and
additionally to the variable curr the current data value in the input is assigned.
The output is obtained by substituting the data variables appearing in the label
of the transition relation by their value according to � which we suppose to be
always defined (this can be checked easily). Then, naturally a 2dftv defines a
transduction from words over ⌃ ⇥� to words over � ⇥�.

We call 2DFTV the class of all data word transductions definable by a 2dftv.

Theorem 5. MSOT+O is included in 2DFTV.

The challenge to show the theorem is to be able to extend the MSOT to
2DFT proof from [9], so as to be able to also carry in data variables all the
necessary data values needed in the output.

We recall the key features in the proof of [9]. First, 2dft’s are explicitly
shown to be composable [7], which gives regular look-around (the ability to
test if the words to the left and to the right of the reading head are in some
regular languages) for free: a first pass rewrites the input right-to-left and adds
the regular look-ahead, and the second pass re-reverses that word while adding
the regular look-back. It is then possible (by reading that regular look-around)
to implement MSO-jumps. Given an MSO formula ' with 2 free variables, an
MSO-jump ' from position x consists in directly going to a position y such that
'(x, y) holds. Using MSO-jumps 2dft can then simulate MSO transformations.

We show thereafter how to extend such a 2dft that takes as input the (look-
around enriched) string and produces its image, to a 2dftv. The proof is then
in three steps: first we show that a finite number of data variables is needed,
then we briefly describe how to update those data variables: each transition of
the 2dft being possibly replaced by a “fetching” of exactly one data variable,

Regular transformations of data words 9

and finally it is easy to see how to compose the preprocessing 2dft with that
produced 2dftv.

To store only a finite number of data values, we will only store those which
originate from a position on one side of the currently processed position and
that are used on the other side of the currently processed position. The following
lemma ensures a bound on the number of data variables.

Lemma 1. Let w be a data word, x a position in w, and T a transducer. Denote
k the quantifier depth of origin formulas. There are at most |⌃||⇥

k

|2 positions
z > x such that there exists a position y < x in some copy c such that 'c

orig

(y, z)
holds, i.e. that the data value carried by y in copy c is that of z.

Proof. By contradiction, we use the pigeon hole principle. We can find two dis-
tinct positions z and z

0 such that the type of the subword between x and z and
x and z

0 is the same, and the type of the su�x from z is the same as the type
of the su�x from z

0.
Let y a position, left of x where the data value of z is used, thus 'c

orig

(y, z)
holds. We apply Theorem 3 to (w, (y, z)) and (w, (y, z0)) and therefore 'c

orig

(y, z0)
also holds, which contradicts the functionality of the relation '

orig

. ut

It seems appropriate to name our data variables using MSO types. The data
variables are thus ⌃ ⇥ ⇥

k

⇥ ⇥
k

⇥ {l, r}, (�, ⌧1, ⌧2, l) denoting the data variable
containing the data value from the position y (in the input word which is labeled
by �), left (l) of current positions, such that the prefix up to y has type ⌧1, and
the subword between y and current position has type ⌧2.

With an appropriate value of k0 (greater than k) the knowledge of the k

0-
types of the prefix and su�x of the word from the currently processed position,
informs us for each data variable whether it contains a value or not, whether it
is used at the current position and most importantly to which data variable the
value should be transfered when a transition to the right (or the left) is taken.

Notice that when the 2dft performs a transition to the right, four things can
happen (only 2 and 3 are mutually exclusive):

1. A data value from a previous position was used for the last time and should
be discarded

2. The current data value has been used earlier and will not be used later (and
should be discarded)

3. The current data value may be used later and was not used before (and thus
should be stored)

4. A data value from a next position is first used (and thus should be stored)

The challenging part is the case (4), as we would need to fetch the data value
which we suddenly need to track. The new value is easily fetched through an
MSO jump (to the right) which is a feature introduced by [9] allowing to jump
to a position in the input specified by an MSO formula. In turn this jump is
implemented (thanks to the look-around carried by the input word) as a one-
way automaton that goes to the right until it reaches the position where the data

10 A. Durand-Gasselin and P. Habermehl

value is, and a one-way automaton that goes (left) from that position back to the
original position. The challenge is to be able to return to the current position.
Thanks to our definition, we can also describe an MSO jump that allows the
return: if we had to fetch a new data value, it is because it was first used at
the position we want to jump back to. Such a position can easily be expressed
uniquely with an MSO formula from the position we fetched our data value. We
remark that we cannot fetch data values on a per-needed basis (an MSO jump
to the position where the data is, is possible, but going back with an MSO-jump
is not), which indicates we need data variables.

In the 2dft, any transition for which case (4) happens (this information is
contained in the look-around) is replaced by two automata that go fetch (and
back) that newly needed data value.

Finally we present how this conversion should work on our example. We
need to consider 1-types. ⇥1 is 2⌃ : each characterizing exactly which letters are
present in the word. This means hundreds of data variables, but at any point
for this transformation, no more than 2 data values will be stored. So long as
we read a’s we should not have fetched the data value of the following #-labeled
position. When a b is read, we fetch that data value and then we can return back
to our original position: it is the first position (after the last #) in the word that
contains a b.

4 One-way transducers

4.1 Streaming string transducers with data variables and
parameters

We first define sstvp, i.e. streaming string transducers with data variables and
data parameters. They have the features of streaming string transducers [1,2]
extended with data variables and data parameters. Notice that in contrast to the
streaming data-string transducers from [2] sstvp can not compare data values
with each other.

Intuitively, sstvp read deterministically data words and compute an output
data word. They are equipped with data variables which store data values, pa-
rameters which are placeholders for data values and data word variables contain-
ing data words which in addition to data values can also contain data parameters.
These data parameters can be replaced by data values subsequently.

Definition 3. A sstvp is a tuple (⌃,�,�, Q,X, V, P, q0, v0, �,⌦) where:

– ⌃ and � are respectively the input and output alphabets,
– � is the (infinite) data domain,
– Q is the finite set of states and q0 2 Q the initial state,
– X is the finite set of data word variables,
– V is the finite set of data variables with a designated variable curr 2 V ,
– P is the finite set of data parameters (P \� = ;),
– v0 : X ! (� ⇥P)⇤ is a function representing the initial valuation of the data

word variables.

Regular transformations of data words 11

– � is a (deterministic) transition function: �(q,�) = (q0, µ
V

, µ

X

, µ

P

) where:
• µ

V

: (V \ {curr})! V is the update function of data variables,
• µ

X

: X ! (X [(� ⇥ (V [P)))⇤, is the update function of data word
variables,

• µ

P

: P ⇥X ! P [V is the parameter assignment function (dependent
on the data word variable).

– ⌦ : Q! ((� ⇥ V) [X)⇤ is the partial output function.

The streaming string transducers of [1,2] were defined by restricting updates
to be copyless, i.e. each data word variable can appear only once in an update
µ

X

. Here, we relax this syntactic restriction along the lines of [5] by considering
only 1-bounded sstvp’s: informally, at any position the content of some data
word variable may only occur once in the output. This allows to duplicate the
value of some data word variable in two distinct data word variables, but the
value of these variables can not be later combined. It is clear that this condition
can be checked and a 1-bounded sstvp can be transformed into a syntactically
copyless sstvp one [5].

Now, we define the semantics of sstvp. A valuation of data variables �
V

for an
sstvp is a partial function assigning data values to data variables. A valuation
of data word variables �

X

is a function assigning words over � ⇥ (� [P) to
data word variables. Then, a configuration of an sstvp consists of a control state
and a valuation of data and word variables (�

V

,�

X

). The initial configuration
is (q0,�0

V

, v0), where �0
V

is the empty function. When processing a position i in
the input word in some state q, first curr is set to the data value at that position
in the input, then the data word variables are updated according to µ

X

, then
the data words contained in data word variables are substituted according to µ

P

and finally data variables are updated according to µ

V

.
Formally, if �(q, a) = (q0, µ

V

, µ

X

, µ

P

), then from (q,�
V

,�

X

) at position i

with a letter (a, d) one goes to (q0,�00
V

,�

000
X

) where:

– �

00
V

= �

0
V

· µ
V

, where �0
V

= �

V

[curr 7! d].
– �

0
X

= �

X

· µ
X

�

00
X

(x) = �

0
X

(x)[v �

0
V

(v)]
v2V

�

000
X

(x) = �

00
X

(x)


p

⇢
µ

P

(x, p) if µ
P

(x, p) 2 P

�

0
V

(µ
P

(x, p)) if µ
P

(x, p) 2 V

�

For each two data word variables x, x

0, we say that x at position i flows to
x

0 at position i+ 1 if x 2 µ

X

(x0). The notion of flow can be easily extended by
transitivity, the copylessness restriction forbids that the value of some data word
variable at some position i flows more than once to some data word variable at
position j > i. When reaching the end of the input word in a configuration (q,�),
a sstvp produces �(⌦(q)) if ⌦(q) is defined. Then, naturally a sstvp S defines a
transduction from words in ⌃ ⇥� to words in � ⇥�.

The sstvp for our running example is given in Figure 1. All data word vari-
ables are initialized with the empty word. By convention, a variable which is not
explicitly updated is unchanged. We omit these updates for readability.

Theorem 6. Equivalence of two sstvp is decidable.

12 A. Durand-Gasselin and P. Habermehl

q0 q1 q2

#

����
x :=

�
#

curr

�

v := curr

#

������

x := x · y ·
�

#
curr

�
[p curr]

y := ✏

v := curr

a

��
y :=

�
a
v

�
· y ·

�
a
v

�

b

���y :=
�
b
p

�
· y ·

�
b
p

� a

��
y :=

�
a
v

�
· y ·

�
a
v

�

b

���y :=
�
b
p

�
· y ·

�
b
p

�

⌦(q2) = x

Fig. 1. The sstvp for the running example

To prove this theorem we can generalize the proof of decidability of equiva-
lence of SST [2], a reduction to reachability in a non-deterministic one-counter
machine. Given two transducers we choose non-deterministically an input string,
and one conflicting position in each of the two images (of the transducers): either
they are labeled by di↵erent letters, or with attached data value originating from
two distinct positions in the input word. We keep track in the counter of the
di↵erence between the number of produced symbols which will be part of each
output before the corresponding conflicting position. Therefore, if the counter
reaches 0 at the last letter of the input, the two transducers are di↵erent.

We call SSTVP the class of all data word transductions definable by a sstvp.

4.2 From two-way to one-way transducers

Theorem 7. 2DFTV is included in SSTVP.

Proof. (Sketch) We use ideas of [1] (based itself on Shepherdson’s translation
from 2DFA to DFA [10]) where two-way transducers are translated into stream-
ing string transducers. As they translate two-way transducers to copyless stream-
ing string transducers they have to go through an intermediate model called
heap-based transducers. Since we relax the copylessness restriction to 1-bounded-
ness we can directly translate 2dftv to sstvp. Furthermore, we have to take care
of the contents of data variables of the 2dftv. For that purpose we use data
variables and data parameters of the sstvp.

Since an sstvp does only one left-to-right pass on the input word, we cannot
revisit any position. As we process a position we need to store all relevant in-
formation about that position possibly being later reprocessed by the two-way
transducer. The two-way transducer may process a position multiple times (each
time in a di↵erent state) each time with a di↵erent valuation of data variables and
producing some di↵erent word: for each state, we need to store in an appropriate
data word variable the corresponding production, the valuation of data variables
being abstracted with data parameters. Notice that not all these data word vari-
ables will be used in the output. Given a 2dftv A = (⌃,�,�, Q, q0, F, V, µ, �),
over which we assume all accepting runs end on the last symbol, we define an
sstvp B = (⌃,�,�, Q

0
, X, V

0
, P, q

0
0, v0, �

0
,⌦) as follows:

Regular transformations of data words 13

– Q

0 = Q⇥ [Q! (Q⇥ 2V)]
A state of the one-way transducer consists of a state of the two-way trans-
ducer and a partial mapping from states to a pair of a state and a set of
variables. As a position i+1 is processed, the state of B contains the follow-
ing information: in which state A first reaches position i and for each state q
of A what would be the state of A when it reaches for the first time position
i+ 1 had it started processing position i from state q: this part is the stan-
dard Shepherdson’s construction. The function is partial, as from position i

from some states A might never reach position i+ 1 (getting stuck).
We remark that along the subrun from position i (in state q) to position
i+1, the A might store some data values in some data variables. The set of
data variables denotes the set of data variables the two-way transducer has
updated along that run.

– X = x

l

[{x
q

| q 2 Q}
At position i, variable x

l

will store the word produced by A until it first
reaches position i. Variable x

q

will store the word produced from position i

in state q until position i+ 1 is first reached.
– V

0 = V [{v
q

| v 2 V, q 2 Q}
At position i + 1, data variable v will contain the value of variable v of A
as it first reaches position i + 1. Assume that B reaches position i in some
state (q, f) with f(q0) = (q00,W), and v 2W . Then variable v

q

0 will contain
the last value stored in v when A processes from position i in state q

0 until
it first reaches position i+ 1.

– P = {p
v,q

| v 2 V, q 2 Q}
At position i, parameter p

v,q

will be present only in data word variable x

q

,
representing that along the run of A the data value from data variable v at
position i in state q was output before i+1 was first reached. Such a symbol
needs to be present in x

q

, but the data value is not yet known, hence it is
abstracted by the data parameter p

v,q

.

It is then easy to see how to define q00 and �
0 so as to preserve these invariants.

As B can not see a, B must maintain the possible output in an extra variable,
where it is supposed that the next symbol would be a.

We now detail an example (see Fig. 2) so as to give an intuition how �

0(q,�)
is built: we will specifically focus on the value of x

q1 . We denote f the second
component of q and we assume that f(q2) = (q3, {v1, v2}), f(q4) = (q5, {v2, v3}).
Furthermore, we assume that in A, �(q1,�) = (q2,�1, (�, v2)) and �(q3,�) =
(q4,�1, (�0, v2)(�00, v3)) and finally that �(q5,�) = (q6,+1, (�000, v2)). Also read-
ing � in q1 and q3 assigns the current data value to v1 (i.e. µ(q1,�, v1) =
µ(q3,�, v1) = curr), other data variables are not modified (i.e. µ(q1,�, vi) =
µ(q3,�, vi) = v

i

).
By the aforementioned invariants, from state q1, A will first reach the follow-

ing position in state q6 (from the �-labeled position in state q1, it first goes left,
reaches it again in state q3, goes left again, arrives in state q5 and then moves
to the right in state q6).

14 A. Durand-Gasselin and P. Habermehl

q1

q2

q3

q4

q5

q6

xq2 ; v1, v2

xq4 ; v2, v3

v1 curr

(�, v2)

v1 curr

(�0
, v2)(�

00
, v3)

v1 curr

(�000
, v2)

xq1 := (�, p2,q1) xq2


p1,q2 curr

pi,q2 pi,q1

�

(�0
, v2,q2)(�

00
, p3,q1)

xq4

2

4
p1,q4 curr

p2,q4 v2,q2

pi,q4 pi,q1

3

5 (�000
, v2,q4)

v1,q1 curr, v2,q1 v2,q4 , v3,q1 v3,q4

Fig. 2. An example to illustrate the transformation from A to B.

If we abstract the data values, the content of the data word variable x

q1

will thus be (�, ?)x
q2(�

0
, ?)(�00, ?)x

q4(�
000
, ?). Now we detail data attached to the

produced letters, and the parameter assignments in the data word variables:
� will be given the data parameter p2,q1 .
In x

q2 : since a data value is assigned to v1 between q1 and q2, p1,q1 should
be substituted by that data value (which is curr) in x

q2 . Other parameters in
x

q2 (which are all of the form p

i,q2) are substituted by the corresponding p

i,q1 .
�

0 will be given the data value v2,q2 and (because v3 has not been assigned a
data value since q1) �00 will be assigned the data parameter p3,q1 .

In x

q4 : as a data value was assigned to v2 between q2 to q3, parameter p2,q4
will be substituted by that value i.e. v2,q2 ; parameter p1,q4 will be substituted
by curr and all other parameters (which are of the form p

i,q4) will be assigned
the corresponding data parameters p

i,q1 .
�

000 should be assigned data value v2,q4 .
Therefore by reading a � in B, we reach a state whose second component

maps q1 to (q6, {v1, v2, v3}), v1,q1 curr, v2,q1 v2,q4 , v3,q1 v3,q4 .

4.3 From one-way transducers to MSO

In order to conclude that the three models of data word transformations are
equivalent, it remains to show that our MSO transductions with MSO origin
information capture all transformations defined by the one-way model.

Theorem 8. SSTVP is included in MSOT+O.

The proof is very similar to that of encoding finite state automata in MSO.
Usually to show that MSO captures string transformations defined by a one-way
model one defines an output graph with � -labeled edges and ✏-edges. We directly
give a proof that builds a (string) graph whose nodes are � -labeled.

Given an sstvp S we fix the set of copies C as the set of occurrences of
symbols of � in the variable update function.

Since S is deterministic, we will write an MSO sentence ' that characterizes
a run of a word in S. This formula will be of the form 9X1, . . . Xn

 , such that
given a word w (in the domain of the transformation), there exists a unique
assignment of the X

i

such that holds. These second order variables consist of:

Regular transformations of data words 15

– X

q

for q 2 Q: position i 2 X

q

i↵ processing position i yielded state q.
– X

r

for every word variable r: position i 2 X

r

i↵ the content of variable r

will flow in the output
– X

r1,r2 for every pair of distinct word variables r1, r2: position i 2 X

r1,r2 i↵
the content of variable r1 will flow in the output before the content of the
variable r2 that will also flow in the output.

Our sequential machine model allows easily to write such a formula . With the
formula , we can write formulas '

indom

, ('c

dom

)
c2C

, ('c

�

)
c2C

, and ('c,d

<

)
c,d2C

.
We remark that second order variables X

r1,r2 have a unique valid assignment
because of the (semantic) copylessness of sstvp. These variables are typically
used to define 'c,d

<

.
To hint how to build formula 'c

orig

(x, y) we state the following simple lemma
about runs of sstvps.

Lemma 2. Given an sstvp S, an input word w and position x that produces a
symbol � 2 � that will be part of the output.

– Either � is produced with a data variable (namely v):

In this case, there exists a unique position y  x where the data value curr

was stored in some data variable and that data variable flows to data variable
v at position x.

– or � is produced with a data parameter (namely p):

In this case, there exists a unique position z such that the data parameter
attached to � is some p

m

at position z and that p

m

is assigned a variable
v

m

(or curr) at position z. There exists a unique position y  q such that
at position y the data value curr was put in some data variable, which flows
to a data variable v

m

at position z.

The notion of “flow” is easily expressed with and second order existential
quantification. The copyless semantics of sstvps ensures that to each (output)
symbols, exactly one data value (or equivalently a unique position from the
input word) is assigned to. This allows to build MSO formulas 'c

orig

that have
the desired functional property.

5 Conclusion

Finite string transformation have been generalized to infinite string transforma-
tions [5] and tree transformations [3,4]. It would be interesting to extend our
results to these settings by adding data values and defining transformations via
origin information. Furthermore, it would be interesting to study the pre-post
condition checking problem along the lines of [2], i.e. the problem to check that
given a transducer is it the case that each input satisfying a pre-condition defined
via some automata-model is transformed into an output satisfying a similarly
defined post-condition.

16 A. Durand-Gasselin and P. Habermehl

References

1. Alur, R., Černý, P.: Expressiveness of streaming string transducers. In: FSTTCS.
vol. 8, pp. 1–12 (2010)

2. Alur, R., Černý, P.: Streaming transducers for algorithmic verification of single-
pass list-processing programs. In: POPL. pp. 599–610 (2011)

3. Alur, R., D’Antoni, L.: Streaming tree transducers. In: Automata, Languages,
and Programming - 39th International Colloquium, ICALP. vol. 7392, pp. 42–53.
Springer (2012)

4. Alur, R., Durand-Gasselin, A., Trivedi, A.: From monadic second-order definable
string transformations to transducers. In: 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS. pp. 458–467. IEEE Computer Society (2013)

5. Alur, R., Filiot, E., Trivedi, A.: Regular transformations of infinite strings. In:
Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science,
LICS. pp. 65–74. IEEE Computer Society (2012)

6. Bojanczyk, M.: Transducers with origin information. In: Automata, Languages,
and Programming - 41st International Colloquium, ICALP Proceedings, Part II.
vol. 8573, pp. 26–37. Springer (2014)

7. Chytil, M., Jákl, V.: Serial composition of 2-way finite-state transducers and simple
programs on strings. In: Proceedings of the Fourth Colloquium on Automata, Lan-
guages and Programming. pp. 135–147. Springer-Verlag, London, UK, UK (1977)

8. Courcelle, B.: Monadic second-order definable graph transductions: A survey.
Theor. Comput. Sci. 126(1), 53–75 (1994)

9. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Logic 2, 216–254 (2001)

10. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (Apr 1959)

11. Thomas, W.: Ehrenfeucht games, the composition method, and the monadic theory
of ordinal words. In: In Structures in Logic and Computer Science: A Selection of
Essays in Honor of A. Ehrenfeucht, Lecture. pp. 118–143. Springer-Verlag (1997)

Discrete Parameters in Petri Nets

⇤

Nicolas David

1, Claude Jard1, Didier Lime2, and Olivier H. Roux2

1 University of Nantes, LINA
nicolas.david1@univ-nantes.fr

claude.jard@univ-nantes.fr

2 École Centrale de Nantes, IRCCyN
didier.lime@ec-nantes.fr

olivier-h.roux@irccyn.ec-nantes.fr

Abstract. With the aim of significantly increasing the modeling capa-
bility of Petri nets, we suggest that models involve parameters to repre-
sent the weights of arcs, or the number of tokens in places. We consider
the property of coverability of markings. Two general questions arise:
“Is there a parameter value for which the property is satisfied?” and
“Does the property hold for all possible values of the parameters?”. We
show that these issues are undecidable in the general case. Therefore, we
also define subclasses of parameterised networks, depending on whether
the parameters are used on places, input or output arcs of transitions.
For some subclasses, we prove that certain problems become decidable,
making these subclasses more usable in practice.

Keywords: Petri net, Parameters, Coverability

1 Introduction

The introduction of parameters in models aims to improve genericity. It also
allows the designer to leave unspecified aspects, such as those related to the
modeling of the environment. This increase in modeling power usually results in
greater complexity in the analysis and verification of the model. Beyond verifi-
cation of properties, the existence of parameters opens the way to very relevant
issues in design, such as the computation of the parameters values ensuring
satisfaction of the expected properties.

We chose to explore the subject on concurrent models whose archetype is that
of Petri nets. We consider discrete parameterisation of markings (the number of
tokens in the places of the net) or weight of arcs connecting the input or output
places to transitions. We call these Petri nets parameterised nets or PPNs.

We consider the general properties of coverability and, to a lesser extent,
reachability (that are often the basis for the verification of more specific prop-
erties).

First issues are:

⇤Work partially supported by ANR project PACS (ANR-14-CE28-0002) and Pays
de la Loire research project AFSEC.

2 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

– Is there a value of the parameters such that the property is satisfied?
– Is the property satisfied for all possible values of the parameters?

Given the modeling power o↵ered by PPNs, we first study the decidability
of these issues. Since in the general case, they are undecidable, we then examine
decidable subclasses.

Related work There is not much work on Petri nets with parameters. One exam-
ple is regular model checking [3] for algorithmic verification of several classes of
infinite-state systems whose configurations can be modeled as words over a finite
alphabet. The main idea is to use regular languages as the representation of sets
of configurations, and finite-state transducers to describe transition relations.
This is only possible for particular examples including parameterised systems
consisting of an arbitrary number of homogeneous finite-state processes con-
nected in a regular topology, and systems that operate on linear data structures.
Parameters are also introduced in models such as predicate Petri nets [8], in the
aim to have more concise models, in particular to take into account symmetries in
the model [4]. Domains of values are generally finite. Parameterised verification
on timed systems has also been studied in several papers since its introduction
by Alur et al. in [1]. Parameterisation of time uses continuous parameters. In
this paper, we focus on discrete parameters on untimed Petri nets.

The remainder of the paper is structured as follows: Section 2 re-visites the
semantics of Petri Nets and gives the basic definitions related to the formalism
of Parametric Petri Nets. Section 3 presents the undecidability results. Section 4
introduces subclasses of our parameterised models. Section 5 answers decidability
results over those subclasses and underlines issues encountered with reachability.
Section 6 concludes and points to future work.

2 Definitions

Notations

N is the set of natural numbers. N⇤ is the set of positive natural numbers and
N

!

is the classic union N [{!} where for each n 2 N, n + ! = !, ! � n = !,
n < ! and !  !. Z is the set of integers. Let X be a finite set. 2X denotes
the powerset of X and |X| the size of X. Let V ✓ N, a V-valuation for X is
a function from X to V . We therefore denote V

Xthe set of V-valuations on X.
Given an alphabet ⌃, we denote as ⌃

✏

the union ⌃ [{✏} where ✏ is the silent
action. Given a set X, let k 2 Z and x 2 X, we define a linear expression on X

by the following grammar: � ::= k | k ⇤ x | �+ �. Given a linear expression � on
X and a N-valuation ⌫ for X, ⌫(�) is the integer obtained when replacing each
element x in X from �, by the corresponding value ⌫(x).

2.1 Petri Nets and Marked Petri Nets

Definition 1 (Petri Net) A Petri Net is a 4-tuple N = (P, T, Pre, Post)
where P is a finite set of places, T is a finite set of transitions, Pre and

Discrete Parameters in Petri Nets 3

Post 2 N|P |⇥|T |
are the backward and forward incidence matrices, such that

Pre(p, t) = n with n > 0 when there is an arc from place p to transition t with

weight n and Post(p, t) = n with n > 0 when there is an arc from transition t

to place p with weight n.

Given a Petri Net N = (P, T, Pre, Post), we denote Pre(•, t) (also written
•
t) as the vector (Pre(p1, t), P re(p2, t), ..., P re(p|P |, t)) i.e. the t

th column of the
matrix Pre. The same notation is used for Post(•, t) (or t•).

Definition 2 (Marking) A marking of a Petri Net N = (P, T, Pre, Post) is a
vector m 2 N|P |

.

If m 2 N|P | is a marking, m(p
i

) is the number of tokens in place p

i

. We can
define a partial order over markings.

Definition 3 (Partial Order) Let N be a Petri Net such that N = (P, T, Pre,

Post), let m and m

0
be two markings of N . We define  as a binary relation

such that  is a subset of N|P | ⇥ N|P |
defined by:

m  m

0 , 8p 2 P,m(p)  m

0(p) (1)

Definition 4 (Marked Petri Net) A marked Petri Net (PN) is a couple S =
(N ,m0) where N is a Petri Net and m0 is a marking of N called the initial

marking of the system.

An example of marked Petri Net is given in Figure 1.

p1

p2

p3

t2

2

t1

3

•(.) =

t1 t22

4
1 1
0 2
0 0

3

5
p1

p2

p3

(.)• =

t1 t22

4
0 0
3 0
0 1

3

5
p1

p2

p3

m0 =

0

@
2
0
0

1

A

Fig. 1. A Marked Petri Net

2.2 Operational Semantics

Augmenting Petri Nets with markings leads to the notion of enabled-transitions
and firing of transitions. Given a marked Petri Net S, a transition t 2 T is said
enabled by a marking m when m � Pre(•, t).

4 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

Definition 5 (PN Semantics) The semantics of PN is a transition system

ST = (Q, q0,!) where, Q = N|P |
, q0 = m0, !2 Q⇥ T ⇥Q such that,

m

ti! m

0 ,
⇢
m � •

t

i

m

0 = m� •
t

i

+ t

•
i

(2)

This relation holds for sequences of transitions:

– m

w! m

0 if w is the empty word and m = m

0

– m

wt! m

0 if 9m00
,m

w! m

00 ^m

00 t! m

0 where w 2 T

⇤ and t 2 T .

Definition 6 (Reachability set) Given a PN, S = (N ,m0), the reachability

set of S, RS(S) is the set of all reachable markings of S i.e. RS(S) = {m | 9w 2
T

⇤
,m0

w! m}

2.3 Parametric Petri Nets

We would like to use less rigid modeling in order to model systems where some
data are not known a priori. Therefore, in this subsection, we extend the previous
definitions by adding a set of parameters Par. Working with Petri nets and
discrete parameters leads to consider two main situations: the first one involves
parameters on markings, by replacing the number of tokens in some places by
parameters, the second one involves parameters as weights. The same parameter
can be used in both situations. Using parameters on markings can be easily
understood as modeling an unfixed amount of resources that one may want to
optimise. Let us consider a concrete example to illustrate parameterised weights.
In a production line, we consider two operations: first, to supply raw material,
we need to unpack some boxes containing an amount �1 of resources, as depicted
in Figure 2, and at the end, we need to pack end products in boxes of capacity
�2, as in Figure 3. This is part of a whole packaging process that one may want
to optimise. The level of abstraction induced by parameters permits to leave
those values unspecified in order to perform an early analysis.

p1 p2
t

�1

Fig. 2. Unpacking raw material

p1 p2
t

�2

Fig. 3. Packing end products

Definition 7 (Parametric Petri Net) A parametric Petri Net, NP is a 5-
tuple NP = (P, T, Pre, Post, Par) such that P is a finite set of places of NP,

T is a finite set of transitions of NP, Par is a finite set of parameters of NP,

Pre and Post 2 (N [Par)|P |⇥|T |

Discrete Parameters in Petri Nets 5

p1

p2

p3

t2

�2

�3
t1

�1

•(.) =

t1 t22

4
1 1
0 �2

0 0

3

5
p1

p2

p3

(.)• =

t1 t22

4
0 0
�1 0
0 �3

3

5
p1

p2

p3

Fig. 4. A Parametric Petri Net

Intuitively, a parametric Petri net is a Petri net where the number of tokens
involved in a transition is parameterised as depicted in Figure 4.

Definition 8 (Parametric marking) Given a parametric Petri Net NP =
(P, T, Pre, Post, Par), a parametric marking is a |P |-dimensional vector µ of

linear expressions on N [Par.

Modeling with parameters means using parameters over weights and mark-
ings rather than setting numeric values everywhere. Therefore we may also use
a parametric initial marking.

Definition 9 (parametric PN or PPN) A parametric marked Petri Net (PPN)

is a couple, SP = (NP , µ0) where NP is a Parametric Petri Net and µ0 is the

parametric initial marking of NP.

PPNs can be used to design systems where some parts have not been analysed
or where we need to keep flexibility. We now need to define a way to instantiate
classic Petri nets from our parametric marked Petri Nets, in order to define a
semantics.

Definition 10 (Parametric Semantics) Let SP = (P, T, Pre, Post, Par, µ0)
be a PPN, we consider the set of valuations NPar

. Let ⌫ 2 NPar

, we define ⌫(SP)
as the PN obtained from SP by replacing each parameter � 2 Par by ⌫(�), its
valuation by ⌫, i.e. ⌫(SP) = (P, T, Pre

0
, Post

0
,m0) where 8i 2 [[1, |P |]], 8j 2

[[1, |T |]],

Pre

0(i, j) =

⇢
Pre(i, j) if Pre(i, j) 2 N

⌫(Pre(i, j)) if Pre(i, j) 2 Par

(3)

Post

0(i, j) =

⇢
Post(i, j) if Post(i, j) 2 N

⌫(Post(i, j)) if Post(i, j) 2 Par

(4)

m0(i) =

⇢
µ0(i) if µ0(i) 2 N

⌫(µ0(i)) if µ0(i) is a linear expression on Par

(5)

A marked Petri Net is an instance of a parametric marked Petri net.

6 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

2.4 Parametric problems

We can define several interesting parametric problems on PPNs. In fact, the
behaviour of a PPN is described by the behaviours of all the PNs obtained by
considering all possible valuations of the parameters. It seems therefore obvious
to ask, in a first time, if there exists valuations for the parameters such that

a property holds for the corresponding instance and its dual, i.e., if every in-

stance of the parametric marked Petri Net satisfies the property. Given a class
of problem P (coverability, reachability,...), SP a PPN and � is an instance of
P, parameterised problems are written as follows:

Definition 11 (P-Existence problem) (E -P): Is there a valuation ⌫ 2 NPar

s.t. ⌫(SP) satisfies the property � ?

Definition 12 (P-Universality problem) (U -P): Does ⌫(SP) satisfies the

property � for each ⌫ 2 NPar

?

This paper focuses on reachability and coverability issues.

Definition 13 (Reachability) Let S = (N ,m0) = (P, T, Pre, Post,m0) and

m a marking of S, S reaches m i↵ m 2 RS(S).

Definition 14 (Coverability) Let S = (N ,m0) = (P, T, Pre, Post,m0) and

m a marking of S, S covers m if there exists a reachable marking m

0
of S such

that m

0
is greater or equal to m i.e.

9m0 2 RS(S)s.t. 8p 2 P,m

0(p) � m(p) (6)

We recall that reachability [9] and coverability [7] are decidable on classic
Petri nets. In the context of parametric Petri nets, coverability leads to two
main problems presented previously, that is to say: the existence problem, writ-
ten (E -cov) and the universal problem, written (U -cov). For instance, (U -cov)
asks: ”Does each valuation of the parameters implies that the valuation of the

parametric P/T net system covers m ?” i.e.

m is U -coverable in SP ,
⇢
8⌫ 2 NPar, 9m0 2 RS(⌫(SP))

s.t. m0 � m

(7)

We can similarly define E -reach and U -reach for parameterised reachability.

3 Undecidability Results for the General Case

In their paper suming-up results of decidability for reset-nets and corresponding
subclasses, Dufourd, Finkel and Schnoebelen noticed that ”Reachability is known

to become undecidable as soon as the power of Petri nets is increased” [5], for
instance, adding reset arcs [2] or inhibitor arcs [6] makes reachability undecid-
able. In this section, we focus on showing that adding parameters to PN leads to
undecidability. More specifically, (U -cov) and (E -cov) are undecidable on PPNs.

Discrete Parameters in Petri Nets 7

As we will proceed by reduction to the halting problem (and counter bound-
edness problem) for counter machines to answer our problem, we first recall some
definitions. A 2-Counters Machine has a pointer and a tape which contains finite
number of instructions in three types: increment, decrement and zero-test. The
pointer reads the tape to execute increment or decrement instructions sequen-
tially. When the pointer reaches a zero-test instruction, then it will jump to a
certain position on the tape and continue. Formally, it consists of two counters
c1, c2, a set of states P = {p0, ...pm}, a terminal state labelled halt and a finite
list of instructions l1, ..., ls among the following list:

– increment: increase c

k

by one and go to next state, where k 2 {1, 2}
– decrement: decrease c

k

by one and go to next state, where k 2 {1, 2}
– zero-test: if c

k

= 0 go to state p
j

else go to state p
l

, where p
j

, p

l

2 P [{halt}
and k 2 {1, 2}

We can assume without restriction that the counters are non negative integers
i.e. that the machine is well-formed in the sense that a decrement instruction

is guarded by a zero-test and that the counters are initialised to zero. It is
well known that the halting problem (whether state halt is reachable) and the
counters boundedness problem (whether the counters values stay in a finite set)
are both undecidable as proved by Minksy [10].

Theorem 1 (Undecidability of E -cov on PPN) The E -coverability problem

for PPN is undecidable

1
.

Proof. We proceed by reduction from a 2-counters machine. Given a Minksy
2-counters machine M, we construct a PPN that simulates it, SPM, as follows.

– Each counter c

i

is modeled by two places C

i

and ¬C
i

. The value of the
counter is encoded by the number of tokens in C

i

.
– For each state p of P [{halt} a 1-bounded place p is created in the net.
– The instructions of the previous definition are modeled by the transitions

and arcs depicted in Figure 5.
– A unique additional place ⇡ with an additional transition ✓ serves to initialise

the net. The initial marking is composed of one token in ⇡ and one token in
the place p corresponding to the initial state p of M.

Initially, only ✓ can be fired, which leads to the initial configuration of the
machine (state p0 and counters values null), with one token in p0, no tokens in C1

and C2 and a parameterised number of tokens in ¬C
i

. The value of this parameter
will therefore represent the upper bound of the counter over the instructions
sequence. We have to verify that each time m(C

i

) +m(¬C
i

) = �. First we show
that SPM simulates M by verifying the behaviour of each instruction:

1We can be more accurate by specifying that we need at least 1 parameter used on
6 distinct arcs. The question remains opened for fewer parameterised arcs

8 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

...

C1

...

¬C1

⇡

p

i

p

j

error

�

C1 + +

✓

�

...

C1

...

¬C1

⇡

p

i

p

j

C1��

✓

�

...

C1

...

¬C1

⇡

p

i

p

j

p

k

0

�

�

¬0

✓

�

incrementation
of a counter

decrementation
of a counter

zero test of
a counter

Fig. 5. Modeling a counter with PPN

– Increment instruction: As C

i

models the counter, the transition C

i

+ +
adds one token in C

i

, removes one token from ¬C
i

and changes the current

state by removing the token from p

i

and adding a token in p

j

. The error

states is marked i↵ the incrementation instruction is performed whereas we
have already reached the upper bound over the execution. This state will be
useful for the second proof.

– Decrement instruction: As C

i

models the counter, the transition C

i

- -
removes one token from C

i

, adds one token in ¬C
i

and changes the current

state by removing the token from p

i

and adding a token in p

j

. We recall the
machine is well-formed.

– Zero Test: As C

i

models the counter, and as we know the sum of tokens
available in C

i

and ¬C
i

, there is no token in C

i

i↵ there are � tokens in
¬C

i

. According to this test the current state is updated by removing the
token from p

i

and adding a token in p

j

or p

k

. The value of the counter is
left unchanged.

E Coverability is undecidable :

We will show that given a 2-counters machine M, (a) M halts (it reaches the
halt state) i↵ (b) there exists a valuation ⌫ such that ⌫(SPM) covers the corre-
sponding p

halt

place.

– (a)) (b) First, let us assume that M halts. As M halts, the execution
of the machine is finite. On this execution the two counters are bounded
by c

lim1 and c

lim2. Let c

lim

be the maximum of those two values. Let ⌫

be the valuation such that ⌫(�) = c

lim

. By the previous explanation, SPM
simulates M. Moreover, the valuation ⌫ ensures that SPM does not reach

Discrete Parameters in Petri Nets 9

a deadlock state where p

error

is marked. Therefore, when M reaches halt,
SPM will add 1 token in p

halt

. So, a marking where there is one token in
p

halt

is coverable.
– (b)) (a) We proceed by contrapositive. Let us assume that M does not

halt. We want to show that there is no valuation ⌫ such that ⌫(SPM) adds
a token in p

halt

. Let us consider the two following distinct alternatives:
• If the counters are bounded along the execution, either the value of � is
less than the maximum value of the counters and error will be reached
during some increment resulting in a deadlock, or the value of � is big
enough so that error is never marked, but, in this case, then, as the
machine does not halt, it means that it does not reach halt. So there
is no instruction that leads to halt in M. Therefore, according to the
previous explanation, there is no transition that adds a token in p

halt

.
• If at least one counter is not bounded, then for any given valuation ⌫,
we will reach an instruction inc(c

i

), where i is 1 or 2, and c

i

= ⌫(�).
Therefore, a token will be added in p

error

leading to a deadlock. So SPM
will not cover a terminal state.

The undecidability of the halting problem on the 2-counters machine gives the
undecidability of the E -coverability problem.

Theorem 2 (Undecidability of U -cov on PPN) The U -coverability prob-

lem for PPN is undecidable.

Proof. U Coverability is undecidable:

We proceed by reduction from a 2-counters machine. We use the same con-
struction as in the previous proof. We denotem

error

the marking werem
error

(p) =
0 for each p 2 P except m

error

(p
error

) = 1. We will show that given a 2-counter
machine M, (a) the counters are unbounded along the instructions sequence of
M (counters boundedness problem) i↵ (b) for each valuation ⌫, ⌫(SPM) covers
the m

error

.

– (a)) (b) First, let us assume that on a given instruction sequence, one
counter of M is unbounded. By the second alternative considered in the
proof for E -cov we proved that for any valuation, a token will be added in
p

error

.
– (b)) (a) Reciprocally, by contrapositive, we want to show that if the

counters are bounded, there exists a valuation ⌫ such that ⌫(SPM) does not
cover m

error

. This comes directly from the previous proof. As the counters
are bounded along the instructions sequence, we consider a valuation ⌫ such
that ⌫(�) = c

lim

where c
lim

is an upper bound of the values of the counters.
By construction, there is no possibilities to add a token in p

error

, otherwise,
it means that SPM took an incrementation transition meaning that c

lim

is
not an upper bound.

The undecidability of the counters boundedness problem on the 2-counters ma-
chine gives the undecidability of the U -coverability problem.

10 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

4 Subclasses of Parametric Petri Nets

4.1 Introducing Subclasses

On the one hand, our parametric model increases the modeling power of Petri
nets but on the other hand, using parameters leads to complex models where
properties become undecidable. In order to obtain parameterised models that
are easier to analyse and therefore can be used in practice, we should reduce the
power of modeling. We will therefore introduce some subclasses of the PPN in
which we restrict the use of parameters to only markings, which could be used
to model arbitrary number of identical processes, to only output arcs, which,
we will see, is a bit more general or to only input arcs, which could model
synchronizations among arbitrary numbers of identical process, and finally some
combinations of those.

The following subclasses have therefore a dual interest. From a modeling
point of view, restrict the use of parameters to tokens, output or input can be
used to model concrete examples such as respectively processes or synchroni-
sation of a given number of processes. From a theoretical point of view, it is
interesting to introduce those subclasses of PPN in a concern of completeness of
the study.

Definition 15 (P-parametric PN) A P-parametric marked Petri Net (P-PPN),

SP = (NP , µ0) where NP is a Parametric Petri Net such that Pre and Post 2
N|P |⇥|T |

and µ0 is a parametric marking of NP.

A P-PPN is a classic Petri net with a parametric initial marking.

Definition 16 (T-parametric PN) A T-parametric Petri Net (T-PPN),

SP = (NP ,m0) where NP is a Parametric Petri Net and m0 is a marking of

NP

Intuitively, using parameters on outputs means we will create parametric mark-
ings. To complete this study, we can extract a subclass in which parameters
involved in the Pre matrix and parameters involved in the Post matrix corre-
spond to disjoints subsets of parameters. i.e. par(Pre) \ par(Post) = ; where
par is the application that maps to the set of parameters involved in a ma-
trix (or a vector). We call this subclass distinctT-PPN

2. We can even refine
the subclass of distinctT-PPN by considering the two distinct classes of Pre-T-
parametric PPN (preT-PPN), where Post 2 N|P | and Post-T-parametric PPN

(postT-PPN), where Pre 2 N|P |.
As we introduced several subclasses, it is interesting to study whether one of

this subclass is more expressive than the other. We will show that P-PPN and
postT-PPN are related. Therefore, we introduce here some useful definitions.
Our translations add silent actions that detail the beahviour of the Petri nets.
Therefore, we introduce a labelling function ⇤ from the set of transitions T to

2Studying the undecidability proof, it is relevant to think that using di↵erent pa-
rameters for the input and the output would reduce the modeling power.

Discrete Parameters in Petri Nets 11

PPN

T-PPN P-PPN

distinctT-PPN

preT-PPN postT-PPN

PN

Caption:

: is a syntactical subclass of

: is a weak-bisimulation subclass of

Fig. 6. Subclasses of PPN

⌃

✏

, ⇤ : T ! ⌃

✏

, such that ⌃

✏

✓ T [{✏} and ⇤(t
i

) equals either t

i

or ✏. We

extend the previous definitions by using m

t! m

0 or m
⇤(t)! m

0 depending on the

context3. For instance, m
✏

⇤
! m

0 means that m leads to m

0 by using zero or more
internal ✏-transitions. Given two markings m and m

0 we write:

m

↵!
✏

m

0 ,
m

✏

⇤
! ↵! ✏

⇤
! m

0 with ↵ 6= ✏

(8)

Definition 17 (Weak-Simulation) Given two labelled marked Petri nets, S1 =
(P1, T1, F1,⇤1,⌃✏

,m

0
1) and S2 = (P2, T2, F2,⇤2,⌃✏

,m

0
2), a binary relation R ✓

N|P
1

| ⇥ N|P
2

|
is a simulation if

8(m1,m2) 2 R ,
⇢
8↵ 2 ⌃ and m

0
1 s.t. m1

↵!
✏

m

0
1,

9m0
2s.t. m2

↵!
✏

m

0
2 and (m0

1,m
0
2) 2 R

(9)

If we can find a weak-simulationR ✓ N|P
1

|⇥N|P
2

| such that (m0
1,m

0
2) 2 R we say

that S2 weakly simulates S1, which means intuitively that S2 can match all the
moves of S1. Moreover if we can find another weak-simulation R0 ✓ N|P

1

|⇥N|P
2

|

such that S1 weakly simulates S2, we say that S1 and S2 are weakly co-similar.

Definition 18 (Weak-Bisimulation) Given two labelled PN, S1 = (P1, T1, F1,

⇤1,⌃✏

,m

0
1) and S2 = (P2, T2, F2,⇤2,⌃✏

,m

0
2), a binary relation R ✓ N|P

1

|⇥N|P
2

|

3Indeed, if we consider the alphabet A equals to the set of the transition T of the
Petri Net, and L as the identity function, the two definitions are equivalent. Using
labelling is more general and allows to introduce non deterministic behaviours.

12 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

is a weak-bisimulation

4
if

8(m1,m2) 2 R ,

8
>>><

>>>:

� 8↵ 2 ⌃ and m

0
1 s.t. m1

↵!
✏

m

0
1

there is m

0
2s.t. m2

↵!
✏

m

0
2 and (m0

1,m
0
2) 2 R

� 8↵ 2 ⌃ and m

0
2 s.t. m2

↵!
✏

m

0
2

there is m

0
1s.t. m1

↵!
✏

m

0
1 and (m0

1,m
0
2) 2 R

(10)

Two labelled Petri Nets S1 and S2 are weakly bisimilar if there is a weak
bisimulation relating their initial markings. In the sequel, every transition called
✓ is mapped to ✏ by ⇤ whereas for a transition called t, ⇤(t) = t. If the original
PPN, SP = (P, T, Pre, Post, Par,⇤, µ0), has a set of transition T and T

0 denotes
the set of transition of the constructed PPN, SP 0 = (P 0

, T

0
, P re

0
, Post

0
, Par,⇤

0
, µ

0
0)

then T

0 = T [⇥ with T \⇥ = ;. For each t 2 T , ⇤(t) = t and for each ✓ in ⇥,
⇤(✓) = ✏.

4.2 Translating P-PPN to postT-PPN

In order to simulate the behaviour of parameterised places, we translate those
places in a parameterised initialisation process that needs to be fired before
firing any other transitions in the net. The idea relies on using a new place ⇡

and a new transition ✓ enabled by this place, such that ✓• initializes a P-PPN, as
showed in Figure 7. We define the initial marking m0 = (0, ..., 0, 1) i.e. 8p 2 P ,
m0(p) = 0 and m0(⇡) = 1. We will show that SP 0 and SP are weakly-bisimilar
by showing that each behaviour of SP can be done in SP 0 if we begin by firing
✓ and reciprocally.

p1

�1

p2

�2

p3

p4

t

p1 p2

⇡

p3

p4

t

✓

1 �2

�1

replacement of the
P parameters by
postT parameters

Fig. 7. From P-PPN to postT-PPN

4There exists several definitions of bisimulation, for instance preserving deadlocks
or epsilon-branching, but the one we use is su�cient for our purpose.

Discrete Parameters in Petri Nets 13

Lemma 3 8⌫ 2 NPar

, ⌫(SP) and ⌫(SP 0) are weakly bisimilar.

Note that each path in SP = (P, T, Pre, Post, Par,⇤, µ0) can be done in
SP 0 = (P 0

, T

0
, P re

0
, Post

0
, Par,⇤

0
,m

0
0) by adding ✓ at the beginning. And re-

ciprocally, each path in SP 0 begins by ✓ so is written ✓.w where w is a path in
SP.

Proof. Let ⌫ 2 NPar a valuation of the parameters. We want to show that ⌫(SP)
and ⌫(SP 0) are weakly bisimilar. Let ⌫(µ0) be the parametric initial marking
of ⌫(SP) and ⌫(m0

0) = m

0
0 the initial marking of ⌫(SP 0). The only transition

firable from m

0
0 is ✓ and m

0
0

✓! ⌫(µ0) as shown in Figure 7. From ⌫(µ0), SP and
SP 0 are isomorphic. So ⌫(SP1) and ⌫(SP2) are weakly-bisimilar.

Those results underline that using parameters on outputs is more powerfull
than using parameters on markings. We can conclude that T-PPN are more
expressive than PPN.

4.3 Translating postT-PPN to P-PPN

We will show that from a postT-PPN, SP1 = (P1, T1, P re1, Post1, Par1,⇤1,m
0
1)

we can construct a P-PPN, SP2 = (P2, T2, P re2, Post2, Par2,⇤2, µ
0
2) that weakly-

simulates the behaviours of the postT-PPN. Reciprocally, the postT-PPN also
weakly-simulates the behaviours of the P-PPN built.

For each transition t and place p such that the arc (t, p) is weighted by a
parameter, we construct the net depicted in Figure 8 which replace this arc 5.
Therefore, T1 ✓ T2. As previously, we introduce two labelling functions ⇤1 and
⇤2 from T1 (resp. T2) to T

✏

such that, for each t 2 T1, ⇤1(t) = ⇤2(t) = t and
⇤2(t) = ✏ otherwise (i.e. for each t 2 T2\T1).

Lemma 4 8⌫ 2 NPar

, ⌫(SP1) and ⌫(SP2) are weakly cosimilar.

Proof. We will prove the 2 weak-simulations.

– 8⌫ 2 NPar, ⌫(SP2) simulates ⌫(SP1). Let us consider ⌫ 2 NPar, ⌫(SP1)
has the following behaviour: each time t is fired, ⌫(�) tokens are created
in p. In SP2, it is possible to generates ⌫(�) tokens in p after firing the

sequence t ✓

⌫(�)
t,p,1 ✓

t

✓

⌫(�)
t,p,2, labeled t✏

⇤. Moreover, this sequence resets the
sub-net constructed for the weak-simulation. As the other transitions of the
network are not a↵ected, monotony gives directly the weak-simulation.

5Notice that if several labeled arcs come from the same transition, some places and
transitions of the Figure 8 should be duplicated according to indices

14 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

p

t

�

⇡

t,1

p

⇡

t,p,2

�

⇡

t,p,1

⇡

t,2

t

✓

t

✓

t,p,2✓

t,p,1

replacement of the
postT parameters

by P parameters

Fig. 8. From postT-PPN to P-PPN

– 8⌫ 2 NPar, ⌫(SP1) simulates ⌫(SP2). Reciprocally, a marking with ⌫(�)
tokens in p allows to simulate the behaviours of every marking such that
m(p)  ⌫(�) according to monotony therefore, the reachable markings in-
duced by creating less than ⌫(�) tokens in SP2 are simulated by the one with
⌫(�) tokens, and therefore by SP1. As the other transitions of the network
are not a↵ected, monotony gives directly the weak-simulation.

Therefore, SP1 and SP2 are weakly co-similar.

Remark 1. This is not a weak bisimulation. Indeed, if SP2 adds 3 tokens in p

(leading to a marking m2) whereas SP1 adds ⌫(�) = 4 tokens in p (leading to
a marking m1). Then any transitions needing more than 3 tokens could only be
fired from m1 in SP1 only. Here the two simulations relations are not reciprocal:
m1 would simulates m2 but m2 would not.

5 Decidability Results

We will now consider the parameterised properties defined in Section 2 and the
di↵erent subclasses of parameterised models of Section 4. Table 1 sums up the
results that we present in this section.

U -problem E -problem
Reachability Coverability Reachability Coverability

preT-PPN ? ? ? D
postT-PPN ? D ? D

PPN U U U U
distinctT-PPN ? ? ? D

P-PPN ? D D D

Table 1. Decidability results for parametric coverability and reachability

Discrete Parameters in Petri Nets 15

5.1 Study of Parameterised Coverability

The easiest proofs rely on monotony. Indeed, some instances simulate other
instances. We recall that the zero valuation (written 0) is the valuation that
maps every parameter to zero.

Lemma 5 Decidability of U -coverability on postT-PPN (resp. P-PPN) can be

reduced to a test with the zero valuation.

Proof. For postT-PPN and P-PPN, the zero valuation is the one allowing the
lowest amount of behaviours for coverability i.e. it is the most restrictive valua-
tion for coverability. Indeed, considering a marking m that we try to cover, m is
U -coverable if and only if there is a firing sequence w such that m0

w! m1 � m

in the 0-instanced postT-PPN (or P-PPN). Formally, given a postT-PPN or a
P-PPN SP and a marking m, we have:

9⌫ s.t. m is not coverable in ⌫(SP) i↵ m is not coverable in 0(SP)

Indeed, for any valuation ⌫ we can fire w in the ⌫-instanced PPN, leading to a
marking m2 � m1 by monotony. Moreover, on the instance of a PPN (i.e. on
a PN), the coverability is known decidable, so we can answer to the problem
on the zero instanced postT-PPN (or P-PPN). If the answer is no, then we
have found a counter example. Else, monotony directly implies that using a
greater valuation ⌫ will provide at least behaviours covering the current ones.
The winning behaviour that allowed to answer yes for the zero-instance will still
works on this ⌫-instance. So every instance will satisfy the coverability.

Therefore we can claim that U -cov is decidable on postT-PPN and P-PPN.
Let us consider E -cov for the same subclasses.

Theorem 6 E -cov is decidable on P-PPN.

Proof. Decidability of E -cov on P-PPN:

We consider a P-PPN, SP1. We will now build a PN S2 with token-canons that
will supply the parameterised places of SP1 as depicted in Figure 9. Each token-

canon consists in two places ⇡

p

, ⇡0
p

and two transitions ✓

p

, ✓0
p

. ✓
p

supplies p of
S2. Moreover, each transition of SP1 is added as an input and an output of ⇡0

p

,
meaning that the net is blocked as long as every ✓

0
p

has not been fired. This is
repeated for each place initially marked by a parameter. We initialize S2 with 1

token in each ⇡

p

. So for each valuation ⌫ of SP1, firing the sequence ✓

⌫(�p)
p

✓

0
p

for each parameterised place p leads to a marking m2 equals to the valuation of
the initial marking of SP1. Moreover, the ✓-transitions added have been fired,
so every ⇡

0
p

is marked. The two nets have now the same behaviour. This shows
that S2 simulates any valuation of SP1. Therefore, the existence of a valuation
such that a given marking is covered can be reduced to the coverability of the
same marking (completed with 0 for each ⇡

p

and 1 for each ⇡

0
p

added) which is
known decidable as a classic coverability problem on an unbounded Petri net.

16 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

�

p

p p

⇡

p

⇡

0
p

✓

p

✓

0
p

replacement of the
P parameters

by token canons

Fig. 9. From PPN to PN

Corollary 7 E -cov is decidable on postT-PPN.

Proof. Decidability of E -cov on postT-PPN:

We proved in previous section that postT-PPN and P-PPN are weakly-cosimilar.
Therefore, given a postT-PPN we can built a P-PPN which is weakly-co-similar.
Moreover, as coverability can be reduced to firing transition (by adding an ob-
server transition), weak-simulation holds coverability. Theorem 6 gives us the
decidability.

Theorem 8 E -cov is decidable for preT-PPN.

Proof. E -cov for the preT-PPN is decidable:

Let us consider a preT-PPN and a marking m that we try to cover. For an input
transition with a weight of zero, we do not require the input place to be marked.
Therefore, in terms of input parameters, by monotony, the zero valuation is the
most permissive one for firing. Thus, there is at some valuation a firing sequence
w such that m0

w! m1 � m if and only if we can fire w in the 0-instanced one,
leading to a marking m2 � m1. Formally, given a preT-PPN SP, we have:

m0
w! m1 � m in ⌫(SP) i↵ m0

w! m2 � m in 0(SP) with m2 � m1

Informally, it means that the zero instance of the preT-PPN has the greatest
amount of behaviours (in terms of coverability). Therefore it is the one which is
necessary and su�cient to satisfy the E -cov of m, meaning that if it does not
satisfy the property, monotony implies that any instance of the preT-PPN will
not satisfy either. If the 0-instanced net covers m, we have a witness for the
E -cov.

Corollary 9 E -cov is decidable for distinctT-PPN.

Proof. E -cov for the distinctT-PPN is decidable:

As we can create a partition over Par between Par

Pre

and Par

Post

, respectively

Discrete Parameters in Petri Nets 17

sets of parameters involved on inputs and outputs which are disjoint. We can
consider the partial valuation 0|ParPre

, which maps every parameter of Par

Pre

to 0. We therefore get a postT-PPN on which the problem is decidable. More-
over, the post-PPN built is the one with the greatest amount of behaviours for
coverability as explained previously. Considering that, if we cannot find any in-
stance of this postT-PPN satisfying the property, we cannot find any instance
of this distinctT-PPN satisfying it either.

5.2 Study of Parameterised Reachability

In classic Petri nets decidability of reachability certainly implies decidability of

coverability. Indeed, given a marked Petri Net and a coverability problem, we
can construct another marked Petri Net over which the previous coverability
problem is equivalent to a reachability problem. Actually, with notations of Fig-

p

p

g

t

goal

m

t

empty,p

Fig. 10. Reducing Coverability to Reachability

ure 10 covering a marking m is equivalent to reach the marking with only one
token in place p

g

in the net augmented with this new place p

g

, a new transi-
tion t

goal

such that •
t

goal

= m, with Post(p
g

, t

goal

) = 1 and, for each place
p, a transition t

empty,p

such that: if p is not equal to p

g

, Pre(p, t
empty,p

) = 1,
Pre(p

g

, t

empty,p

) = 1 and Post(p
g

, t

empty,p

) = 1. It is clear that the same can be
done for PPN , which implies that decidability of E -reachability implies decid-

ability of E -coverability and decidability of U -reachability implies decidability of

U -coverability. Section 3 provides therefore the undecidability of (E -reach) and
(U -reach) in the general case of PPN .

Theorem 10 E -reach is decidable on P-PPN.

Proof. We can trivially adapt the conclusion of the proof of Theorem 6. We keep
the same construction: the existence of a valuation such that a given marking is
reached can be reduced to the reachability of the same marking (completed with
0 for each ⇡

p

and 1 for each ⇡

0
p

added) which is known decidable as a classic
reachability problem on an unbounded Petri net.

Nevertheless, for the other subclasses, the decidability of reachability is more
complex. Intuitively, increasing the valuation used to instanciate a preT-PPN

18 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

(resp. a postT-PPN) leads to disable (resp. enable) transitions, i.e. the cover-
ability of a marking, but this is not sufifcient to deduce the exact number of
tokens involved, i.e. reachability.

p1

p2

p3

t

0

0

(a) 0-instance

p1

p2

p3

t

1

1

(b) 1-instance

p1

p2

p3

t

2

1

(c) ⌫-instance

Fig. 11. Several instances of a preT-PPN

Figure 11 presents a preT-PPN. It is obvious that using the 0-valuation
leads to enable the firing of t in any case, so it allows to cover any amount of
tokens in p2. In Figure 11(a), the coverability set is CS0 = {m|m  (2, 1,!)}.
On the other hand, increasing the valuation leads to potentially disable t. We
will therefore reduce the coverability set as we strengthen the pre-condition to
fire t: in Figure 11(b), the coverability set is CS1 = {m|m  (2, 1, 0) _ m 
(1, 0, 1)} ✓ CS0, and in Figure 11(c), we have CS2 = {m|m  (2, 1, 0) _ m 
(0, 0, 1)} ✓ CS1. Nevertheless, this strengthening of the pre-condition, does not
imply general consequences in terms of reachability sets. Indeed, in Figure 11(a),
the reachability set is {(2, 1, n)|n 2 N}, whereas in Figure 11(b) we can reach
{(2, 1, 0), (1, 0, 1)} and in Figure 11(c), we can reach {(2, 1, 0), (0, 0, 1)}.

p1 p2
t

0

(a) 0-instance

p1 p2
t

1

(b) 1-instance

Fig. 12. Several instances of a postT-PPN

Equivalent observations rise from the study of Figure 12. When increasing the
valuation, we may fire at least the same transitions, therefore, the coverability
set is increasing: Figure 12(a) can cover any markings lower or equal to (2, 0) and
can reach the set {(2, 0), (1, 0), (0, 0)} whereas Figure 12(b) can cover markings
lower or equal to (2, 0),(1, 1) or (0, 2) but can reach the set {(2, 0)(1, 1)(0, 2)}.

Discrete Parameters in Petri Nets 19

6 Conclusion

6.1 Main results

In this paper, we have introduced the use of discrete parameters and suggested
parametric versions of the well known reachability and coverability problems.
The study of the decidability of those problems leads to the results summed
up in Figure 13 for coverability (Classes inside a dashed outline are decidable
for the two corresponding parametric coverability problems). We recall that the

PPN

T-PPN P-PPN

distinctT-PPN

preT-PPN postT-PPN

PNE -Cov

U -Cov

Fig. 13. What is decidable among the subclasses ? (for coverability)

other results are presented in Tab 1.

6.2 Future work

If we have strong intuitions for several empty cases such as decidability of U -
Coverability on preT-PPN and distinctT-PPN which would join the intuition
that using the same parameters on inputs and outputs considerably increases
the power of modeling of classic Petri nets, a deeper study should be carried
to answer the decidability of Parametric-Reachability for instance. Being able
to treat these parameterised models constitutes a scientific breakthrough in two
ways:

– It significantly increases the level of abstraction in models. We will therefore
be able to handle a much larger and therefore more realistic class of models.

– The existence of parameters can also address more relevant and realistic

verification issues. Instead of just providing a binary response on the satis-
faction or not of an expected property, we can aim tosynthetise constraints

20 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

on the parameters ensuring that if these constraints are satisfied, the prop-
erty is satisfied. Such conditions for the proper functioning of the system are
essential information for the designer.

Acknowledgement

We wish to thank the anonymous reviewers, who helped us to improve the paper
by their suggestions.

References

1. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time
reasoning. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory

of Computing, STOC ’93, pages 592–601, New York, NY, USA, 1993. ACM.
2. Toshiro Araki and Tadao Kasami. Some decision problems related to the reacha-

bility problem for Petri nets. Theoretical Computer Science, 3(1):85–104, October
1976.

3. Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular
model checking. In CAV, 2000.

4. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A symbolic reachability
graph for coloured petri nets. Theor. Comput. Sci., 176(1-2):39–65, April 1997.

5. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and
undecidability. In Kim G. Larsen, Sven Skyum, and Glynn Winskel, editors, Au-
tomata, Languages and Programming, volume 1443 of Lecture Notes in Computer

Science, pages 103–115. Springer Berlin Heidelberg, 1998.
6. N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of some problems in

Petri nets. Theoretical Computer Science 4, pages 277–299, 1977.
7. Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of

Computer and System Sciences, 3(2):147 – 195, 1969.
8. Markus Lindqvist. Parameterized reachability trees for predicate/transition nets.

In Grzegorz Rozenberg, editor, Advances in Petri Nets 1993, volume 674 of Lecture
Notes in Computer Science, pages 301–324. Springer Berlin Heidelberg, 1993.

9. Ernst W. Mayr. An algorithm for the general petri net reachability problem. In
Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing,
STOC ’81, pages 238–246, New York, NY, USA, 1981. ACM.

10. Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1967.

Fundamenta Informaticae XX (2016) 1–29 1

IOS Press

Adding data registers to parameterized networks with broadcast

Giorgio Delzanno

DIBRIS, University of Genova

Italy

Arnaud Sangnier

LIAFA, Univ Paris Diderot, Paris Cité Sorbonne, CNRS

France

Riccardo Traverso

DIBRIS, University of Genova

Italy

Abstract. We study parameterized verification problems for networks of interacting register au-
tomata. The network is represented through a graph, and processes may exchange broadcast mes-
sages containing data with their neighbours. Upon reception a process can either ignore a sent value,
test for equality with a value stored in a register, or simply store the value in a register. We consider
safety properties expressed in terms of reachability, from arbitrarily large initial configurations, of a
configuration exposing some given control states and patterns. We investigate, in this context, the
impact on decidability and complexity of the number of local registers, the number of values carried
by a single message, and dynamic reconfigurations of the underlying network.

1. Introduction

Distribution is at the core of modern computer applications. They usually involve partially synchronized

entities, use different communication means, and manipulate data like identifiers and time-stamps. For

all these reasons, distributed algorithms are a challenging test-case for automated verification methods

[24]. Several examples of distributed algorithms are based on the assumption that individual processes

follow the same protocol. Methods like model checking are not always directly applicable to this class of

algorithms. Indeed, they normally require to fix the initial system configuration or the maximum number

of components.

One way to validate distributed algorithms parametric in the number of involved agents consists in

searching for finite model properties, e.g., cut-off values for the parameters. In their seminal paper [22],

German and Sistla propose a model where each entity in the system executes the same finite state pro-

tocol and where the communication is achieved via rendez-vous communication. They exhibit cut-off

properties for finding a minimal number of entities that expose a violation to a given property. They

also rely on the idea that in such systems, one does not need to know precisely the state of each process,

but that it is enough to count the number of processes in each state, this idea is known as the counting

abstraction. These ideas have then been extended to other parameterized systems with different char-

acteristics: for instance, in [17] and [19] Emerson and Namjoshi and Esparza et al. propose the model

of broadcast protocols which extends the model in [22] by allowing the entities to communicate either

via rendez-vous or via broadcast. In the broadcast operation all the entities that can react to a message

have to react. To decide coverability, the authors apply the theory of well-structured transition systems

[1, 21] formulated on the counting abstraction of the considered model. Constraint-based methods for the

analysis of broadcast protocols have been considered in [10]. In a recent paper [20], Esparza and Ganty

introduce a parameterized model in which communication is achieved via a finite set of shared variables

storing finite domain values. In [18], Esparza presents a survey of some of the main results for the above

mentioned parameterized models. Parameterized verification of systems composed by repeated compo-

nents have also been proposed by considering different means of communication as token-passing [5, 9],

message passing [7], or rendez-vous over an infinite domain of data in [11].

introduced in [19, 22], Delzanno et al. propose in [15] a model of ad-hoc networks based on the

following consideration: communication in ad-hoc networks is often based on broadcast, but only the

entities in the transmission range can receive emitted messages. For this reason, they propose a simple

parameterized model, that we will refer to as AHN (for Ad Hoc Network), where each system node

executes the same protocol define by a finite state automaton labeled with broadcast and reception ac-

tions. Configuration are equipped with a communication topology (defined as a graph). In this model

broadcast messages belong to a finite alphabet. The verification problems consists then in asking whether

there exists a number of entities and a communication topology such that an execution of the protocol

exhibits some anomalies. For this model, they prove that coverability (or reachability of a configuration

exhibiting a bad control state) is undecidable [15]. Decidability can be regained by restricting the class

of allowed topologies, e.g., by considering bounded path communication topologies (in which the length

of the longest simple path is bounded) [15], or clique graphs [16] where broadcast messages are received

by all the nodes in the networks, or a mix of these two notions [16]. Decidability results can also be ob-

tained with mobility or non-deterministic reconfiguration of the communication topology at any moment

[15]. In reconfigurable AHNs a node may disconnect from its neighbors and connect to other ones at any

time during a computation. This behavior models in a natural way unexpected power-off and dynamic

movement of devices. For the latter restriction, it has been proved that checking the reachability of a

configuration where some control states are present can be done in polynomial time [14]. Furthermore,

testing for the absence of some control state in a configuration to be reached renders the problem NP-

complete [14]. We point out the fact that the model of AHN with fully connected topologies (or clique

communication topologies) is equivalent to the model of broadcast protocols introduced in [19] without

rendez-vous communication. The model of AHN has also been extended in different ways: considering

finite protocols equipped with independent clocks à la timed automata [4] evolving at the same rate [2],

or finite protocols with probabilities [6].

In this paper we study an extension of the model of AHN with reconfiguration originally introduce

in [15] and studied more deeply in [14] where we consider that the messages that are broadcast belong

now to an infinite alphabet. We assume furthermore that each node in the network is equipped with a

finite set of registers. The resulting model called Broadcast Networks of Register Automata (BNRA) is

aimed at modeling both the local knowledge of distributed nodes as well as their interaction via broadcast

communication. As in AHN, a network is modeled via a finite graph where each node runs an instance of

a common protocol. A protocol is specified via a register automaton, an automaton equipped with a finite

set of registers [23], where each register assumes values taken from the set of natural numbers. Node

interaction is specified via broadcast communication where messages are allowed to carry data, that can

be assigned to or tested against the local registers of receivers. The resulting model can be used to reason

about core parts of client-server protocols as well as of routing protocols, e.g. route maintenance as

in Link Reversal Routing. We focus our attention on the decidability and complexity of parameterized

verification of safety properties, i.e., the problem of finding a sufficient number of nodes and an initial

topology that may lead to a configuration exposing a bad pattern. The considered class of verification

problems is parametric in four dimensions: the number of nodes, the topology of the initial configuration

to be discovered, and the amounts of data contained in local registers and exchanged messages. The

peculiarity of our model is that messages are now data from an infinite domain and that interaction is

restricted according to an underlying communication graph. Distributed algorithms often manipulate

data belonging to an infinite domain such as identifiers of the agents of the network.

In our analysis we study the decidability status of some coverability problem for this model taking

into account the number of registers of individual nodes and the number of fields in the messages. For

messages with no data field (and hence no register as well in the nodes), our model boils down to AHN,

and we know that the coverability problem is undecidable for arbitrary topologies without reconfigura-

tion, while decidability is regained for fully connected and bounded-path topologies or by taking into

account reconfiguration [15, 16]. We study here whether these last decidability results still hold when

extending the protocols with registers over infinite data value and fields in the messages. We draw the

following decidability frontier.

• When reconfiguration is allowed, we show that:

– The coverability problem is undecidable if nodes have at least two registers and messages

have at least two fields.

– If we restrict the number of data fields in the messages to be less than or equal to one, we

regain decidability (without any bound on the number of allowed registers). The decision

algorithm is based on a saturation procedure that operates on a graph-based symbolic repre-

sentation of sets of configurations in which the data are abstracted away. This representation

uses the relations between data (equality, inequality) and is inspired by similar techniques

used in the case of classical register automata [23]. We prove that in this case the problem is

PSPACE-complete.

• For fully connected topologies without reconfiguration, we have that:

– The coverability problem is undecidable when nodes are equipped with at least two registers

and messages with at least one field;

– On the other hand if we restrict the number of register to be less than or equal to one and the

number of data field per message to be also less than or equal to one, then the coverability

problem becomes decidable. The decidability proof exploits the theory of well-structured

transition systems [3, 21]. We obtain as well a non-elementary lower bound which follows

from a reduction from coverability in reset nets [28].

This paper corresponds to a completed version of [12].

2. Broadcast Networks of Register Automata

2.1. Syntax and semantics

We model a distributed network using a graph in which the behavior of each node is described via an

automaton with operations over a finite set of registers. A node can transmit part of its current data

to adjacent nodes using broadcast messages. A message carries both a type and a finite tuple of data.

Receivers can test/store/ignore the data contained inside a message. We assume that broadcasts and

receptions are executed without delays (i.e. we simultaneously update the state of sender and receiver

nodes).

Actions Let us first describe the set of actions. We use r ≥ 0 to denote the number of registers in each

node. We use f ≥ 0 to denote the number of data fields available in each message and we consider a

finite alphabet Σ of message types. We often use [i..j] to denote the set {k ∈ N | i ≤ k ≤ j}. We also

assume that if r = 0 then f = 0 (no registers, no information to transmit). The set of broadcast actions

parameterized by r, f and Σ is defined follows:

Sendr,f
Σ = {b(m, p1, . . . , pf) | m ∈ Σ and pi ∈ [1..r] for i ∈ [1..f]}

The action b(a, p1, . . . , pf) corresponds to a broadcast message of type a whose i-th field contains the

value of the pi-th register of the sending node. For instance, for r = 2 and f = 4, b(req, 1, 1, 2, 1)
corresponds to a message of type req in which the current value of the register 1 of the sender is copied

in the first two fields and in the last field, and the current value of register 2 of the sender is copied into

the third field.

A receiver node can then either compare the value of a message field against the current value of

a register, store the value of a message field in a register, or simply ignore a message field. Reception

actions parameterized by r, f and Σ are defined as follows:

Recr,fΣ =

{

r(m,α1, . . . ,αf)

∣

∣

∣

∣

∣

m ∈ Σ, αi ∈ Actr for i ∈ [1..f]

and if αi = αj = ↓k then i = j

}

where the set of field actions Actr is: {?k, ?k, ↓k, ∗ | k ∈ [1..r]}. When used in a given position of a

reception action, ?k [resp. ?k] tests whether the content of the k-th register is equal [resp. different] to

the corresponding value of the message, ↓k is used to store the corresponding value of the message into

the k-th register, and ∗ is used to denote that the corresponding value is ignored.

As an example, for r = 2 and f = 4, r(req, ?2, ?1, ∗, ↓1) specifies the reception of a message of

type req in which the first field is tested for inequality against the current value of the second register, the

second field is tested for equality against the first register, the third field is ignored, and the fourth field

is assigned to the first register. We now provide the definition of a protocol that models the behavior of

an individual node.

Definition 2.1. A (r, f)-protocol over Σ is a tuple P = ⟨Q,R, q0⟩ where: Q is a finite set of control

states, q0 ∈ Q is an initial control state, and R ⊆ Q × (Sendr,f
Σ ∪ Recr,fΣ) × Q is a set of broadcasting

and reception rules.

In the rest of the paper we call a (r, f)-protocol over Σ simply a (r, f)-protocol when the alphabet is

clear from the context.

A configuration is a graph in which nodes represent the current state of the corresponding protocol

instance running on it (control state and current value of registers) and edges denote communication

links. In this paper we assume that the value of registers are naturals. Therefore, a valuation of registers

is defined as a map from register positions to naturals. More formally, a configuration γ of a (r, f)-
protocol P = ⟨Q,R, q0⟩ is an undirected graph ⟨V,E, L⟩ such that V is a finite set of nodes, E ⊆
V ×V \{(v, v) | v ∈ V } is a set of edges, and L : V → Q× Nr is a labeling function (current valuation

of registers).

Before we give the semantics of our model, we introduce some auxiliary notations. Let γ = ⟨V,E, L⟩
be a configuration. For a node v ∈ V , we denote by LQ(v) and LM (v) the first and second projection

of L(v). For u, v ∈ V , we write u ∼γ v – or simply u ∼ v when γ is clear from the context –

the fact that (u, v) ∈ E, i.e. the two nodes are neighbors. Finally, the configuration γ is said to be

initial if LQ(v) = q0 for all v ∈ V and, for all u, v ∈ V and all i, j ∈ [1..r], if u ̸= v or i ̸= j
then LM (v)[i] ̸= LM (v)[j]. Consequently in an initial configuration, all the registers of the nodes

contain different values. Note that we could have consider a different semantics with no restriction on

the contents of the registers in the initial configurations. We comment this point in the conclusion section.

We write Γ [resp. Γ0] for the set of all [resp. initial] configurations, and Γfc [resp. Γfc
0] for the set

of configurations [resp. initial configurations] ⟨V,E, L⟩ that are fully connected, i.e. such that E =

V × V \ {(v, v) | v ∈ V }. Note that for a given (r, f)-protocol the sets Γ, Γ0, Γfc , and Γfc
0 are infinite

since we do not impose any restriction on the number of processes present in the graph.

Furthermore, from two nodes u and v of a configuration γ = ⟨V,E, L⟩ and a broadcast action

of the form b(m, p1, . . . , pf), let R(v, u,b(m, p1, . . . , pf)) ⊆ Q × Nr be the set of the possible la-

bels that can take u on reception of the corresponding message sent by v, i.e. we have (q′r,M) ∈
R(v, u,b(m, p1, . . . , pf)) if and only if there exists a receive action of the form ⟨LQ(u), r(m,α1, . . . ,αf),
q′r⟩ ∈ R verifying the two following conditions:

(1) For all i ∈ [1..f], if there exists j ∈ [1..r] s.t. αi = ?j [resp. αi = ?j], then LM (u)[j] =
LM (v)[pi] [resp. LM (u)[j] ̸= LM (v)[pi]];

(2) For all j ∈ [1..r], if there exists i ∈ [1..f] such that αi = ↓j then M [j] = LM (v)[pi] otherwise

M [j] = LM (u)[j].

Given a (r, f)-protocol P = ⟨Q,R, q0⟩, we define a Broadcast Network of Register Automata

(BNRA) as the transition system BNRA(P) = ⟨Γ,⇒,Γ0⟩ where Γ [resp. Γ0] is the set of all [resp.

initial] configurations and ⇒⊆ Γ× Γ is the transition relation defined as follows: for γ = ⟨V,E, L⟩ and

γ′ = ⟨V ′, E′, L′⟩ ∈ Γ, we have γ ⇒ γ′ if and only if V = V ′ and one of the following conditions holds:

(Broadcast) E = E′ and there exist v ∈ V and ⟨q,b(m, p1, . . . , pf), q′⟩ ∈ R such that LQ(v) = q,

L′
Q(v) = q′ and for all u ∈ V \ {v}:

• if u ∼ v then L′(u) ∈ R(v, u,b(m, p1, . . . , pf)), or, R(v, u,b(m, p1, . . . , pf)) = ∅ and

L(u) = L′(u);

• if u ! v, then L(u) = L′(u).

(Reconfiguration) L = L′ (no constraint on new edges E′).

Reconfiguration steps model dynamic changes of the connection topology, e.g., loss of links and mes-

sages or node movement. An internal transition τ can be defined using a broadcast of a special message

such that there are no reception rules associated to it. A register j ∈ [1..r] is said to be read-only if and

only if there is no ⟨q, r(m,α1, . . . ,αf), q′⟩ ∈ R and i ∈ [1..f] such that αi = ↓j. Read-only registers

can be used as identifiers of the associated nodes.

Given BNRA(P) = ⟨Γ,⇒,Γ0⟩, we use ⇒b to denote the restriction of ⇒ to broadcast steps only,

and ⇒∗ [resp. ⇒∗
b] to denote the reflexive and transitive closure of ⇒ [resp. ⇒b]. Now we define the set

of reachable configurations as: Reach(P) = {γ′ ∈ Γ | ∃γ ∈ Γ0 s.t. γ ⇒∗ γ′}, Reachb(P) = {γ′ ∈ Γ |
∃γ ∈ Γ0 s.t. γ ⇒∗

b γ
′}, and Reach fc(P) = Reachb(P) ∩ Γfc.

2.2. Coverability Problem

Our goal is to decide whether there exists an initial configuration (of any size and topology) from which

it is possible to reach a configuration exposing (covered by with respect to graph inclusion) a bad pattern.

We express bad patterns using reachability queries defined as follows. Let P = ⟨Q,R, q0⟩ be a (r, f)-
protocol and Z a denumerable set of variables. A reachability query ϕ for P is a formula generated by

the following grammar:

ϕ ::= q(z) | Mi(z) = Mj(z′) | Mi(z) ̸= Mj(z′) | ϕ ∧ ϕ

where z, z′ ∈ Z, q ∈ Q and i, j ∈ [1..r]. We now define the satisfiability relation for such queries. Given

a configuration γ = ⟨V,E, L⟩ ∈ Γ, a valuation is a function g : Z 3→ V . The satisfaction relation |= is

parameterized by a valuation and is defined inductively as follows:

• γ |=g q(z) if and only if LQ(g(z)) = q,

• γ |=g Mi(z) = Mj(z′) if and only if LM (g(z))[i] = LM (g(z′))[j],

• γ |=g Mi(z) ̸= Mj(z′) if and only if LM (g(z))[i] ̸= LM (g(z′))[j],

• γ |=g ϕ ∧ ϕ′ if and only if γ |=g ϕ and γ |=g ϕ′.

We say that a configuration γ satisfies a reachability query ϕ, denoted by γ |= ϕ if and only if there exists

a valuation g such that γ |=g ϕ. Furthermore we assume that our queries do not contain contradictions

with respect to = and ̸=. This query language mediates between expressiveness and simplicity, enabling

us to search for graph patterns involving both control states and register values. We can now provide the

definition of the parameterized coverability problem, which consists in finding an initial configuration

that leads to a configuration containing in which the query can be matched.

Definition 2.2. The problem Cov(r, f) is defined as follows: given a (r, f)-protocol P and a reachabil-

ity query ϕ, does there exist γ ∈ Reach(P) such that γ |= ϕ?

The problem Cov b(r, f) [resp. Cov fc(r, f)] is obtained by replacing the reachability set with Reachb(P)
[resp. Reach fc(P)]. Finally, Cov(∗, f) denotes the disjunction of the problems Cov(r, f) varying on

r ≥ 0 (i.e. for any (finite) number of registers).

Note that these problems belong to the class of coverability problem since we seek a configura-

tion which “covers” the query, in other words a configuration which contains a subpart respecting a

reachability query. Furthermore in our context, strict reachability problems, where one asks whether a

configuration is reachable, are easier to solve, since when we fix a final configuration we know the num-

ber of nodes present in all the previous configurations (since during an execution this number does not

change) and hence the problem boils down to the verification of a finite state system.

For the cases with no register (r = 0) and hence no information to transmit (f = 0), the problems

have already been studied previously. More precisely it has been shown that Cov b(0, 0) is undecidable

[15] and that Cov fc(0, 0) is decidable [16, 19] and Ackermann-complete [27] and that Cov(0, 0) [14]

can be solved in polynomial time.

3. An Example: Route Discovery Protocol

We describe here the behavior of our model on an example Consider the problem of building a route

from nodes of type sender to nodes of type dest. We assume that nodes are equipped with two registers,

called id and next, used to store a pointer to the next node in the route to dest. The protocol that collects

such information is defined in Figure 1.

Initially nodes have type sender, idle, and dest. Request messages like rreq are used to query

sender swait ready
b(rreq, id)

r(rrep, ↓next)

τ
τ

dest raux
r(rreq, ∗)

b(rrep, id)

idle iaux iwait ireply null
r(rreq, ∗) b(rreq, id)

τ

r(rrep, ↓next) b(rrep, id)

τ

Figure 1. Route discovery example

adjacent nodes in search for a valid neighbor. Back edges are used to restart the protocol in case of loss

of intermediate messages or no reply at all. An instance of the protocol starts with a node in state sender
broadcasts a route request rreq, attaching his identifier to the message, and waits. Intermediate nodes in

state idle react to it by forwarding another rreq with their identifier, and then they wait too for a reply.

The protocol goes on until an rreq message finally reaches a destination, a node in state dest, which

replies by providing its identifier with an rrep message to its vicinity. All of the intermediate nodes

involved save in the local register next the value from the rrep message, and send another rrep message

with their identifier to the neighbors, to notify them that they are on the route to reach the destination.

When an rrep message arrives to the sender, it saves the identifier of the next hop and the route is

established.

In this example an undesired state is, e.g., any configuration in which two adjacent nodes n and n′

point to each other. Bad patterns like this one can be specified using a query like ready(z1)∧ready(z2)∧
Mid(z1) = Mnext(z2) ∧Mnext(z1) = Mid(z2).

Note that in this work we are mainly interested in safety properties, or more precisely, properties

that can be checked thanks to reachability queries. On this example, another interesting property could

be to check whether the protocol builds eventually a route from sender to dest. Such a property would

involved a more complex reasoning than the one we currently propose and it will be hence more difficult

to tackle.

4. Reconfiguration in Arbitrary Graphs

4.1. Undecidability of Cov(2, 2)

Our first result is the undecidability of coverability for nodes with two registers (one read-only) and

messages with two data fields. The proof is based on a reduction from reachability in two counter

machines. The reduction builds upon an election protocol that can be applied to select a linked list (of

arbitrary length) of nodes in the network. The existence of such a list-builder protocol is at the core of

the proof. The simulation of a two counter machine becomes easy once a list has been constructed. In

this section, we assume that protocols have at least one read-only register id ∈ [1..r]. We formalize next

the notion of list and list-builder that we use in the undecidability proofs presented across the paper.

We first say that a node v points to a node v′ via x if the register x of v contains the same value as

register id of v′. We consider a configuration γ = ⟨V,E, L⟩ ∈ Γ with LQ(v) ⊆ Q for all v ∈ V . For

a set of states Q and pairwise disjoint sets Qa, Qb, Qc ⊂ Q, we say that γ contains a ⟨Qa, Qb, Qc⟩-list

(linked via x), or simply list, starting at v if there exists a set of nodes {v1, · · · , vk} ⊆ V such that

LQ(v1) ∈ Qa, LQ(vk) ∈ Qc, and LQ(vi) ∈ Qb for i ∈ [2..k− 1], and furthermore vj is the unique node

in V that points to vj+1 via x and has label in Qa ∪ Qb for j ∈ [0..k − 1]. In other words sets Qa and

Qc are sentinels for a list made of nodes with label in Qb. A backward list is defined as before but with

reversed pointers, i.e., vj+1 points to vj and we say that the list ends at v.

We often write ⟨qa, qb, qc⟩-list as a shorthand for a ⟨{qa}, {qb}, {qc}⟩-list. For a transition relation

!∈ {⇒,⇒b}, Γ′ ⊆ Γ and γ ∈ Γ, Γ′ !∗ γ is true iff there exists γ′ ∈ Γ′ s.t. γ′ !∗ γ. We now state the

definition of list builders.

Definition 4.1. A protocol P = ⟨Q,R, q0⟩ is a forward [resp. backward] ⟨qa, qb, qc⟩-list builder for a

transition relation !∈ {⇒,⇒b} and Γ′
0 ⊆ Γ0 on x ∈ [1..r] if, for any γ = ⟨V,E, L⟩ ∈ Γ and every

v ∈ V such that Γ′
0 !

∗ γ and LQ(v) = qa, we have that γ contains a ⟨qa, qb, qc⟩-list [resp. ⟨qc, qb, qa⟩-
list] linked via x starting at v [resp. ending at v]. Furthermore, if! is ⇒b, then v′ ∼ v′′ for all successive

nodes v′ and v′′ in the list.

We will now see how we can exploit the list (of arbitrary length) generated by a list-builder protocol

to build a simulation of a two counter machine. Indeed, notice that if node v is the only one pointing to

node v′ then the pair of actions b(m,x) and r(m, ?id) can be used to send a message from v to v′ (v′ is

the only node that can receive m from v). Furthermore, the pair of actions b(m, id) and r(m, ?x) can be

used to send a message from v′ to v (v is the only node that can receive m from v′). This property can

be exploited to simulate counters by using intermediate nodes as single units (the value of the counter is

the sum of unit nodes in the list). One of the sentinels is used as program location, and the links in the

list are used to send messages (in two directions) to adjacent nodes to increment or decrement (update of

labels) the counters. Test for zero is encoded by a double traversal of the list in order to check that each

intermediate node represents zero units.

Let Ql be the set {qa, qb, qc}. We say that a forward or backward ⟨qa, qb, qc⟩-list builder protocol

Plb = ⟨Qlb, Rlb, q0⟩ is extended with new states Q′ and rules R′ when the resulting protocol P =
⟨Q,R, q0⟩ first executes Plb reaching a state in Ql, and then continues only in states in Q′ by firing

only rules in R′ which preserve lists and cannot interfere with the Plb sub-protocol. More formally,

we require that Q = Qlb ∪ Q′, Qlb ∩ Q′ = Ql, R = Rlb ∪ R′, and each rule in R′ cannot involve:

messages m ∈ Σ that appear in some rule of Rlb; states in Qlb \ Ql; or store operations overwriting

register x. Furthermore, there is a partitioning Qa, Qb, and Qc of Q′ such that qa ∈ Qa, qb ∈ Qb,

qc ∈ Qc, and every rule in R′ does not involve states belonging to different partitions. Thanks to all these

conditions, while executing P , ⟨qa, qb, qc⟩-lists may evolve into ⟨Qa, Qb, Qc⟩-lists while maintaining the

original underlying structure. Then (e.g., with f = 1 and forward list builders), a message m ∈ Σ can

be propagated from a node vi of the list v1 · · · vk ∈ V to the next vi+1 by broadcasting b(m,x) and

receiving r(m, ?id). Indeed, because of the property of lists, vi is the only node in the network which

can possibly execute the broadcast from some state in Q′ and, at the same time, having its register x set

to vi+1. At the same time, vi+1 is the only node in the network in some state in Q′ with the reception

rule possibly enabled, because the read-only register id uniquely identifies it. For the same reasons, m
can be propagated backward from vi+1 to vi by broadcasting b(m, id) and receiving r(m, ?x).

Lemma 4.1. For r ≥ 2 and f ≥ 1, Cov(r, f) [resp. Cov b(r, f)] restricted to initial configurations

Γ′
0 ⊆ Γ0 is undecidable if there exists a forward or backward list builder (r, f)-protocol for ⇒ [resp.

⇒b] and Γ′
0 ⊆ Γ0 on x ∈ [1..r] that can generate lists of arbitrary finite length.

Proof:

We show that, under the assumptions of the Lemma, the following reduction from the halting problem

for two-counter machines to Cov b(r, f) is correct. Then, to prove the Cov(r, f) case, we will show that

the reduction also works with ⇒. We provide the reduction only for the case of forward list builders: in

case of backward ones it is sufficient to swap the patterns to communicate back and forth in the linked

list. Indeed, the only change to be dealt with would be the direction of the links kept in register x of each

node.

First we recall the definition of a a two-counter machine; it is machine M = ⟨Loc, Inst, ℓ0⟩ where

Loc is a finite set of location, ℓ0 ∈ Loc is an initial location and Inst is a finite set of instructions

manipulating two variables c1 and c2 which take their value in the natural numbers (aka counters), each

rule being of the following form: increment of counter ci (ℓ, ci++, ℓ′), decrement of counter ci
(ℓ, ci−−, ℓ′) and zero-test of counter ci (ℓ, ci == 0, ℓ′) with ℓ, ℓ′ ∈ Loc. In such a machine, the

counters can never take negative values. We do not recall the semantics of such machine which is quite

natural. The reachability problem for a two counter machine M and a location ℓ ∈ Loc consists in

determining whether such a machine starting in ℓ0 with 0 as counter values can reach the location ℓ by

executing the instructions. This problem is known to be undecidable [26].

Let Plb = ⟨Qlb, Rlb, q0⟩ be a forward ⟨qh, qz, qt⟩-list builder for ⇒b and Γ′
0 ⊆ Γ0 on x ∈ [1..r] and

with a read-only register id ∈ [1..r], and let M = ⟨Loc, Inst, ℓ0⟩ be a two-counter machine. We extend

Plb to obtain protocol P = ⟨Q,R, q0⟩ as an encoding of M. Each location ℓ ∈ Loc \ {ℓ0} and each

instruction i ∈ Inst are mapped respectively to a state P(ℓ) ∈ Q \ Qlb and to a set of new auxiliary

states q ∈ Q \Qlb and rules r ∈ R \Rlb. The initial location ℓ0 is mapped into P(ℓ0) = qh, because, by

Definition 4.1, as soon as a node labelled qh appears its corresponding list is ready. Counters are encoded

in unary through individual processes: each process in state qz represents a zero and it may change state

in order to represent a unit of one counter (qc1) or another (qc2). The encoded instructions work by

propagating appropriate messages back and forth through the list, with the the tail node qt serving as a

terminator.

P(ℓ)

P(ℓ′)

b(incc1 , x)

r(incrc1 , ?x)

qc1 qc1
r(incc1 , ?id) b(incc1 , x)

r(incrc1 , ?x)
b(incrc1 , id)

qc2 qc2
r(incc1 , ?id) b(incc1 , x)

r(incrc1 , ?x)
b(incrc1 , id)

qZ qc1
r(incc1 , ?id) b(incrc1 , id)

Figure 2. Increment of counter c1

It is worth noting that, since Plb may build more than one list, at a given point we may have sev-

eral ongoing simulations of M. However, by following the point to point communication patterns

previously described we ensure they are independent of each other. Figure 2 shows how increments

(ℓ, c++, ℓ′) ∈ Inst are encoded. The head node, in state P(ℓ), sends an increment order incc and waits

for an acknowledgement reply incrc before moving to the encoding of the next state, P(ℓ′). The message

is propagated through the list, until either it reaches the first process in state qz , which goes to state qc
and replies back, or it reaches the tail qt, which ignores it leading the head node to a deadlock (meaning

the processes in the list were not enough to keep count of c1 and c2). A decrement instruction can be

encoded by following the same pattern as for increments. Tests (ℓ, c == 0, ℓ′) ∈ Inst are encoded in

a similar way, but in this case the reply with the acknowledgement tzrc can be sent only by the tail node

qt. The nodes in state qc representing units of the currently tested counter do not propagate the message,

therefore the message tzc travels through the whole list and reaches the tail if and only if there are no qc
nodes, i.e. when c = 0.

When considering reconfigurations, i.e. when the transition relation is ⇒, all of the previous assump-

tions still hold, except for the fact that, when sending a message from a node in the list to its successor,

we no longer know if the two of them are neighbors. Otherwise said, with ⇒ we may lose messages,

and the computation would block as soon as this happens. This is not a problem for the reduction how-

ever, because we know that an execution with reconfigurations such that no messages are lost still exists.

Indeed, when encoding the reachability problem for M and ℓ ∈ Loc with Cov(r, f) for P and P(ℓ),
blocked executions do not represent an obstacle, since the parameterized coverability problem is satisfied

by the existence of an execution that leads to the target state. ⊓7

The previous lemma tells us that to prove undecidability of the parameterized coverability problem

we just have to exhibit a list-builder protocol. In the case of Cov(2, 2), we apply Lemma 4.1, by showing

that protocol Plb of Figure 4 is a backward list-builder for qh, qz , and qt on x ∈ [1..r]. The rationale is

as follows. Lists {v1, · · · , vk} are built one node at a time, starting from the tail vk, in state qt. The links

P(ℓ)

P(ℓ′)

b(tzc1 , x)

r(tzrc1 , ?x)

qZ qZ
r(tzc1 , ?id) b(tzc1 , x)

r(tzrc1 , ?x)
b(tzrc1 , id)

qc2 qc2
r(tzc1 , ?id) b(tzc1 , x)

r(tzrc1 , ?x)
b(tzrc1 , id)

qt qt
r(tzc1 , ?id) b(tzrc1 , id)

Figure 3. Testing for zero counter c1

point from each node to the previous one, up to the head v1, in state qh. Any node in the initial state q0
(e.g., v1) may decide to become a tail by starting to build its own list. Every such construction activity,

however, is guaranteed not to interfere in any way with the others, thanks to point to point communication

between nodes simulated on top of network reconfigurations and broadcast by exploiting the two payload

fields. This is achieved via a three-way handshake where the first and second fields respectively identify

the sender and the recipient. When the sub-protocol is done, v1 moves to state qt, v2 moves to the

intermediate state qi, and one points to the other. Node v2 decides whether to stop building the list by

becoming the head qh, or to continue by executing another handshake to elect node v3. The process

continues until some vk finally ends the construction by moving to state qh. The following theorem then

holds.

qt

q0 qi qh

qz

b(s, id, id) r(a, ↓x, ?id) b(sa, id, x)

r(s, ↓x, ∗) b(a, id, x) r(sa, ?x, ?id) τ

b(s, id, id)
r(a, ↓x, ?id)b(sa, id, x)

Figure 4. Plb: backward list-builder for qh, qz , qt, and Γ0 on x

Theorem 4.1. Cov(2, 2) is undecidable even when restricting one register to be read-only.

Proof:

Let us consider protocol Plb of Figure 4. We now prove that Plb is a backward list builder for qh, qz , qt
and Γ0 on x ∈ [1..r].

Let γ = ⟨V,E, L⟩ ∈ Γ be a configuration. It is not fundamental that γ ∈ Γ0, because the protocol

may elect multiple lists. The only requirement is to have at least some nodes still in the initial state

q0, and this is trivially satisfied by every γ0 ∈ Γ0. A node vi ∈ V wishing to establish a connection

with vi+1 ∈ V broadcasts its identifier with a request b(s, id, id), either from q0 or qi (the paths from

those two states to respectively qt and qz are labelled by the same actions). Its current neighbors in state

q0 store the identifier of vi by firing r(s, ↓x, ∗). The first vi+1 of them that answers b(a, id, x) gets

its own identifier stored by vi with the reception rule r(a, ↓x, ?id) (provided reconfigurations did not

disconnect it, otherwise the message is lost and the protocol stops). The winner, vi+1, is notified by vi
with a confirmation message b(sa, id, x). Only vi+1 will be able to react to such a message, because it

is the only node in the network for which the guard ?id in r(sa, ?x, ?id) is satisfied. At this point, node

vi which started the communication from q0 or qi is respectively in qt or qz . Node vi+1 is necessarily in

the intermediate state qi instead, as the (temporarily) latest elected node of the list. Its role is to choose

whether to stop the construction via an internal transition to qh, which would make it the head of the list,

or to continue as previously described by choosing the path toward qz . In the latter case, vi+1 becomes

an intermediate node qz and loses the pointer to vi, which is overwritten because of the handshake with

the next vi+2. Nevertheless vi will continue to point to vi+1: the pointers of a completed list, therefore,

go from qt to qh. With appropriate reconfigurations to keep only two nodes connected at a time, the

protocol may build lists of arbitrarily length by involving all nodes in the network.

According to Definition 4.1, is indeed a backward list builder for qh, qz , qt and Γ0 on x ∈ [1..r]. By

applying Lemma 4.1, we can finally conclude that Cov(2, 2) is undecidable. ⊓7

4.2. Decidability of Cov(∗, 1)

In this section, we will prove that Cov(∗, 1), i.e. the restriction of our coverability problem to processes

with only one field in the message, is PSPACE-complete.

4.2.1. Lower bound for Cov(∗, 1)

We obtain PSPACE-hardness through a reduction from the reachability problem for 1-safe Petri nets.

Proposition 4.1. Cov(∗, 1) is PSPACE-hard.

Proof:

A Petri net N is a tuple N = ⟨P, T, m⃗0⟩, where: P is a finite set of places, T is a finite set of transitions

t such that •t and t• are multisets of places (pre- and post-conditions of t), and m⃗0 is a multiset of places

that indicates how many tokens are located in each place in the initial net marking. Given a marking m⃗,

the firing of a transition t such that •t ⊆ m⃗ leads to a new marking m⃗′ obtained as m⃗′ = m⃗ \• t ∪ t•.

A Petri net P is 1-safe if in every reachable marking every place has at most one token. Reachability of

a marking m⃗1 from the initial marking m⃗0 is decidable for Petri nets, and PSPACE-complete for 1-safe

nets [8].

Given a 1-safe net N = ⟨P, T, m⃗0⟩ and a marking m⃗1, we encode the reachability problem into

Cov(|N |, 1). We will assume that P = {p1, . . . , pr} and that p1 is the unique place such that m⃗0(p1) =
1 and pr the only place such that m⃗1(pr) = 1 (without lost of generality we can in fact reduce the

reachability problem of 1-safe net into such a simple case). We now explain how to simulate the behavior

of N with a (r, 1)-protocol P = ⟨Q,R, q0⟩. The protocol P contains two control states full and empty

from which the only possible action is the broadcast of a message containing the value stored in the first

register. This is depicted in Figure 5. We see that nodes in state empty will always broadcast messages

of type α and nodes of type full will always broadcast messages of type β, and each of these messages

contains the value of the first register which will never be overwritten (and hence will correspond to the

identifier of the node). Then for each transition t ∈ T with •t = {pi1 , . . . , pik} and t• = {pj1 , . . . , pjl}

empty full

b(α, 1) b(β, 1)

Figure 5. Encoding the nodes of type full and empty

(with i1, . . . , ik, j1, . . . , jl ∈ [1..r]), we will have in P the transitions depicted in Figure 6. Basically, a

node in state q1 will first begin to test whether it has identifiers of nodes of type full in its register i1 to

ik, then it will put in these registers identifiers of nodes of type empty to simulate the consumption of

tokens in the associated places (by receiving messages of type α) and finally it will store identifiers of

nodes of type full in its registers j1 to jl to simulate the production of tokens in the associated places.

Finally, the Figure 7 shows how the simulation begin from the initial state q0, first nodes can go in states

q1

r(β, ?i1)

r(β, ?i2) r(β, ?ik)

r(α, ↓i1)

r(α, ↓ik)

r(β, ↓j1)r(β, ↓jl−1)

r(β, ↓jl)

Figure 6. Encoding transition t with •t = {pi1 , . . . , pik} and t• = {pj1 , . . . , pjl}

full or empty by broadcasting a message that no one will receive and then a node can go to state q1 by

receiving a message sent by a node full and it will store the identifier in the first register, this to simulate

that the initial marking of N is the one with one token in p1. Finally, a node will go in state end if there

is an identifier of a node of type full in the f -th register. One can then easily prove that the protocol P
verifies the property that m⃗1 is reachable from m⃗0 in N if and only if there exists γ ∈ Reach(P) such

that γ |= end . ⊓7

q0 q1
r(β, ↓1)

end
r(β, ?f)

empty

b(m, 1)

full

b(m, 1)

Figure 7. Initialization of the simulation and ending of the simulation of the 1-safe net

4.2.2. Upper bound for Cov(∗, 1)

We now provide a PSPACE algorithm for solving Cov(∗, 1). The algorithm is based on a saturation

procedure that computes a symbolic representation of reachable configurations. The representation is

built using graphs that keep track of control states that may appear during a protocol execution and of

relations between values in their registers. The set of symbolic configurations we consider is finite and

each symbolic configuration can be encoded in polynomial space.

Symbolic configurations. Assume a (r, 1)-protocol P = ⟨Q,R, q0⟩ over Σ. A symbolic configuration

θ for P is a labelled graph ⟨W, δ,λ⟩ where W is a set of nodes, δ ⊆ W × [1..r] × [1..r] ×W is the set

of labelled edges and λ : W 3→ Q× {0, 1}r is a labeling function (as for configurations, we will denote

λQ [resp. λM] the projection of λ to its first [resp. second] component) such that the following rules are

respected:

• For w,w′ ∈ W , w ̸= w′ implies λQ(w) ̸= λQ(w′), i.e. there cannot be two nodes with the same

control state;

• If (w, a, b, w′) ∈ δ then λM (w)[a] = 1 or λM (w′)[b] = 1 (or both);

• For w ∈ W and j ∈ [1..r], if λM (w)[j] = 1 then (w, j, j, w) ∈ δ.

The labels {0, 1}r are redundant (they can be derived from edges) but simplify some of the constructions

needed in the algorithm. We denote by Θ the set of symbolic configurations for P .

The intuition behind symbolic configuration is the following: a concrete configuration γ belongs to

the denotation !θ" of θ if for any node of γ there is a node in θ labelled with the same control states.

Furthermore, for a pair of nodes v1 and v2 in γ containing the same value in registers a and b, respectively,

θ must contain nodes labelled with the corresponding states and an edge labelled with (a, b) connecting

them. Finally, if there are two nodes v in γ labelled with the state q and with the same value in register

j, then there must be a node w in θ with state q and λM (w)[j] = 1.

We now formalize this intuition. Let θ = ⟨W, δ,λ⟩ be a symbolic configuration for P . Then,

⟨V,E, L⟩ ∈ !θ" iff the following conditions are satisfied:

1. For each v ∈ V , there is a node w ∈ W such that LQ(v) = λQ(w), i.e. v and w have the same

control state;

2. For each v ̸= v′ ∈ V , if there exist registers j, j′ ∈ [1..r] s.t. LM (v)[j] = LM (v′)[j′], i.e., two

distinct nodes with the same value in a pair of registers, then there exists an edge (w, j, j′, w′) ∈ δ
with λQ(w) = LQ(v) and λQ(w′) = LQ(v′), i.e. we store possible relations on data in registers

using edges in θ;

3. For each v ∈ V , if there exist j ̸= j′ ∈ [1..r] s.t. LM (v)[j] = LM (v)[j′], i.e. a node with the same

value in two distinct registers, then there exists a self loop (w, j, j′, w) ∈ δ with λQ(w) = LQ(v).

We remark that we do not include any information on the communication links of γ, indeed reconfigu-

ration steps can change the topology in an arbitrary way. We define the initial symbolic configuration

θ0 = ⟨{w0}, ∅,λ0⟩ with λ0(w0) = (q0, 0⃗). Clearly, we have !θ0" = Γ0, i.e. the set of concrete configu-

rations represented by θ0 is the set of initial configurations of the protocol P .

Computing symbolically the successors. In order to perform a symbolic reachability on symbolic

configurations, we define a symbolic post operator POSTP that, by working on a symbolic configuration

θ simulates the effect of the application of a broadcast rule on its instances !θ". We illustrate the key

points underlying its definition with the help of an example. Consider the symbolic configurations θ1
and θ2 in Figure 8, where we represent edges (w, a, b, w′) ∈ δ with arrows from w to w′ labelled by a, b.
Please note that, even though we use directed edges for the graphical representation, the relation between

nodes in W symmetrical as (w, a, b, w′) ∈ δ is equivalent to (w′, b, a, w).

θ1

q0, 0, 0 q1, 0, 1
1, 2

2, 2

θ2

q0, 1, 0

1, 1

q1, 0, 1
1, 2

2, 2

q2, 0, 1

2, 2
1, 2

q3, 0, 1

2, 2
1, 2

2, 2

2, 2

2, 2

Figure 8. Example of computations of symbolic post

θ1 denotes configurations with any number of nodes with label q0 or q1. Nodes in state q0 must

have registers containing distinct data (label 0, 0). Nodes in state q1 may have the same value in their

second register (label 0, 1 is equivalent to edge ⟨q1, 2, 2, q1⟩), that in turn may be equal to the value of

the first register in a node labelled q0 (edge ⟨q0, 1, 2, q1⟩). θ1 can be obtained from the initial symbolic

configuration by applying rules like ⟨q0,b(α, 1), q0⟩ and ⟨q0, r(α, ↓2), q1⟩. Indeed, in q0 we can send the

value of the first register to other nodes in q0 that can then move to q1 and store the data in the second

register (i.e. we create a potential data relation between the first and second register).

We now give examples of rules that can generate the symbolic configuration θ2 starting from θ1.

The pair ⟨q0,b(β, 1), q0⟩ and ⟨q0, r(β, ↓1), q0⟩ generates a new data relation between nodes in state q0
modelled by changing from 0 to 1 the value of λM (q0)[1]. We remark that a label 1 only says that

registers in distinct nodes may be (but not necessarily) equal.

Consider now the reception rule ⟨q1, r(β, ?2), q2⟩ for the same message β. The data relation between

nodes in state q0 and q1 in θ1 tells us that the rule is fireable. To model its effect we need to create a new

node with label q2 with data relations between registers expressed by the edges between labels q0, q1 and

q2 in the figure. Due to possible reconfigurations, not all nodes in q1 necessarily react, i.e. θ2 contains

the denotations of θ1.

A rule like ⟨q1, r(β, ?2), q3⟩ can also be fireable from instances of θ1. Indeed, the message β can

be sent by a node in state q0 that does not satisfy the data relation specified by the edge (1, 2) in θ1,

i.e., the sending node is not the one having the same value in its first register as the node q1 reacting to

the message, hence the guard ?2 could also be satisfied. This leads to a new node with state q3 which

inherits from q1 the constraints on the first register, but whose second register can have the same value

as the second register of nodes in any state.

We will now provide the formal definition of this symbolic post operator POSTP : Θ 3→ Θ that takes

as input a symbolic configuration and compute a symbolic configuration characterizing the successor of

all the configurations represented by the input symbolic configuration following the rules of P . Before

giving the formal definition, we need to introduce another notion over symbolic configurations. Given

two symbolic configurations θ = ⟨W, δ,λ⟩ and θ′ = ⟨W ′, δ′,λ′⟩, we define the union of symbolic

configurations θ and θ′, denoted θ 7 θ′, as follows: ⟨W ′′, δ′′,λ′′⟩ = θ 7 θ′ iff the following conditions

are respected:

• there exist w′′ ∈ W ′′ with λQ(w′′) = q iff there exists w ∈ W with λQ(w) = q or there exists

w′ ∈ W ′ with λQ(w) = λ′′
Q(w

′′) and furthermore for all i ∈ [1..r], λM (w′′)[i] = 1 if and only if

λM (w)[i] = 1 or λM (w′)[i] = 1.

• there exists (w′′
1 , a, b, w

′′
2) ∈ δ′′ with λQ(w′′

1) = q1 and λQ(w′′
2) = q2 iff there exists (w1, a, b, w2) ∈

δ (with λQ(w1) = q1) and λQ(w2) = q2) or there exists (w′
1, a, b, w

′
2) ∈ δ′ (with λ′

Q(w
′
1) = q1

and λQ(w′
2) = q2)

The idea is that to build θ 7 θ′, we put all the labels present in the symbolic configuration in the result

symbolic configuration and each time we encounter a 1 in a label, it is reported in the union and all the

edges of the two configurations are reported in the union. We have then the following result which makes

the link between the symbolic union and the union on the corresponding concrete configurations.

Lemma 4.2. Let θ, θ′ be two symbolic configurations. We have !θ" ∪ !θ′" ⊆ !θ 7 θ′".

Proof:

Assume θ = ⟨W, δ,λ⟩ and θ′ = ⟨W ′, δ′,λ′⟩. Let γ = ⟨V,E, L⟩ be in !θ"∪!θ′". We suppose γ ∈ !θ" (the

case γ ∈ !θ′" can be treated similarly). Let ⟨W ′′, δ′′,λ′′⟩ = θ7θ′. We will show that γ ∈ !⟨W ′′, δ′′,λ′′⟩".

We verify each point of the definition of !".

1. Let v ∈ V , since γ ∈ !θ", there exists w ∈ W such that LQ(v) = λQ(w), by definition of 7, there

exists w′′ ∈ W ′′ such that λ′′
Q(w

′′) = λQ(w) = LQ(v).

2. Let v, v′ ∈ V with v ̸= v′ and let j, j′ ∈ [1..r].Assume LM (v)[j] = LM (v′)[j′]. Then there exists

(w, j, j′, w′) ∈ δ with λQ(w) = LQ(v) and λQ(w′) = LQ(v′) and by definition of 7 there exists

(w′′
1 , j, j

′, w′′
2) ∈ δ′′ with λQ(w′′

1) = λQ(w) = LQ(v) and λQ(w′′
2) = λQ(w′) = LQ(v′).

3. Let v ∈ V and j, j′ ∈ [1..r] with j ̸= j′ such that λM (v)[j] = λM (v)[j′] then there exists

(w, j, j′, w) ∈ δ with λQ(w) = LQ(v) and by definition of 7 there exists (w′′, j, j′, w′′) ∈ δ′′ with

λQ(w′′) = λQ(w) = LQ(v).

This allows us to conclude that γ ∈ !θ 7 θ′".

⊓7

Algorithm 1 gives the formal definition of the function POSTP : (Q×Sendr,1
Σ ×Q)×Θ 3→ Θ which

take as input a broadcast rule and a symbolic configuration and compute the effect of the broadcast on the

configurations by considering the different receptions of the protocol P . The operator POSTP : Θ 3→ Θ
is then simply the symbolic union of the possible symbolic configurations obtained by applying all the

broadcast rules of P . More formally if P = ⟨Q,R, q0⟩, then for all symbolic configurations θ we have

POSTP(θ) =
⊔

⟨q,b(m,p),q′⟩∈R POSTP(⟨q,b(m, p), q′⟩, θ).

Before giving the properties of the POSTP operator, we introduce some notations. First we in-

troduce an order on symbolic configurations. Given two symbolic configurations θ = ⟨W, δ,λ⟩ and

θ′ = ⟨W ′, δ′,λ′⟩, we say that θ ⊑ θ′ if and only if there exists an injective function h : W 3→ W ′ such

that for all w,w′ ∈ W :

• λQ(w) = λ′
Q(h(w));

• for all j ∈ [1..r], if λM (w)[j] = 1 then λ′
M (h(w))[j] = 1;

• if (w, a, b, w′) ∈ δ then (h(w), a, b, h(w′)) ∈ δ′.

In other words, we have θ ⊑ θ′ if there are more nodes in θ′ than in θ and all the labels of θ appears in θ′

as well, and for what concerns the symbolic register valuation, the one of θ′ should ”cover” the one of θ,

i.e. there are more 1 in θ′ than in θ. In the sequel, we will say that two symbolic configurations are equal

if they are equal up to isomorphism. Since the number of symbolic configurations which are pairwise

disjoint is finite (because there is at most |Q| nodes in a symbolic configuration), and by definition of the

!" operator and of ⊑, one can easily prove the following result.

Lemma 4.3. (1) If θ ⊑ θ′ then !θ" ⊆ !θ′". (2) If there exists an infinite increasing sequence θ0 ⊑ θ1 ⊑
θ2 . . . then there exists i ∈ N s.t. for all j ≥ i, θj = θi.

Using the definition of ⊑, we can state our first property saying any symbolic configurations is

symbolically included in its symbolic successor.

Lemma 4.4. For all symbolic configurations θ, we have θ ⊑ POSTP(θ).

Sketch of proof. Recall that POSTP(θ) =
⊔

⟨q,b(m,p),q′⟩∈R POSTP(⟨q,b(m, p), q′⟩, θ). If we look care-

fully at Algorithm 1, we notice that it only changes 0 to 1 in the label of the nodes of the input symbolic

configuration θ or it adds new edges or new nodes. Hence by definition of the relation ⊑, we have for

all rules ⟨q,b(m, p), q′⟩ ∈ R, θ ⊑ POSTP(⟨q,b(m, p), q′⟩, θ) and using the definition of the operator

7 that also do not delete any edges from the symbolic configurations given in input, we deduce that

θ ⊑ POSTP(θ). "

One consequence of these two lemmas is that if we denote POSTiP the function which consists in

applying i times POSTP , then we now that for all symbolic configurations θ, there exists an integer K
such that for all i ≥ K we have POSTiP(θ) = POSTKP (θ). We denote in the sequel POST∗P(θ) the symbolic

configuration POSTKP (θ). Note that each symbolic configuration of the (r, 1)-protocol P is a graph with

at most |Q| nodes and at most |Q|2 ∗ |r|2 edges and hence we need only polynomial space in the size of

the protocol P to compute POST∗P(θ) for a symbolic configuration θ.

Algorithm 1 θ′ = POSTP(⟨q,b(m, p), q′⟩, θ)
Require: A broadcast rule ⟨q,b(m, p), q′⟩ ∈ R and θ = ⟨W, δ,λ⟩ a symbolic configuration of the (r, 1)-protocol P =

⟨Q,R, q0⟩
Ensure: θ′ = ⟨W ′, δ′,λ′⟩
1: W ′ := W , δ′ := δ, λ′ := λ
2: if there exists w ∈ W such that λQ(w) = q then

3: if there does not exist w′ ∈ W ′ such that λ′

Q(w
′) = q′ then

4: Create a node w′ ∈ W ′ with λ′

Q(w
′) = q′ and λ′

M (w′) := 0⃗
5: end if

6: Let w′ ∈ W ′ such that λ′

Q(w
′) = q′

7: for all j ∈ [1..r], if λM (w)[j] = 1 then λ′

M (w′)[j] := 1
8: for all (w, a, b, w′′) ∈ δ′, δ′ := δ′ ∪ {(w′, a, b, w′′)}
9: for all (w, a, b, w) ∈ δ′, δ′ := δ′ ∪ {(w′, a, b, w′)}

10: for all ⟨q′′, r(m,α), q′′′⟩ ∈ R such that there exists w′′ ∈ W with λQ(w
′′) = q′′ do

11: if α = ?k or α = ∗ then

12: if there does not exist w′′′ ∈ W ′ such that λ′

Q(w
′′′) = q′′′ then

13: Create a node w′′′ ∈ W ′ with λ′

Q(w
′′′) = q′′′ and λ′

M (w′′′) := 0⃗
14: end if

15: Let w′′′ ∈ W ′ such that λ′

Q(w
′′′) = q′′′

16: for all j ∈ [1..r], if λM (w′′)[j] = 1 then λ′

M (w′′′)[j] := 1
17: for all (w′′, a, b, v) ∈ δ′, δ′ := δ′ ∪ {(w′′′, a, b, v)}
18: for all (w′′, a, b, w′′) ∈ δ′, δ′ := δ′ ∪ {(w′′′, a, b, w′′′)}
19: end if

20: if α = ↓k then

21: if there does not exist w′′′ ∈ W ′ such that λ′

Q(w
′′′) = q′′′ then

22: Create a node w′′′ ∈ W ′ with λ′

Q(w
′′′) = q′′′ and λ′

M (w′′′) := 0⃗
23: end if

24: Let w′′′ ∈ W ′ such that λ′

Q(w
′′′) = q′′′

25: λM (w′′′)[k] = 1 and δ′ := δ′ ∪ {(w′, p, k, w′′′), (w′′′, k, k, w′′′)}
26: For all j ∈ [1..r], if λM (w′′)[j] = 1 then λ′

M (w′′′)[j] := 1
27: if λM (w)[p] = 1, Then for all (w, p, b, v) ∈ δ, δ′ := δ′ ∪ {(w′′′, k, b, v)}
28: for all (w′′, a, b, v) ∈ δ′ with a ̸= k, δ′ := δ′ ∪ {(w′′′, a, b, v)}
29: For all (w′′, a, b, w′′) ∈ δ′ with a ̸= k and b ̸= k, δ′ := δ′ ∪ {(w′′′, a, b, w′′′)}
30: end if

31: if α = ?k and (w, p, k, w′′) ∈ δ or (w′′, k, p, w) ∈ δ then

32: if there does not exist w′′′ ∈ W ′ such that λ′

Q(w
′′′) = q′′′ then

33: Create a node w′′′ ∈ W ′ with λ′

Q(w
′′′) = q′′′ and λ′

M (w′′′) := 0⃗
34: end if

35: Let w′′′ ∈ W ′ such that λ′

Q(w
′′′) = q′′′

36: for all j ∈ [1..r], if λM (w′′)[j] = 1 then λ′

M (w′′′)[j] := 1
37: for all (w′′, a, b, v) ∈ δ′, δ′ := δ′ ∪ {(w′′′, a, b, v)}
38: for all (w′′, a, b, w′′) ∈ δ′, δ′ := δ′ ∪ {(w′′′, a, b, w′′′)}
39: end if

40: end for

41: end if

Lemma 4.5. Given a symbolic configuration, POST∗P(θ) can be computed in polynomial space in the

size of P .

Given a set of configurations S ⊆ Γ of the (r, 1)-protocol P = ⟨Q,R, q0⟩ (with BNRA(P) = ⟨Γ,⇒
,Γ0⟩), we define postP(S) = {γ′ ∈ Γ | ∃γ ∈ Γ s.t. γ ⇒ γ′} and post∗P is the reflexive and transitive

closure of postP . We will now see how to relate POSTP and postP .

Lemma 4.6. For all symbolic configuration θ, we have postP(!θ") ⊆ !POSTP(θ)".

Sketch of proof. We consider a symbolic configuration θ. We recall that by definition POSTP(θ) =
⊔

⟨q,b(m,p),q′⟩∈R POSTP(⟨q,b(m, p), q′⟩, θ). We consider a broadcast rule ⟨q,b(m, p), q′⟩ and we denote

by postP(⟨q,b(m, p), q′⟩, !θ") the set of configurations γ′ that can be obtained by performing a Broad-

cast step in BNRA(P) from a configuration γ in !θ" using the broadcast rule ⟨q,b(m, p), q′⟩. By per-

forming a case analysis on the different reception rules of P , one can show that postP(⟨q,b(m, p), q′⟩, !θ")
⊆ !POSTP(⟨q,b(m, p), q′⟩, θ)". We have hence:

⋃

⟨q,b(m,p),q′⟩∈R

postP(⟨q,b(m, p), q′⟩, !θ") ⊆
⋃

⟨q,b(m,p),q′⟩∈R

!POSTP(⟨q,b(m, p), q′⟩, θ)"

Thanks to Lemma 4.2, we can deduce that

⋃

⟨q,b(m,p),q′⟩∈R

!POSTP(⟨q,b(m, p), q′⟩, θ)" ⊆ !
⊔

⟨q,b(m,p),q′⟩∈R

POSTP(⟨q,b(m, p), q′⟩, θ)"

and hence we have:

⋃

⟨q,b(m,p),q′⟩∈R

postP(⟨q,b(m, p), q′⟩, !θ") ⊆ !POSTP(θ)"

Furthermore note that for all γ ∈ !θ" and all configurations γ′, if γ ⇒ γ′ and the applied rule is a

Reconfiguration, then we have γ′ ∈ !θ", hence using Lemma 4.4 and the first item of Lemma 4.3, we

deduce that γ′ ∈ !POSTP(θ)". Consequently we can conclude that postP(!θ") ⊆ !POSTP(θ)". "

From this lemma, we can deduce by an easy induction the following lemma.

Corollary 4.1. For all symbolic configurations θ, we have post∗P(!θ") ⊆ !POST∗P(θ)".

Ideally, we would like to have that for any symbolic configuration the set !POSTP(θ)" is included

into post∗P(!θ") because we perform many broadcast in a symbolic step during the computation of the

symbolic post. Unfortunately this is not the case. In fact, consider the symbolic configuration θ1 depicted

in Figure 8. As we explained this symbolic configuration could be equal to POSTP(θ0) (where θ0 is the

initial symbolic configuration containing a single node labelled by ⟨q0, 0⃗⟩) by considering the rules in P
of the form: ⟨q0,b(α, 1), q0⟩ and ⟨q0, r(α, ↓2), q1⟩. Note that the configuration γ containing two nodes

u and v such that LQ(u) = q0, LM (u) = ⟨0, 1⟩, LQ(v) = q1 and LM (u) = ⟨2, 3⟩ belongs to !θ1"
but is not reachable thanks to the according rules, in fact when one node goes from q0 to q1 it should

share in its second register a value with a node labelled by q0. Hence we have γ ∈ !POSTP(θ0)" and

γ /∈ post∗P(!θ0"). However we can ”increase” the configuration γ to obtain a bigger configuration γ′

reachable from an initial configuration and belonging as well to !θ1", for instance by adding a node u′ to

γ such LQ(u′) = q0 and LM (u′) = ⟨3, 4⟩. We now formalize this idea.

We introduce an ordering relation ✂ ⊆ Γ × Γ on concrete configurations defined as follows: given

two configurations γ = ⟨V,E, L⟩ and γ′ = ⟨V ′, E′, L′⟩, we have γ ✂ γ′ iff there exists an injective

function h : V 3→ V ′ such that:

• for all v ∈ V , LQ(v) = LQ(h(v));

• for all v, v′ ∈ V and all i, j ∈ [1..r], LM (v)[i] = LM (v′)[j] if and only if LM (h(v))[i] =
LM (h(v′))[j].

Note that in the previous example, we have effectively γ✂γ′. By using the definition of the transition

relation ⇒ and of the satisfaction relation |= for reachability query we have the following lemma.

Lemma 4.7. Let γ1, γ2 ∈ Γ such that γ1 ✂ γ2. We have then:

1. For all γ′1 ∈ Γ such that γ1 ⇒ γ′1, there exists γ′2 ∈ Γ such that γ2 ⇒ γ′2 and γ′1 ✂ γ′2.

2. For all reachability queries ϕ, if γ1 |= ϕ then γ2 |= ϕ.

Furthermore, as shown with the previous example, by using the definition of !" over symbolic con-

figurations and the definition of the symbolic post operator POSTP , we can deduce the following result.

Lemma 4.8. Let θ be a symbolic configuration. For all γ ∈ !POSTP(θ)", there exists γ′ ∈ post∗P(!θ")∩
!POSTP(θ)" such that γ ✂ γ′.

These two last lemmas allow us to obtain the following corollary.

Corollary 4.2. Let θ be a symbolic configuration. For all γ ∈ !POST∗P(θ)", there exists γ′ ∈ post∗P(!θ")
such that γ ✂ γ′.

Proof:

We will prove that for all n ∈ N, for all γ ∈ !POSTnP(θ)", there exists γ′ ∈ post∗P(!θ") such that

γ ✂ γ′. We reason by induction on n. First in the case n = 0, the property holds trivially (we recall that

POSTnP(θ) = θ). Now assume the property holds for n ∈ N and we will show it is still true for n + 1.

Let γ ∈ !POSTn+1
P (θ)". From Lemma 4.8, we deduce that there exists γ′ ∈ post∗P(!POST

n
P(θ)") ∩

!POSTn+1
P (θ)" such that γ ✂ γ′. Hence there exists γ1 ∈ !POSTnP(θ)" such that γ1 ⇒ . . . ⇒ γ′. By

induction hypothesis, there exist γ2 ∈ post∗P(!θ") such that γ1 ✂ γ2. But then thanks the first item of

Lemma 4.7, since γ1 ✂ γ2 and γ1 ⇒ . . . ⇒ γ′ we deduce that there exists γ′2 such that γ2 ⇒ . . . ⇒ γ′2
and γ′ ✂ γ′2. Note that since γ2 ∈ post∗P(!θ"), then γ′2 ∈ post∗P(!θ") and since γ ✂ γ′ and γ′ ✂ γ′2, we

also have γ ✂ γ′2. ⊓7

Evaluating a reachability query symbolically. We now define how to evaluate a reachability query

over a symbolic configuration . Let θ = ⟨W, δ,λ⟩ be a symbolic configuration and ϕ be a reachability

query. We denote by Vars(ϕ) the subset of variables used in the query ϕ and we assume that ϕ =
∧

k∈[1..m] ϕk where for each k ∈ [1..m], ϕk is of the form q(z) or Mi(z) = Mj(z′) or Mi(z) ̸= Mj(z′).
We will then say that θ |= ϕ if there exists a function g : Vars(ϕ) 3→ W such that for all k ∈ [1..m]
we have the following properties: if ϕk = q(z), then λQ(g(z)) = q; if ϕk = (Mi(z) = Mj(z′)) with

z ̸= z′ or i ̸= j, then (g(z), i, j, g(z′)) ∈ δ. We have then the following lemma.

Lemma 4.9. Given a symbolic configuration θ and a reachability query ϕ, we have θ |= ϕ if and only if

there exists γ ∈ !θ" such that γ |= ϕ.

We can now state the main result about the symbolic post operator.

Lemma 4.10. Let θ be a symbolic configuration of the protocol P . Then we have for all reachability

query ϕ, there exists γ ∈ post∗P(!θ") such that γ |= ϕ iff POST∗P(θ) |= ϕ.

Proof:

Let θ be a symbolic configuration of the protocol P . Let ϕ be a reachability query. First assume that

there exists γ ∈ post∗P(!θ") such that γ |= ϕ, then by Corollary 4.1 we know that γ ∈ POST∗P(θ). By

Lemma 4.9, we deduce that POST∗P(θ) |= ϕ. Assume now that POST∗P(θ) |= ϕ. By Lemma 4.9, there

exists γ ∈ !POST∗P(θ)" such that γ |= ϕ. By Corollary 4.2, there exists γ′ ∈ post∗P(!θ") such that γ✂γ′.
Using the second item of Lemma 4.7, we obtain that γ′ |= ϕ. ⊓7

We have consequently an algorithm to solve whether there exists γ ∈ Reach(P) = post∗P(Γ0). In fact it

is enough to compute POST∗P(θ0) and to check whether POST∗P(θ) |= ϕ. This computation is feasible in

polynomial space thanks to Lemma 4.5. Finally we can check in non-deterministic linear time whether

POST∗P(θ0) |= ϕ (it is enough to guess the function g from Vars(ϕ) to the nodes of POST∗P(θ0)). Using

Lemma 4.10, this gives us a polynomial space procedure to check whether there exists γ ∈ Reach(P)
such that γ |= ϕ. Furthermore, thanks to the lower bound given by Proposition 4.1, we can deduce the

exact complexity of coverability for protocols using a single field in their messages.

Theorem 4.2. Cov(∗, 1) is PSPACE-complete.

5. Fully Connected Topologies and No Reconfiguration

5.1. Undecidability of Cov fc(2, 1)

We now move to coverability in fully connected topologies. In contrast with the results obtained without

identifiers in [15] it turns out that, without reconfiguration, coverability is undecidable already in the

case of nodes with two registers and one payload field. We define a (forward) list-builder protocol,

which builds lists backwards from the tail qt. At each step, a node v among the ones which are not part

of the list broadcasts its identifier to the others (which store the value, thus pointing to v), and moves to

qz (or qt, if it is the first step) electing itself as the next node in the list. The construction ends when such

a node will instead move to qh and force everyone else to stop. By applying Lemma 4.1, the following

theorem then holds.

Theorem 5.1. Cov fc(2, 1) is undecidable even when one register is read-only.

Proof:

We now show that the protocol Pfc
lb in Figure 9 is a list builder for ⇒b and Γfc

0 on x and states qh, qz , qt
(where the lists are built backwards from qt). Let γ0 = ⟨V,E, L⟩ ∈ Γfc

0 be an initial configuration. As

soon as a node v ∈ V decides to start the construction of the list, it broadcasts its identifier to every other

node with a message b(tail, id). Since the network is fully connected, every process has to react to the

qt qz

q0 q1 qh

qhalt

b(tail, id)

r(tail, ↓x)

b(zero, id)

b(head, id)

r(head, ∗)

r(zero, ↓x)

Figure 9. Pfc
lb : list builder for ⟨qh, qz, qt⟩ and fully connected configurations on x

message: after the transition we get a configuration γ1 ∈ Γ such that v is the only node in state qt while

any other node u ∈ V \ {v} is in state q1 and points to v via x.

The processes labelled by q1 may build a list of arbitrary length by electing one qz node at a time.

The communication pattern for handling message b(zero, id) is the same as before, therefore the same

reasoning applies: at each step, all of the nodes in state q1 have their local register x pointing to the newly

elected node z ∈ V in state qz (or to v if it is the first qz), and z is excluded from the list construction

from now on. As soon as a node h ∈ V switches to qh, every remaining process moves to qhalt: exactly

one list has been built, and the protocol has to stop. According to Definition 4.1, Pfc
lb is therefore a

forward ⟨qh, qz, qt⟩-list builder for ⇒b and Γfc
0 on x. Since it also has a read-only register id, we can

conclude that Cov fc(2, 1) is undecidable thanks to Lemma 4.1.

⊓7

5.2. Decidability of Cov fc(1, 1)

We now consider the problem Cov fc(1, 1), where configurations are fully connected and do not change

dynamically, processes have a single register, and each message has a single data field. To show de-

cidability, we employ the theory of well-structured transition systems [1, 21] to define an algorithm for

backward reachability based on a symbolic representation of infinite set of configurations, namely mul-

tisets of multisets of states in Q. In the following we use [a1, . . . , ak] to denote a multiset containing

(possibly repeated) occurrences a1, . . . , ak of elements from some fixed domain. For a multiset m, we

use m(q) to denote the number of occurrences of q in m.

In the sequel we consider a (1, 1)-protocol P = ⟨Q,R, q0⟩. The set Ξ of symbolic configurations

contains, for every k ∈ N, all multisets of the form ξ = [m1, . . . ,mk], where mi for i ∈ [1..k] is in turn

a multiset over Q. Given ξ = [m1, . . . ,mk] ∈ Ξ, ⟨V,E, L⟩ ∈ !ξ" iff there is a function f : V → [1..k]
such that (1) for every v, v′ ∈ V , if LM (v) = LM (v′) then f(v) = f(v′) and (2) for all i ∈ [1..k] and

q ∈ Q, mi(q) is equal to the number of nodes v ∈ V s.t. f(v) = i and LQ(v) = q. Intuitively, each mi

is associated to one of the k distinct values of the register (the actual values do not matter), and mi(q)
counts how many nodes in state q have the corresponding value. We now define an ordering over Ξ.

Definition 5.1. Given ξ = [m1, . . . ,mk] ∈ Ξ and ξ′ = [m′
1, . . . ,m

′
p] ∈ Ξ, ξ ≺ ξ′ iff k ≤ p and there

exists an injection h : [1..k] → [1..p] such that for all i ∈ [1..k] and all q ∈ Q, mi(q) ≤ mh(i)(q), i.e.

mi is included in mh(i).

The following properties then hold.

Proposition 5.1. The ordering (ξ,≺) over symbolic configurations is a well-quasi ordering (wqo), i.e.

for any infinite sequence ξ1ξ2 . . . there exist i < j s.t. ξi ≺ ξj .

Proof:

By Dickson’s Lemma, we know that, for multisets over a finite set Q, multiset inclusion is a wqo. By

Higman’s Lemma, for multisets built over a wqo domain, multiset inclusion (in which elements are

compared using the wqo) is still a wqo. Thus, the juxtaposition of the two orderings yields a well-quasi

ordering. ⊓7

We now exhibit an algorithm PREP that works on symbolic representations in Ξ of configurations of net-

works with one register x in each node and one data field in each message. For a symbolic configuration

ξ = [m1, . . . ,mk], mi is a multiset over Q for i ∈ [1, . . . , k]. The representation allows us to maintain

the minimal information about relations (= and ̸=) over data and forget about specific values of the data

and minimal constraints on the number of nodes (sharing the same value) in each state in Q. For S ⊆ Γ,

we define preP(S) as the set {γ | γ ⇒b γ′ and γ′ ∈ S} The following proposition then holds.

Proposition 5.2. There exists an algorithm PREP that takes in input I ⊆ Ξ and returns a set I ′ ⊆ Ξ s.t.

!I ′" = preP(!I").

To prove the proposition, in the rest of the section we define the algorithm PREP . The algorithm that

computes PREP computes minimal representations of predecessors by applying backwards broadcast

and receive rules to elements of I . Actually,

PREP(I) =
⋃

b∈B

PREb(I)

where B = (Q× Send1,1
Σ ×Q) ∩R is the set of all broadcast actions. Furthermore,

PREb({ξ1, . . . , ξn}) =
⋃

i∈[1,...,n]

PREb(ξi)

We focus our attention on PREb for a given broadcast b and a given symbolic configuration ξ. In the rest

of the section we assume that

• b = ⟨q,b(msg, p1), q′⟩,

• ξ = [m1, . . . ,mk] where each multiset mi of symbols in Q is associated to a distinct value for

register x;

To symbolically compute predecessors, we recall that a configuration ξ = [m1, . . . ,mk] denotes the

infinite set of multisets of the form γ = [m′
1, . . . ,m

′
k,mk+1, . . . ,mr] where, in turn, mi is a sub-

multiset of m′
i for i ∈ [1..k]. These kind of configurations are obtained either by adding either nodes

with identifiers equal to those already present in ξ (e.g. when m′
i is strictly larger than mi) or by adding

nodes with fresh identifiers (the additional multisets mk+1, . . . ,mr).

We recall that reception rules in R have four possible types of action ?p1, ?p1, ↓p1, and ∗. For

a reception rule of the shape r = ⟨qi, r(msg,α), q′i⟩ with α ∈ {?p1, ?p1, ↓p1, ∗} we call qi [q′i] the

precondition [resp. postcondition] of the rule r.

To illustrate the rationale behind our construction of PREb, we first illustrate the key ideas with the

help of an example.

Example 5.1. Consider a symbolic configuration ξ = [m1,m2], where m1 = [q2, r2, u2] and m2 =
[v2, v2] represent two groups of nodes s.t. m1 contains at least three processes with the same value c1 in

the register and m2 contains at least two processes with the same value c2 in the register.

Consider now the rules: ⟨q1,b(a, 1), q2⟩, ⟨r1, r(a, ?1), r2⟩, ⟨u1, r(a, ↓1), u2⟩, and ⟨v1, r(a, ?1), v2⟩.
We assume that the sender is the node in state q2 in m1. Its precondition is then the state q1. We now

have to consider reactions. We first consider the nodes in m1 (same identifier as the sender) with state r2
and u2. Each node matches a postcondition of a test or store rule. However, for each of them there are

two cases to consider: they either reacted to the current broadcast or they reached their state in a previous

step. Thus the precondition for r2 can be either r1 or r2 itself. Both preconditions must remain in the

same group. For u2 we have to be more careful. The precondition can be either u1 or u2. However, since

the value of the register before store is unknown, they can either remain in the same group, move to other

existing groups in ξ, or to newly created groups (associated to fresh identifiers). Similarly, the precon-

ditions for nodes in state v2 can be either v1 or v2. These processes remain in the same group. Among

the predecessors we have then symbolic configurations like: [[q1, r1, u1], [v1, v1]], [[q1, r1, u1], [v1, v2]],
[[q1, r1, u1], [v2, v2]], [[q1, r2, u2], [v1, v1]], [[q1, r1], [u1, v1, v1]], [[q1, r1], [v1, v1], [u1]], etc.

To take into account the upward closure of the denotations of ξ, we also have to consider possible

extensions of ξ with additional nodes that match postconditions of send and receive rules. For instance,

we may assume that there exists another node in state q1 in m2, and then recompute predecessors start-

ing from [[q2, r2, u2], [q2, v2, v2]] or assume that there exist a node with a fresh value with postcondition

q2 and then compute the predecessors from [[q2, r2, u2], [v2, v2], [q2]], and so on. Similarly we have to

consider possible extensions of ξ with matching postconditions of reception rules and computed prede-

cessors for them too. Luckily, we have to consider only finitely many extensions since we are interested

in computing minimal configurations only. Specifically, extensions of ξ with more than one occurrence

of the same postcondition will lead to non-minimal configurations, and thus they can be avoided.

All the predecessor symbolic configurations are then collected together and only the minimal one

w.r.t. ≺ form the basis of the symbolic representation of predecessor configurations.

To simplify the presentation, we present a non-deterministic algorithm to compute PREb(ξ) defined

via a case analysis on broadcast and receptions. The algorithm can be transformed into a deterministic

one by exploring all possible alternatives. Consider the broadcast rule b = ⟨q,b(msg, p1), q′⟩ and the

symbolic configuration ξ = [m1, . . . ,mk]. We recall that ξ denotes all configurations larger than ξ
w.r.t. ≺. However, to compute predecessors it is enough to consider extensions of ξ with at most one

occurrence of a sender process. Adding explicit representations of receivers is not necessary since the

corresponding predecessors would produce non minimal representations. This is due to the fact that

update of receiver states do not influence the state of other processes.

In what follows, the operator ⊕ denotes the multiset union. We first define the finite set of possible

extensions of ξ as follows:

Extq′(ξ) = {ξ} ∪ {ξ ⊕ [q′]} ∪ {[m1, . . . ,mi ⊕ [q′], . . . ,mk] | i ∈ [1, k]}

The intuition behinds this extension is that we have to consider the configuration in !ξ" where the state q′

appears since these are the configuration we will get after taking the broadcast rule b = ⟨q,b(msg, p1), q′⟩.
For each ξ′ ∈ Extq′(ξ), we will show how to compute a set of symbolic predecessor. Let ξ′ ∈

Extq′(ξ) with ξ′ = [m1, . . . ,mk]. We can now assume now that mi = [q′] ⊕ m for some i. We first

notice that ξ′ has no predecessors if there are states that correspond to preconditions of receptions of

msg that could be fired with b, unless receptions preserve the state with a loop on q′. Indeed, since the

topology is fully connected all nodes must react to the broadcast b (i.e. a precondition state of a reception

cannot remain in the current state unless the reception does not change it). Let us assume now that the

previous case does not apply. We will give now the way to obtain set of predecessors of ξ of the shape

[m′
1, . . . ,m

′
ℓ] with ℓ ≥ k.

To define m′
i we first non-deterministically decompose m into the multisets w1, w2, w3, w4, where

w1 contains target states of receptions for msg with action ?p1, w2 contains target states of receptions

for msg with action ∗, w3 contains target states of receptions for msg with action ↓p1, and w4 contains

the remaining states. We then non-deterministically decompose wi into ui, vi. In other words we have

that

m = (
3

⊕

i=1

(ui ⊕ vi))⊕ w4

We can now define the effect of b on m as the multiset m′ defined as

m′ = (
3

⊕

i=1

(pre(ui)⊕ vi))⊕ w4

To multiset pre(ui) is defined by case analysis on receptions.

• For rules with test and ignore action pre(ui), i ∈ [1, 2], is obtained by replacing each occurrence of

a postcondition with the corresponding precondition of a (non deterministically selected) reception

rule for msg (i.e pre(ui) and ui have the same size).

• For rules with store actions, pre(u3) is obtained by first replacing each occurrence of a postcon-

dition in u3 with the corresponding precondition of a (non deterministically selected) reception

rule for msg, and then by non-deterministically splitting the resulting multiset into two multisets,

namely pre(u3) and pre ̸=(u3). The latter processes correspond to processes with register values

distinct from those in m.

We will then have m′
i = [q]⊕m′.

We now have to generate the multiset m′
j associated to the multisets mj with j ∈ [1..k] \ {i}. To

compute m′
j we consider reception rules that either have ?p1 (i.e. the value in the register is distinct from

the sender) or ∗ action. We non-deterministically split mj in

mj = uj ⊕ vj

so that uj contains postcondition states of receptions of msg, and compute m′
j by applying reception

backwards to uj , i.e.,

m′
j = pre(uj)⊕ vj

Finally, the multiset pre ̸=(u3) is non-deterministically distributed among the multisets m′
j with j ̸= i or

used to add to the resulting configuration additional multisets (all possible splittings of sub multisets of

pre ̸=(u3)). In the former case the processes in pre ̸=(u3) correspond to processes with register values

that were already present in ξ′. In the latter case they correspond to processes whose register value is

fresh with respect to those in ξ′.
When we have computing sets of symbolic predecessors for each ξ′ ∈ Extq′(ξ), we take for PREb(ξ)

the minimal set I of symbolic representations representing the union of all the computed sets and which

is obtained by by removing redundant representations and representations that are larger than others.

5.3. Decision Procedure

Following [3], the algorithm for PREP can be used to effectively compute a finite representation of the

set of predecessors pre∗P(!Bad") for a set of symbolic configurations Bad. The computation iteratively

applies PREP until a fixpoint is reached. The termination test is defined using ≺. The wqo ≺ ensures

termination of the computation [1]. The following theorem then holds.

Theorem 5.2. Cov fc(1, 1) is decidable.

Proof:

We show how to apply the symbolic predecessor computation based on PREP . Let ϕ be a query with set

of variables Z. The (in)equalities in ϕ induce a finite set P1, . . . , Pk of partitions of Z. Each partition

Pi = {Xi
1, . . . , X

i
ui
} is such that Xi

j contains variables that may take the same value (i.e. there are

no ̸= constraints between them in ϕ). For a partition X , we define the multiset mX of symbols in Q
for which there exists a predicate q(z) with z ∈ X . Thus Pi = {Xi

1, . . . , X
i
ui
} can be represented via

the multiset of multisets si = [mXi
1
, . . . ,mXi

ui
]. The set I = {s1, . . . , sk} corresponds to the minimal

elements of the set of configurations that satisfy ϕ. To apply the algorithm we set Bad = I↑, i.e.,

I = min(Bad). We compute then the least fixpoint of PREP , say PRE∗P(I). To check if the resulting

set of symbolic configurations contains an initial state, we need to search for a finite basis ⟨V, L,E⟩
(where E = V × V \ {(v, v) | v ∈ V }) in which all nodes have initial states as labels, and in which

there cannot be two nodes with the same value in the register (initially all processes have distinct values

in local registers). Using the multiset representation, we need to search for a multiset consisting of

multisets of the form [q0] where q0 is the initial state of the protocol, i.e. coverability holds if and only if

[[q0], . . . , [q0]] ∈ PRE∗P(I). ⊓7

An alternative proof can be given by resorting to an encoding into coverability in data nets [25]. We

present such an encoding in [13]. We did not investigate the reverse translation, i.e. whether data nets

can be encoded into our model with fully-connected topology, one register and one-field per message,

but due to the expressive power of data nets, it seems that it would be difficult to get such a reduction.

We consider now the complexity. We observe that, without registers and fields our model boils down

to the AHNs of [15]. For fully connected topologies, AHN can simulate reset nets as shown in [16]

and hence the parameterized coverability problem for such a model is Akcermann-hard. In fact, this

can be deduced from the fact that the complexity of coverability in reset nets is Ackermann-hard [28].

Furthermore it has been show later that for fully connected topology, the parameterized coverability

problem in AHN is in fact Ackermann-complete [27]. Following these results, we obtain the following

theoretical lower bound.

Corollary 5.1. Cov fc(0, 0) and Cov fc(1, 1) are Ackermann-hard.

6. Conclusions

In this paper we investigated decidability and complexity for parameterized verification of a formal model

of distributed computation based on register automata communicating via broadcast messages with data.

The results we obtained are summarized in Table 1 where we recall that r stands for the number of

registers present in each node of the network and f characterizes the number of fields allowed in the

messages of the protocol. As already mentioned, for r = 0 and f = 0 the parameterized coverability

problem had already been studied previously. From a technical point of view, our results can be viewed

as a fine grained refinement of those obtained for the case without data. For instance, undecidability

follows from constructions similar to those adopted in [15]. They are based on special use of data for

building synchronization patterns that can be applied even in fully connected networks. We point out

the fact that we have characterize exhaustively the decidability status of the parameterized coverability

problem for Broadcast Networks of Register Automata since as mentioned before it does not make sense

to consider more data fields in the message than number of registers in the nodes. The only problem left

open is the precise complexity characterization of Cov fc(1, 1).

Protocol

Problem r f Complexity

Cov(r, f) 0 0 PTIME[14]

r ≥ 1 1 PSPACE-complete [Thm. 4.2]

r ≥ 2 f ≥ 2 Undecidable [Thm 4.1]

Cov fc(r, f) 0 0 Ackermann-complete [16, 27]

1 1 Decidable and Ackermann-hard [Thm 5.2]

r ≥ 2 f ≥ 1 Undecidable [Thm. 5.1]

Cov b(r, f) r ≥ 0 f ≥ 0 Undecidable [15]

Table 1. Decidability and complexity boundaries

In our model, we have assumed that in an initial configuration the same data is not present twice

(in any register). One could easily verify that for the cases where we obtain decidability (for Cov(∗, 1)
and Cov fc(1, 1)), the same techniques can be applied if we relax this hypothesis and hence we would

obtain the same decidability results with the same complexity. For the cases where we have proved

undecidability (Cov(2, 2) and Cov fc(2, 1)), we can observe that we need in our undecidability proofs

one read-only register containing a different identifier for each node of the network. Hence if we relax

two much the hypothesis on the initial configurations (such that nodes cannot be anymore distinguished

through this register) it is not clear whether the problems will remain undecidable or not.

Finally, in this work, we have considered only safety properties for our model, but as we mention

with the example provided in Section 3, it would be interested to investigate liveness property that states

that eventually something desired happens. For the cases of fully connected topologies in which we

rely on the theory of well-structured transition systems, positive results might be difficult to obtain since

backward algorithms, as the one we use for Cov fc(1, 1), will not apply, but for the case with reconfigura-

tion with one register and one field per message it might be easier. We plan to investigate such problems

in future works. Another possible direction for future research would be to see what happens when the

data are ordered. It would be also interesting to understand how such techniques can be applied to real

protocols by analyzing for instance approximate executions (our model being not expressive enough to

characterize precisely the behaviors of a concrete protocols). In fact to verify the behaviors of concrete

protocols with our method, we would need to abstract away some aspects of the protocols in order to be

able to encode them in our model. One negative point is that such methods might lead to false alarms

(bugs in the approximation which cannot occur in the real protocols) and an idea left also as possible

direction of research could then be to provide a way to refine the abstraction in order to discard such

wrong executions.

References

[1] Abdulla, P. A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General Decidability Theorems for Infinite-State Sys-
tems, LICS’96, IEEE Computer Society, 1996.

[2] Abdulla, P. A., Delzanno, G., Rezine, O., Sangnier, A., Traverso, R.: On the Verification of Timed Ad Hoc
Networks, FORMATS’11, 6604, Springer, 2011.

[3] Abdulla, P. A., Jonsson, B.: Ensuring completeness of symbolic verification methods for infinite-state sys-
tems, Theor. Comput. Sci., 256(1-2), 2001, 145–167.

[4] Alur, R., Dill, D. L.: A Theory of Timed Automata, Theor. Comput. Sci., 126(2), 1994, 183–235.

[5] Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized Model Checking of Token-Passing Systems,
VMCAI’14, 8318, 2014.

[6] Bertrand, N., Fournier, P., Sangnier, A.: Playing with Probabilities in Reconfigurable Broadcast Networks,
FOSSACS’14, 8412, Springer, 2014.

[7] Bollig, B., Gastin, P., Schubert, J.: Parameterized Verification of Communicating Automata under Context
Bounds, RP’14, 8762, 2014.

[8] Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-Safe Nets, TCS, 147(1&2), 1995, 117–136.

[9] Clarke, E. M., Talupur, M., Touili, T., Veith, H.: Verification by Network Decomposition, CONCUR’04,
3170, 2004.

[10] Delzanno, G.: Constraint-Based Verification of Parameterized Cache Coherence Protocols, FMSD, 23(3),
2003, 257–301.

[11] Delzanno, G., Rosa-Velardo, F.: On the coverability and reachability languages of monotonic extensions of
Petri nets, Theor. Comput. Sci., 467, 2013, 12–29.

[12] Delzanno, G., Sangnier, A., Traverso, R.: Parameterized Verification of Broadcast Networks of Register
Automata, RP’13, 8169, Springer, 2013.

[13] Delzanno, G., Sangnier, A., Traverso, R.: Parameterized Verification of Broadcast Networks of Register

Automata (Technical Report), Technical report, TR-13-03, DIBRIS, University of Genova, 2013, Available
at the URL http://verify.disi.unige.it/publications/.

[14] Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the Complexity of Parameterized Reachability in
Reconfigurable Broadcast Networks, FSTTCS’12, 18, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2012.

[15] Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized Verification of Ad Hoc Networks, CONCUR’10,
6269, Springer, 2010.

[16] Delzanno, G., Sangnier, A., Zavattaro, G.: On the Power of Cliques in the Parameterized Verification of Ad
Hoc Networks, FOSSACS’11, 6604, Springer, 2011.

[17] Emerson, E. A., Namjoshi, K. S.: On Model Checking for Non-Deterministic Infinite-State Systems,
LICS’98, IEEE Computer Society, 1998.

[18] Esparza, J.: Keeping a Crowd Safe: On the Complexity of Parameterized Verification (Invited Talk),
STACS’14, 25, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

[19] Esparza, J., Finkel, A., Mayr, R.: On the Verification of Broadcast Protocols, LICS’99, IEEE Computer
Society, 1999.

[20] Esparza, J., Ganty, P., Majumdar, R.: Parameterized Verification of Asynchronous Shared-Memory Systems,
CAV’13, 8044, Springer, 2013.

[21] Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!, Theor. Comput. Sci., 256(1-2),
2001, 63–92.

[22] German, S. M., Sistla, A. P.: Reasoning about Systems with Many Processes, J. ACM, 39(3), 1992, 675–735.

[23] Kaminski, M., Francez, N.: Finite-Memory Automata, Theor. Comput. Sci., 134(2), 1994, 329–363.

[24] Konnov, I., Veith, H., Widder, J.: Who is afraid of Model Checking Distributed Algorithms?, Unpublished
contribution to: CAV Workshop (EC)2, 2012.

[25] Lazic, R., Newcomb, T., Ouaknine, J., Roscoe, A. W., Worrell, J.: Nets with Tokens which Carry Data,
Fundam. Inform., 88(3), 2008, 251–274.

[26] Minsky, M.: Computation, Finite and Infinite Machines, Prentice Hall, 1967.

[27] Schmitz, S., Schnoebelen, P.: The Power of Well-Structured Systems, CONCUR’13, 8052, Springer, 2013.

[28] Schnoebelen, P.: Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset Petri Nets,
MFCS’10, 6281, Springer, 2010.

