
BiqCrunch User’s Guide

Nathan Krislock, Jérôme Malick, Frédéric Roupin

October 29, 2014

Summary
BiqCrunch is a semidefinite-based solver for binary quadratic problems. It uses a branch-
and-bound method featuring an improved semidefinite bounding procedure [8], mixed with
a polyhedral approach (see [4, 5] for details).

BiqCrunch is written in C and Fortran and uses the external library for quasi-Newton
bound-constrained optimization L-BFGS-B [2] and the branch-and-bound framework BOB
[7]. BiqCrunch uses specific BC input files, and an LP format conversion tool is provided.
People involved with the development of BiqCrunch are

• Nathan Krislock (krislock@math.niu.edu)

• Jérôme Malick (jerome.malick@inria.fr)

• Frédéric Roupin (Frederic.Roupin@lipn.univ-paris13.fr)

Project contributors

• Marco Casazza: BiqCrunch web site, documentation

• Geoffrey Kozak: heuristics for the Maximum Independent Set Problem

BiqCrunch - User’s Guide 2

mailto:krislock@math.niu.edu
mailto:jerome.malick@inria.fr
mailto:Frederic.Roupin@lipn.univ-paris13.fr
http://www-lipn.univ-paris13.fr/BiqCrunch

Contents

1 BiqCrunch 4
1.1 Installation . 4
1.2 Usage . 4
1.3 Conversion tools . 4
1.4 Input format . 5

1.4.1 Example . 5
1.5 Output . 6

2 Advanced section 8
2.1 BiqCrunch Parameters . 8
2.2 Instance syntax . 9
2.3 Heuristics . 10

2.3.1 Generic heuristics . 10
2.3.2 Heuristic timing . 11
2.3.3 Additional functions . 12
2.3.4 Data structure . 12

3 Examples 14
3.1 Max-Cut problem . 14

3.1.1 Max-Cut heuristic . 14
3.1.2 Conversion tools . 14

3.2 k-cluster problem . 15
3.2.1 k-cluster heuristic . 15
3.2.2 k-cluster instances and conversion 15

3.3 Max independent set problem . 15
3.3.1 Max-independent set heuristic . 16

BiqCrunch - User’s Guide 3

http://www-lipn.univ-paris13.fr/BiqCrunch

1 BiqCrunch

BiqCrunch is released under the GNU Public License, version 3.0, as open source software
available for non-commercial use. BiqCrunch is available at:

http://www-lipn.univ-paris13.fr/BiqCrunch/

1.1 Installation
Extract the files from the archive “biqcrunch.tar.gz”. To compile and test BiqCrunch
go to the src directory then run the following commands:
$ make
$ make test

It will produce specific binary files for each problem subdirectory located in the problems/
directory. This allows one to execute BiqCrunch with a specific heuristic for each problem.
If your problem does not appear, it is always possible to use the generic version of the
solver in the problems/generic/ directory, or add your own heuristic (details are given
in this documentation). Installation from the source files requires either LAPACK or the
Intel MKL libraries. If MKL is available then it will be used by default. When running
tests (make test), the optimal values of the outputs are checked and printed.

1.2 Usage
To run BiqCrunch just use the specific problem binary version that can be found in the
corresponding subdirectory in problems/.

$./biqcrunch [-v (0|1)] <INSTANCE> <PARAMETERS>

The parameter -v is the verbosity of BiqCrunch and <INSTANCE> is the input file in BC
format. If flag -v is missing then BiqCrunch will use the non-verbose option. Be cautious:
the verbose option can produce large output files for some problems. This option is mainly
useful when testing different parameters values by giving additional information during the
evaluation of each node of the search tree.
At the end of the command a parameters file is required (note that several files are

provided for different problems). A complete description of these parameters is given in
the "Advanced section" of this document.

1.3 Conversion tools
BiqCrunch uses a specific input file format (see the next section for a complete description).
Nevertheless an LP file format conversion tool (tools/lp2bc.py, written in Python) is
provided. Moreover, for each problem, some specific tools are also provided to convert
standard instances (e.g., a graph generated by rudy) to BC files. To get usage information,
just run the corresponding tool without parameters. All these tools are written in standard
C and can be compiled in a straightforward manner.

BiqCrunch - User’s Guide 4

http://www-lipn.univ-paris13.fr/BiqCrunch/
http://www-lipn.univ-paris13.fr/BiqCrunch

1.4 Input format
BiqCrunch solves any problem that can be stated as

maximize xTS0x+ sT
0 x

subject to xTSix+ sT
i x ≤ ai, i ∈ {1, . . . ,mI}

xTSix+ sT
i x = ai, i ∈ {mI + 1, . . . ,mI +mE}

x ∈ {0, 1}n

(1.1)

where xTSix+ sT
i x is a quadratic function with integer coefficients, for i = 0, . . . ,mI +mE,

and a is an integer vector. The problem has to be written in BC format which uses a
sparse representation, similar to the SDPA format. The objective function and constraints
coefficients are described as (n+ 1)× (n+ 1) matrices, linear terms being stored in the last

line/column: Q0 =
S0

s0
2

sT
0
2 0

 , Qi =
Si

si

2
sT

i

2 0

.
1.4.1 Example
Model

maximize 20x1x3 + 26x1x4 + 23x2x3 + 8x2x5 + 32x3x4 + 13x4x5

subject to x1 + x2 + x3 + x4 + x5 = 3
12x1x3 + 24x1x4 + 14x2x3 + 16x2x5 + 28x3x4 + 12x4x5 ≤ 30
x ∈ {0, 1}5

LP file

Maximize
20 x1*x3 + 26 x1*x4 + 23 x2*x3 +
8 x2*x5 + 32 x3*x4 + 13 x4*x5

Subject to
x1 + x2 + x3 + x4 + x5 = 3

12 x1*x3 + 24 x1*x4 + 14 x2*x3 +
16 x2*x5 + 28 x3*x4 + 12 x4*x5 <= 30

Binary
x1 x2 x3 x4 x5

End

BC file (generated by lp2bc.py)

List of binary variables:
1: x1
2: x2
3: x3
4: x4
5: x5
1 = max problem
2 = number of constraints
2 = number of blocks
6, -1
3.0 30.0

BiqCrunch - User’s Guide 5

http://www-lipn.univ-paris13.fr/BiqCrunch

0 1 1 3 10.0
0 1 1 4 13.0
0 1 2 3 11.5
0 1 2 5 4.0
0 1 3 4 16.0
0 1 4 5 6.5
1 1 1 6 0.5
1 1 2 6 0.5
1 1 3 6 0.5
1 1 4 6 0.5
1 1 5 6 0.5
2 1 1 3 6.0
2 1 1 4 12.0
2 1 2 3 7.0
2 1 2 5 8.0
2 1 3 4 14.0
2 1 4 5 6.0
2 2 1 1 1.0

1.5 Output
BiqCrunch provides detailed information during the solving process and an output file is
generated using the name of the input file (same directory).
Example of screen output: ./biqcrunch -v 1 example.bc biq_crunch.param

Output file: example.bc.output
Input file: example.bc
Parameter file: biq_crunch.param
Nodes = 3; Root node bound = 47.31
Maximum value = 43
Solution = { 1 2 3 }
CPU time = 0.0040 s

Example of output file: ./biqcrunch -v 1 example.bc biq_crunch.param

* BIQ CRUNCH Solver *

| Copyright(C) 2010-2014 N. Krislock, J. Malick, F. Roupin |
| BIQ CRUNCH uses L-BFGS-B by C. Zhu, R. Byrd, J. Nocedal and BOB 1.0 by PNN |
| Team of PRiSM Laboratory. |
| |
| L-BFGS-B is distributed under the terms of the New BSD License. See the |
| website http://users.eecs.northwestern.edu/~nocedal/lbfgsb.html for more |
| information. BOB is free software. For more information visit the website |
| http://www.prism.uvsq.fr/~blec/index.php?p=./rech/so&lang=fr |

Input file: example.bc
Solving as a MAXIMIZATION problem
Problem Size = 5 Number of equalities = 7 Number of inequalities = 1
Using Generic heuristic
BiqCrunch Parameters:

alpha0 = 0.100000
scaleAlpha = 0.500000

minAlpha = 0.000050
tol0 = 0.050000

scaleTol = 0.900000
minTol = 0.010000

withCuts = 1
gapCuts = -0.050000

cuts = 500
minCuts = 50

nitermax = 2000
minNiter = 12
maxNiter = 100
scaling = 1

root = 0
heur_1 = 1
heur_2 = 1
heur_3 = 1

time_limit = 0
Heuristic 1: Beta updated => 43

BiqCrunch - User’s Guide 6

http://www-lipn.univ-paris13.fr/BiqCrunch

**
Node 1

**
Problem size 5
==
Iter Time gap alpha tol nbit Enorm Inorm ynorm minCuts NCuts NSub NAdd
==

1 0.00 4.562 1.0e-01 5.0e-02 25 4.0e-02 0.0e+00 4.6e+01 -2.9e-01 0 -0 +0
2 0.00 4.537 1.0e-01 5.0e-02 6 1.4e-02 1.7e-02 4.6e+01 -1.9e-01 0 -0 +7
3 0.00 4.439 5.0e-02 4.5e-02 15 3.7e-02 2.3e-02 4.5e+01 -3.0e-02 7 -0 +0
4 0.00 4.356 2.5e-02 4.1e-02 24 3.1e-02 0.0e+00 4.5e+01 5.5e-03 7 -4 +0
5 0.00 4.333 1.3e-02 3.6e-02 15 3.1e-02 0.0e+00 4.5e+01 3.5e-02 3 -0 +0
6 0.00 4.323 6.3e-03 3.3e-02 13 1.4e-02 0.0e+00 4.5e+01 -2.0e-03 3 -0 +0
7 0.00 4.318 3.1e-03 3.0e-02 21 1.6e-02 0.0e+00 4.5e+01 -2.9e-02 3 -0 +0
8 0.00 4.316 1.6e-03 2.7e-02 17 2.5e-02 0.0e+00 4.5e+01 -2.9e-03 3 -0 +0
9 0.00 4.312 7.8e-04 2.4e-02 31 1.5e-02 1.5e-02 4.5e+01 -4.3e-02 3 -0 +0

10 0.00 4.311 3.9e-04 2.2e-02 18 1.7e-02 0.0e+00 4.5e+01 -3.0e-02 3 -0 +0
11 0.00 4.311 2.0e-04 1.9e-02 20 1.3e-02 1.0e-02 4.5e+01 -4.8e-02 3 -0 +0
12 0.00 4.310 9.8e-05 1.7e-02 19 1.7e-02 0.0e+00 4.5e+01 -2.9e-02 3 -0 +0
13 0.00 4.310 5.0e-05 1.6e-02 15 1.5e-02 0.0e+00 4.5e+01 -3.4e-02 3 -0 +0

==
Bound = 47.31, BFGS = 13, alpha = 5.0e-05, tol = 1.6e-02, cuts = 3, time = 0.0
fracsol[3] = 0.10
fixed : X[3] = 0

**
Node 2

**
Problem size 4
==
Iter Time gap alpha tol nbit Enorm Inorm ynorm minCuts NCuts NSub NAdd
==

1 0.00 2.155 1.0e-01 5.0e-02 13 4.7e-02 0.0e+00 4.2e+01 -1.4e-01 0 -0 +8
2 0.00 2.000 1.0e-01 5.0e-02 3 3.4e-02 0.0e+00 4.2e+01 -6.4e-02 8 -3 +6
3 0.00 0.927 5.0e-02 4.5e-02 28 3.3e-01 4.9e-02 4.6e+01 -6.4e-02 11 -0 +0

Prune ! BFGS iterations = 3
==
Bound = 43.93, BFGS = 3, alpha = 5.0e-02, tol = 4.5e-02, cuts = 11, time = 0.0
Prune !
Depth = 1
Bound = 43 Beta = 43
fixed : X[3] = 1

**
Node 3

**
Problem size 4
==
Iter Time gap alpha tol nbit Enorm Inorm ynorm minCuts NCuts NSub NAdd
==

1 0.00 0.901 1.0e-01 5.0e-02 24 3.2e-01 0.0e+00 6.0e+01 -6.4e-02 0 -0 +0
Prune ! BFGS iterations = 1
==
Bound = 43.90, BFGS = 1, alpha = 1.0e-01, tol = 5.0e-02, cuts = 0, time = 0.0
Prune !
Depth = 1
Bound = 43 Beta = 43

Nodes = 3
Maximum value = 43
Root node bound = 47.31
Solution = { 1 2 3 }
CPU time = 0.0040 s

BiqCrunch - User’s Guide 7

http://www-lipn.univ-paris13.fr/BiqCrunch

2 Advanced section

2.1 BiqCrunch Parameters
In most cases, BiqCrunch will be efficient using default parameters. Nevertheless, to
improve the performance of BiqCrunch for some problems it is advised to change the values
of several parameters. These values (especially the bounding parameters) can actually have
a huge impact on the efficiency of the solver. For more details the reader is referred to
[5, 8].

General parameters
root: 1 to stop the algorithm after the evaluation of the root node (default=0). So

BiqCrunch can be used as a simple solver to test a relaxation (computational time
and gap). This option is also useful to tune other parameters by inspecting several
output files for the root node (verbosity command line option -v 1 should be used in
that case);

time_limit: maximum running time in seconds. Set to 0 for no time limit (default=0). If
the solver stops before solving the problem exactly then the final gap (between the
worst bound in the search tree and the value of current best feasible solution found)
will be provided;

heur_1: enable (1) or disable (0) the heuristic called at the beginning of the execution
(default=1);

heur_2: enable (1) or disable (0) the heuristic called after each call of L-BFGS-B during
the computation of the bound (default=1);

heur_3: enable (1) or disable (0) the heuristic called after the evaluation of a node
(default=1);

Bounding parameters
alpha0: starting value of alpha (default=1e-1);

scaleAlpha: scaling value of alpha (default=0.5). This parameter controls the rate at
which alpha decreases;

minAlpha: minimum value of alpha (default=5e-5);

tol0: starting value of tolerance (default=1e-1);

scaleTol: scaling value of tolerance (default=0.95);

minTol: minimum value of the tolerance (default=1e-2);

BiqCrunch - User’s Guide 8

http://www-lipn.univ-paris13.fr/BiqCrunch

gapCuts: minimum violation value to add a cut (default=-5e-2);

withCuts: 1 to add triangle inequalities during the computation of the bound, 0 to compute
the bound without the triangle inequalities (default=1);

cuts: maximum number of inequalities to add at each iteration (default=500);

minCuts: minimum number of inequalities not to decrease alpha (default=50);

nitermax: maximum number of iterations of the L-BFGS-B solver (default=2000);

minNiter: minimum number of L-BFGS-B calls (default=12);

maxNiter: maximum number of L-BFGS-B calls (default=100);

scaling: 1 to scale the constraints (default=1).

2.2 Instance syntax
A BC instance begins with some optional lines of comments, which are strings preceded by
a semicolon or by a asterisk:

<COMMENT> ::= ; <STRING> | * <STRING>

The first line gives the problem type : -1 for minimization, 1 for maximization. This can
be followed by other characters ignored by BiqCrunch.

<#MIN/MAX> ::= ; <-1> | <1> <STRING>

The next line defines the number of constraints, which is a positive integer such that
<INT>= mI +mE.

<#CONSTRAINTS> ::= <INT> | <INT> <STRING>

Similar to the SDPA format, we define the number of blocks of the matrices of the input
file. As seen before, this line also admits characters after the definition.

<#BLOCKS> ::= <INT> | <INT> <STRING>

In the BC format an instance can have 1 or 2 blocks depending on the model: if the model
contains no constraints or only equality constraints, <INT> must be equal to 1; if the model
also contains inequality constraints <INT> must be equal to 2.
The third entry of the instance describes the size of the blocks of the matrices.

<SIZE> ::= <INT_1> | {<INT_1>} |
<INT_1>, -<INT_2> | {<INT_1>, -<INT_2>}

If the problem has no inequalities, then the size of the first block of the matrices (equal
to n+ 1) is provided (<INT_1>). If the problem contains inequalities then the size of the
second block must be given also (<INT_2>). It always starts with a minus before <INT_2>
to indicate that the values of the blocks are only on the diagonal of the matrix, and it is
equal to mI . In the next line, the right-hand side values of the constraints are given as a
sequence of values.

<RIGHT-HAND_SIDE> ::= <REAL_k> | <REAL_k> <RIGHT-HAND_SIDE>

BiqCrunch - User’s Guide 9

http://www-lipn.univ-paris13.fr/BiqCrunch

The number of values must be equal to mI +mE and <REAL_k> must be the right-hand
side value of constraint k.

Finally, all the matrices that describe the objective function and the left-hand side of the
constraints must be provided. The first matrix corresponds to S0, the objective function.
Each line represents to a non-zero element of the matrix.

<OBJ_MATRIX_EL> ::= 0 1 <INT_1> <INT_2> <REAL>

where the first (0) and second number (1) respectively mean that this line concerns the
objective function matrix and the first block. <INT_1> and <INT_2> are the row and the
column of the non-zero element of the matrix and <REAL> is its value. <INT_1> and <INT_2>
must be greater than 0 and less or equal to n+ 1. Then, similarly, for each constraint k
the non-zero coefficients of the matrix Sk is given in sparse format:

<CONS_MATRIX_EL> ::= <INDEX_k> 1 <INT_1> <INT_2> <REAL>

where <INDEX_k> must be equal to k.
In the case of an inequality j, one has to provide the value of the second block of the

matrix:

<INEQ_MATRIX_EL> ::= <INDEX_j> 2 <INT> <INT> <REAL>

where <INDEX_j> must be equal to j and <REAL> is either 1.0 for a ≤ inequality or −1.0
for a ≥ inequality.

2.3 Heuristics
BiqCrunch comes with specific heuristics for:

• generic problems;

• k-cluster problem;

• max-cut problem;

• max-independent-set problem.

One can also add their own heuristics. There are several folders problems/<PROBLEM> that
refer to different optimization problems and a problems/user directory where it is possible
to write a new heuristic. One can add new heuristics for BiqCrunch by simply creating
more problems/<PROBLEM> folders. To add a heuristic for BiqCrunch put a new heur.c
file inside the corresponding problem directory. An example of heur.c is already in the
subdirectory problems/user.

2.3.1 Generic heuristics
BiqCrunch offers a generic heuristic which is useful when the user prefers not to write
their own specific heuristic. This generic heuristic can be used for any binary quadratic
problem. During the computation of the bound of the node, and after the evaluation of
each node, BiqCrunch uses a variant of the classical randomized rounding heuristic [9, 10]
that rounds to 1 the variables according to the probability provided by the fractional SDP
solution. Indeed one has 0 ≤ xi ≤ 1 for any feasible solution of the SDP relaxation (see [8]
for details about the relaxations used). The rounding is done by comparing each xi to a
fixed α = xj, for j = 1, . . . , n. Then BiqCrunch tests if the resulting 0-1 vector is feasible

BiqCrunch - User’s Guide 10

http://www-lipn.univ-paris13.fr/BiqCrunch

for the combinatorial problem, and updates the best current feasible solution if a better
feasible solution is found. Afterwards, BiqCrunch generates an additional 100 random
binary vectors by comparing each fractional xi to a different random value γ, and again
updates the best current feasible solution if a better feasible solution is found. At the root
node we generate a random vector of values in the interval [0, 1] and then we apply the
variant of randomized algorithm described before. The generic heuristics are located in the
problems/generic directory.

2.3.2 Heuristic timing
The heuristic function is called during the execution of the branch-and-bound algorithm:

1. at the beginning of the algorithm;

2. during the computation of the bound of each node of the branch-and-bound tree;

3. after the evaluation of each node of the branch-and-bound tree.

This information is saved in the function parameter heuristic_code, which can take three
different values:

PRIMAL_HEUR: if the function is called at the beginning of the algorithm;

SDP_HEUR: if the function is called during the evaluation of the bound;

ROUNDING_HEUR: if the function is called after the evaluation of a node.

A simple use of this information is shown in the Code 2.1 taken from heur.c.

double BC_runHeuristic (Problem ∗P0 , Problem ∗P , BobNode ∗node , int ∗x ,
int heuristic_code)

{
double heur_val = 0 ;
switch (heuristic_code) {
case PRIMAL_HEUR :

heur_val = primal_heuristic (P0 , x) ;
break ;

case SDP_BOUND_HEUR :
heur_val = sdpBoundHeuristic (P0 , node , x) ;
break ;

case ROUNDING_HEUR :
heur_val = rounding_heuristic (P0 , node , x) ;
break ;

default :
printf (" Choosen␣ h e u r i s t i c ␣doesn ’ t ␣ e x i s t \n ") ;
exit (1) ;

}

// re turn the va lue o f the h e u r i s t i c
return heur_val ;

}

Code 2.1: Use of the heuristic_code information

BiqCrunch - User’s Guide 11

http://www-lipn.univ-paris13.fr/BiqCrunch

2.3.3 Additional functions
In addition to the heuristic function, the user must also define BC_allocHeuristic(. . .) and
BC_freeHeuristic(. . .) to allocate and free the global dynamic structure. These functions are
called by the solver at the beginning and at the end of the execution.

BiqCrunch also provides two useful functions for testing the solution produced with the
heuristic:

• int BC_isFeasibleSolution(int ∗sol) which allows the user to test if the solution in the
binary vector sol is feasible;

• double BC_evaluateSolution(int ∗sol) which returns the value of the objective function
computed with the solution sol, a binary vector of size problemSize.

2.3.4 Data structure
In this section we report the declaration of the data structure used in BiqCrunch heuristics,
consisting of:

• the Problem and Inequality structures that contain all the information about the
problem instance (see Code 2.2);

• the Sparse structure that represents a matrix in sparse format (see Code 2.3);

• the BobNode structure which contains the information about a node of the branch
and bound tree (see Code 2.5);

• the BobSolution structure which contains a binary solution vector (see Code 2.4).

These structures can be modified in order to include additional information for a specific
problem (or to increase the maximum problem size).

typedef struct Problem {
double ∗Q ; // Ob j e c t i v e matrix in DENSE format
Sparse Qs ; // Ob j e c t i v e matrix in SPARSE format
int n ; // s i z e o f Q
Sparse ∗As ; // l i s t o f sparse matr ices f o r the i n e q u a l i t y c o n s t r a i n t s
double ∗a ; // r i gh t−hand−s i d e vec t o r o f i n e q u a l i t y c o n s t r a i n t s
int mA ; // number o f i n e q u a l i t y c o n s t r a i n t s
Sparse ∗Bs ; // l i s t o f sparse matr ices f o r the e q u a l i t y c o n s t r a i n t s
double ∗b ; // r i gh t−hand−s i d e vec t o r o f e q u a l i t y c o n s t r a i n t s
int mB ; // number o f e q u a l i t y c o n s t r a i n t s
int max_problem ; // 1 i f i t i s a max problem , and 0 i f i t i s a min problem

} Problem ;

typedef struct Inequality {
int i ;
int j ;
int k ;
int type ;
double value ;
double y ;

} Inequality ;

Code 2.2: Problem data structure

BiqCrunch - User’s Guide 12

http://www-lipn.univ-paris13.fr/BiqCrunch

typedef struct Sparse {
int ∗i ;
int ∗j ;
double ∗val ;
int nnz ;

} Sparse ;

Code 2.3: Data structure of a sparse matrix

/∗
∗ Maximum number o f v a r i a b l e s
∗/

#define NMAX 1024

/∗
∗ So lu t i on o f the problem .
∗ This s t r u c t u r e d e f i n e s the content o f a s o l u t i o n o f the problem .
∗/

typedef struct BobSolution {
/∗
∗ Vector X.
∗ Binary vec to r t h a t s t o r e s the s o l u t i o n o f the branch−and−bound
∗ a l gor i thm
∗/

int X [NMAX] ;
} BobSolution ;

Code 2.4: Data structure of a solution

typedef struct BobNode {
/∗
∗ Node in format ion .
∗
∗/

BobTNdInfo BobNdInfo ; // (i n t Size , i n t Off)
/∗
∗ Number o f f i x e d v a r i a b l e s .
∗ In t e g e r v a r i a b l e t h a t s t o r e s the number o f f i x e d v a r i a b l e s in the
∗ curren t node .
∗/

int level ;
int xfixed [NMAX] ;
BobSolution sol ;
double fracsol [NMAX] ;
BobTPri Pri ; // (i n t Eval , i n t Depth)

} BobNode ;

Code 2.5: Branch-and-bound tree node data structure

BiqCrunch - User’s Guide 13

http://www-lipn.univ-paris13.fr/BiqCrunch

3 Examples

3.1 Max-Cut problem
Given a graph G = (V,E) with edge weights wij for ij ∈ E and wij = 0 for ij 6∈ E,
Max-Cut is the problem of finding a bipartition of the nodes V such that the sum of the
weights of the edges across the bipartition is maximized. Let n = |V | be the cardinality of
V ; we can state Max-Cut as

maximize
∑
i<j

wij

(
1− xixj

2

)
subject to x ∈ {−1, 1}n

We can rewrite the problem of Max-Cut as

maximize xTQx

subject to x ∈ {0, 1}n

where Q is the Laplacian matrix of the weighted graph G.

3.1.1 Max-Cut heuristic
With BiqCrunch we provide the Goemans-Williamson random hyperplane algorithm [3].
The heuristic is run after each node evaluation to get a feasible solution.

3.1.2 Conversion tools
To simplify the creation of the BC instances we provide some tools to convert standard
instances in sparse format to the BC format. All the tools can be downloaded from the
BiqCrunch download page.
From Biq to BiqCrunch
To convert binary quadratic problems (e.g. [1] to a standard BC instance we provide the
qp2bc conversion tool. This tool converts an instance in a standard sparse format to a
valid instance for BiqCrunch. This tool is written in Python and can be used directly from
command line:

$./qp2bc.py <BIQ_INSTANCE> > <BC_INSTANCE>

From Mac to BiqCrunch
To convert max-cut problems to a standard BC instance we provide the mc2bc conversion
tool. This tool converts an instance in a standard sparse format to a valid instance for
BiqCrunch. This tool is written in Python and can be used directly from command line:

$./mc2bc.py <MC_INSTANCE> > <BC_INSTANCE>

BiqCrunch - User’s Guide 14

http://www-lipn.univ-paris13.fr/BiqCrunch/Download
http://www-lipn.univ-paris13.fr/BiqCrunch

3.2 k-cluster problem
Given a graph G = (V,E) the k-cluster problem consists of determining a subset S ⊆ V of
k vertices such that the sum of the weights of the edges between vertices in S is maximized.

Letting n = |V | denote the number of vertices, and wij denote the edge weight for ij ∈ E
and wij = 0 for ij /∈ E, the problem can be modeled as the following 0-1 quadratic problem:

maximize 1
2x

TWx

subject to
∑

i

xi = k, x ∈ {0, 1}n

where W = (wij)ij is the weighted adjacency matrix of the graph G.

3.2.1 k-cluster heuristic
We use two types of heuristics to find a cluster with exactly k nodes. First, for the initial
feasible point (before running the Branch-and-Bound), we use the classical greedy heuristic,
since it gives very good feasible solutions: we remove vertices one at a time from the graph
by choosing at each step the vertex with the smallest degree (or sum of the weights over
the adjacent vertices). Second, during the evaluation of the bound and after running the
bounding procedure on a subproblem having k′ nodes added to the cluster, we add the
remaining k − k′ nodes having the largest fractional values xi in the SDP solution. More
details can be found in [4]. Finally, to improve the solution we use a two-opt algorithm:
swap two vertices (one in the k-cluster the other outside) until no progress is made.

3.2.2 k-cluster instances and conversion
To obtain BiqCrunch input files for the k-cluster problem you can simply use the conversion
tools kc2bc and kcw2bc which can convert instances from Rudy format and from the
format used in [6] to BC. When using the conversion tool, weights can be ignored with a
simple flag (thus the graph will be considered unweighted). Note that the conversion tools
also add redundant constraints to the instance to improve the bound obtained during the
bounding procedure [11].

3.3 Max independent set problem
Consider an undirected graph G = (V,E), where V = {1, ..., n} and |E| = m. To each
vertex i ∈ V a weight wi ∈ R is assigned.
An independent set is a set S ⊆ V such that no two vertices in S are joined by an edge in
E. We seek an independent set of maximum total weight in G. This value is called the
independent set number of G and is denoted by αw(G).

{
α(G) = 4
Smax = {1, 3, 5, 7} or Smax = {2, 4, 6, 8}

Quadratic model

(Q)

maximize ∑n

i=1 wixi

subject to
xixj = 0 ∀ij ∈ E
xi ∈ {0, 1} ∀i ∈ V

BiqCrunch - User’s Guide 15

http://www-lipn.univ-paris13.fr/BiqCrunch

3.3.1 Max-independent set heuristic
Two standard heuristics are provided in the corresponding heur.c file. First, before running
the Branch-and-Bound in order to have an initial solution, sort the vertices of G by
increasing degree, following this order add successively in the solution each vertex if it
does not have any neighbour already in the current independent set. Second, during the
evaluation of the bound and after running the bounding procedure, follow the same method
as the previous heuristic by trying to add each vertex in the independent set giving a
different order. This time, the order is not actually given by the increasing degree of
the vertices but by the fractional solution provided by BiqCrunch (sort the vertices by
decreasing fractional value).

BiqCrunch - User’s Guide 16

http://www-lipn.univ-paris13.fr/BiqCrunch

Bibliography

[1] Alain Billionnet and Sourour Elloumi. Using a mixed integer quadratic programming
solver for the unconstrained quadratic 0-1 problem. Mathematical Programming,
109:55–68, 2007. 10.1007/s10107-005-0637-9.

[2] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory
algorithm for bound constrained optimization. SIAM J. Sci. Comput., 16(5):1190–1208,
September 1995.

[3] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM,
42(6):1115–1145, November 1995.

[4] Nathan Krislock, Jérôme Malick, and Frédéric Roupin. Improved semidefinite branch-
and-bound algorithm for k-cluster. Available at http://hal.archives-ouvertes.fr/hal-
00717212. Submitted.

[5] Nathan Krislock, Jérôme Malick, and Frédéric Roupin. Improved semidefinite bounding
procedure for solving max-cut problems to optimality. Mathematical Programming,
143(1-2):61–86, 2014.

[6] Amélie Lambert. A library of k-cluster problems. CNAM-CEDRIC,
http://cedric.cnam.fr/ lamberta/Library/k-cluster.html.

[7] Bertrand Le Cun, Catherine Roucairol, and The Pnn Team. Bob: a unified platform
for implementing branch-and-bound like algorithms. Technical report, Laboratoire
Prism, 1995.

[8] Jérôme Malick and Frédéric Roupin. On the bridge between combinatorial optimization
and nonlinear optimization: a family of semidefinite bounds for 0-1 quadratic problems
leading to quasi-newton methods. Mathematical Programming, 140(1):99–124, 2013.

[9] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: approx-
imating packing integer programs. J. Comput. Syst. Sci., 37(2):130–143, October
1988.

[10] Prabhakar Raghavan and Clark D. Tompson. Randomized rounding: a technique
for provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374,
December 1987.

[11] Frédéric Roupin. From linear to semidefinite programming: An algorithm to obtain
semidefinite relaxations for bivalent quadratic problems. Journal of Combinatorial
Optimization, 8:469–493, 2004. 10.1007/s10878-004-4838-6.

BiqCrunch - User’s Guide 17

http://www-lipn.univ-paris13.fr/BiqCrunch

	BiqCrunch
	Installation
	Usage
	Conversion tools
	Input format
	Example

	Output

	Advanced section
	BiqCrunch Parameters
	Instance syntax
	Heuristics
	Generic heuristics
	Heuristic timing
	Additional functions
	Data structure

	Examples
	Max-Cut problem
	Max-Cut heuristic
	Conversion tools

	k-cluster problem
	k-cluster heuristic
	k-cluster instances and conversion

	Max independent set problem
	Max-independent set heuristic

