

Future Server Platforms: Persistent

Memory for Data-intensive Applications

Sudarsun Kannan,

Ada Gavrilovska, Karsten Schwan
CERCS Research Center

Georgia Institute of Technology

Background – ‘Big Data’ Research

– Scientific/Technical Computing – Scalable, Reliable Data

Access:

• High Performance I/O: in-situ and in-transit processing for HPC I/O:

• DOE SDAV, ExACT, SDM awards (ORNL, LBL); DOE Sandia

joint work on resilience (IPDPS12, SC13, …).

• Heterogeneous multicore platforms (+accelerator-based systems):

• DOE ExaOS award (Sandia, ORNL, LBL); Intel NVM award (on

clients); additional collab. with Microsoft (on servers); HP Labs

collaboration (HPCA13, TRIOS13, …).

In-situ

&

In-transit

data

processing

initialize shuffle
reduce

reduce

finalize

initialize shuffle reduce finalize

fetch

fetch

map
map
map
map
map
map

map
map
map
map
map
map

Background – cont.

– Enterprise and Cloud Computing – Fast Data:

• QoS Clouds (IPDPS13); I/O virtualization and IB bypass (Cluster 13).

• ‘Monalytics’: real-time data monitoring and analytics; online
troubleshooting; scalable Flume-based benchmark suite; annotated
biblio on troubleshooting (Middleware13, ACM SigOps14, ICAC 14,
…). Scalable Flume-based data streaming benchmark.

• ELF: ELastic Fast data processing (ATC 14); Nectere benchmark.

• Data-intensive applications on GPUs:

• SQL operators on GPUs (Yalamanchili); PGAS for extended

memory (Cluster13, GPGPU13, GPGPU14, CGO14, …).
• Note: Big Data management track in ICAC conference (with HP).

Front - end Middle-tier Application Logic Data Base

 I n
 t e

r n
 e

 t

P
ro

x
y
 S

e
rv

e
r

General (VM1)

Virtual Platform

VCPU1 VCPU2

Hybrid (VM2)

Virtual Platform

VCPU3 aVCPU4

Hybrid (VM3)

Virtual Platform

VCPU5 aVCPU6 sVCPU7

Heterogeneity-aware Hypervisor (Xen) + Management Domain (Dom0)

VMs’ Compute
Personality

aVCPU4 aVCPU6

VMs’ Crypto
Personality

sVCPU7

VMs’ General Personality

VCPU1 VCPU2

VCPU3 VCPU5

Privileged Software Privileged Software (Physical Resource Manager)

 Federated Schedulers
Heterogeneous

Personality
Scheduler (s)

General + Asymmetric
Personality Scheduler

Homogeneous View Heterogeneous View
Future Server Platrforms - Spectrum of Heterogeneity

Heterogeneous Many-core Platform

Accelerators

aPCPU1
(Compute)

aPCPU2
(Network)

Socket1 Socket2

PCPU PCPU

PCPU PCPU

C
ach

e

sPCPU sPCPU

sPCPU sPCPU

C
ach

e
Platform Interactions Platform Interactions Cooperative Platform Interactions

Observed Parameters

M
em

o
ry/In

terco
n

n
ect

Hetero Processors => Hetero Memory

Growth in data intensive applications, coupled with

increased node core counts and thread parallelism

Demands increased on-node memory capacities:

Toward exascale systems:

 Science simulations using experimental data or

co-running with online data analytics

Next generation server and cloud platforms:

 Heterogeneous server nodes for perceptual and

cognitive applications (zillians, …)

End client devices:

 Apps. with rich features and data, enabled by

Machine Learning, Graph Processing, MR, …

Motivation

Power (or Battery) constraints, along with cost, prevents use of

DRAM to address

all of these needs.

SSD/Nand-Flash remains comparatively slow, so …

Non-Volatile Memory (NVM)

to the Rescue

NVM (e.g., PCM) is byte addressable

Provides persistence – 100x faster than SSD

Higher density compared to DRAM (~128GB)

NVM as low power memory in future Exascale Platforms

 Technical approach:
 Use NVM `as memory’ vs. `as storage’ (under the I/O

stack): to enable rapid ‘compute’ on data

 Use processor caches to reduce write latency impact and

improve endurance (4x-10x slower writes, and limited

endurance (~108 writes))

 `Enable’ applications to use NVM + `NVM-aware’ systems

NVM: Why use it as ‘Memory’?

Example: end client devices and applications

NVM (and/or the slower SSD devices) used via I/O APIs:

High software overheads for block-based I/O interfaces

Low per call data sizes, hence more calls

Just using 'mmap‘ not sufficient:

every mmap/munmap call implies a user/kernel transition

requires multiple supporting POSIX calls like open, close

NVM as Memory:

Prior Work: DRAM as Cache

Processor

Cache
 NVM

 DRAM Page

Cache
CPU

DRAM acts like a page cache

Good for addressing `capacity only’ needs

May work well for server machines with TBs of DRAM

Power/performance issues for exascale or end client codes

Alternative: Fast Non-Volatile Heap

Processor

Cache NVM
CPU

To Make Persistence Guarantees:

Frequent cache flushing, memory fencing, writes to PCM

High persistence management overheads

Includes user and kernel level overheads

Prior Research: use NVM either for persistence or

 as an additional `capacity heap’

pMem: use NVM for persistence and for add’tl capacity

NVM for persistence - “NVMPersist”

NVM for capacity as a heap - “NVMCap”

NVMCap and NVMPersist threads share use of the

same last level cache

Our Approach: pMem: Dual-Use NVM

NVM Dual Use – High Level View

App thrd1

App thrd2

Processor

Last Level

Cache

DRAM

NVMCap. Heap

NVMPersist. Heap

NVM-pMem: Dual Use Interface

NVM is with partitioned capacity & persistence zones

 User level NVM Library

APP

 DRAM
Capacity

Zone

Persist

Zone

NVM Node

Kernel

Zone

Kernel Layer

pMem: Dual Use NVM

 User level NVM Library

Capacity

Zone

Persistence

Zone

APP

Kernel Layer

 DRAM

NVM Node

CapMalloc(size)

pMem: Dual Use NVM

 User level NVM Library

Capacity

Zone

Persistence

Zone

APP

Kernel Layer

 DRAM

NVM Node

CapMalloc(size)

Application decides when to use NVM for capacity

NVM used as heap without persistence

User level and kernel managers route application calls

Think of persistent metadata as a light weight file system

metadata.

pMem: Dual-Use NVM

 User level NVM Library

Capacity

Zone

Persistence

Zone

APP2

Kernel Layer

 DRAM

NVM Node

PersistMalloc(size)

PersistMalloc(size)

Key Ideas:

Application-level control:

Suitable library-based interfaces for p vs. np data

Expensive I/O calls replaced with ‘memory’ accesses

Goal: Reduced software use (includes OS)

System-level:

Deploy NVM as OS `memory node’

NVM ‘node' partitioned into volatile + persistent heap

NUMA-like kernel allocation policies

Advantages

Dual-benefit NVM: capacity + fast persistence

pMem: Dual-Use NVM

Enabling Persistence Support

 hash *table = PersistAlloc(entries, "tableroot");

 for each new entry:

 entry_s *entry = PersistAlloc (size, NULL);

 table = entry;

 count++;

 temp_buff = CapAlloc(size);

Requires persistence

metadata in library & OS

No persistent metadata required

Plus the following additional requirements:

flush app. data cache to avoid loss on power failure

flush OS data-structures and library metadata

Dual-Use Solution Challenges:

`Persistence Impact’ on NVMCap

 `Persistence-unaware’ OS page allocations cause

cache conflicts between NVMCap and NVMPersist

 Persistent library allocator metadata maintenance

increases flushes

 Increases NVMCap cache misses for shared data

 Transactional (durability) logging of persistent

application state increases flushes and NVM Writes

Persistence Increases #Cache Misses

 Atom platform with 1MB LLC

 MSR counters to record LLC misses

pMem Implementation:

Emulated NVM Node for Persistence

On boot, configure an OS memory node to emulate NVM

All NVM pages locked, swapping disabled

Provides persistence across application sessions

For persistence across boots, write it to SSD

Paging uses allocate on write policy

Cache line flushes for user level data and for kernel

data-structures

Process 1

compartment1

pages

compartment2

RB tree

Process 2 Process 3

List of processes

Uses process id, compartment id and fault
address to identify the page

1 bit for each NVM page flag and 1 bit flush flag

pMem Implementation - Kernel

Compartments:

 large region of NVM allocated by user-level NVM manager

 using nvmmap

 they are virtual memory area structures (VMA)

 apps. can explicitly request separate compartments (‘nvmmap’)

 isolates persistent from non-persistent NVM regions

Application

allocates in chunks

chunks

To kernel layer

pMem user level

memory manager

Modified jemalloc to
support user level
persistence

 Provides application interfaces like “capmalloc”, “persistmalloc”,

logging, and application transparent non-persistent allocations

 Manages application data in chunks

 Implemented by extending the jemalloc library

pMem Software Architecture - Allocator

Methods for Cache Conflict Reduction

Co-running NVMPersist and NVMCap increases cache

conflicts

Solution: Cache partitioning

 Hardware techniques: little flexibility

 Software techniques: page coloring complex

(FreeBSD)

Focused on allocating physically contiguous pages

to application

 Software-based partitioning – ‘page bucket’ solution

to allocating persist vs. cap pages

Conflict Unaware JIT Allocation

Phys Frames

NVMCap, Pg 1

NVMPersist, Pg 2

NVMPersist, Pg 3

NVMCap, Pg 4

NVMPersist, Pg 5

NVMCap, Pg 6

….

Tag Way1 Way 2

NVMCap, Pg 1

NVMCap, Pg 1

NVMPersist, Pg 2

NVMPersist, Pg 2

NVMPersist, Pg 3

NVMPersist, Pg 3

NVMCap, Pg 4

NVMCap, Pg 4

Conflicts

Current OS uses Just In Time (JIT) - allocates

 pages on first touch

Reduces physical contiguity of pages with

 increasing no. of threads

Ideal Conflict-Free Allocator

Phys Frames

NVMCap, Pg 1

NVMCap, Pg 2

NVMCap, Pg 3

NVMPersist, Pg 4

NVMPersist, Pg 5

NVMPersist, Pg 6

….

Tag Way1 Way 2

NVMCap, Pg 1

NVMCap, Pg 1

NVMCap, Pg 2

NVMCap, Pg 2

NVMCap, Pg 3

NVMCap, Pg 3

NVMPersist, Pg 4

NVMPersist, Pg 4

Physically contiguous page allocation reduces conflicts

We propose a simple design to achieve contiguity

No
Conflicts

CAA - Reduction in Contiguity Misses

0

20

40

60

80

100

x
2
6
4

co
n
v
…

an
i…

m
cf

li
b
q
…

sj
en

g

p
o
v
ra

y

so
p
le

x

lb
m

o
m

n
…

as
ta

r…

R
ed

u
ct

io
n
 i

n
 P

ag
e

C
o
n

ti
g
u
it

y
 M

is
s

 R
el

at
iv

e
to

 J
IT

 a
ll

o
ca

ti
o
n

End Client Apps. SPEC Benchmarks

CAA-4 CAA- 16

Contiguity-Bucket-based Page Allocator

• Reduces page contiguity misses by 89%

NVMCap Cache Miss Reduction

-6
-4
-2
0
2
4
6
8

10

R
ed

u
ct

io
n
 i

n
 C

ac
h
e

M
is

se
s

(%
)

re
la

ti
v
e

to
 B

as
el

in
e

End Client Apps. Spec Bench

CAA -4
CAA -16

Beneficial for apps with large memory footprints

Adding more pages to bucket can increase cache misses

due to linked list traversal

Agenda

Motivation

Dual use of NVM Heap

 High level Design

 Programming Interface

Sources of Persistence cost in dual use of NVM

Optimizations to Reduce Persistence Cost

 Cache conflict aware allocation

 Library allocator optimization

 Hybrid Logging

 Conclusions and Future Work

Library Allocator Overhead

 Nonvolatile heaps require user-level allocator

 Modern allocators use complex data structures

 Placing complex allocator structures in NVM

 requires multiple cache line flushes

 Increases cache misses and NVM writes for

NVMPersist and NVMCap

Porting DRAM Allocators for NVM

Persistence support for JEMalloc ~4 CLFlush/ alloc.

NVM Write Aware Allocator (NVMA)

 Allocator complexity “independent of” NVM support

 Idea: place complex allocator structures into DRAM

 NVM contains only log of allocations and deletions

C1 C2 C3

C1,C2 indicates log of allocated chunks

 Flush only log information to NVM (~2 lines)

NVMA – Cache Flush Reduction

0

2

4

6

8

10

0.60 0.80 1.00 1.50

In
c
re

a
s
e
 i
n

 c
a

c
h
e

 m
is

s
(%

)
c
o
m

p
a
re

d
 t

o
 b

a
s
e
lin

e

No. of Hash Operations (In Millions)

NVMA…

2%

8x less CLflush

Logging Overheads

Logging required for apps. with strong durability

requirements

Logs must be frequently flushed to NVM

Current Word/Object logs increase NVM writes

Word based logs: High log metadata/ log data ratio

Object log: Logs entire object even for a word change

Hybrid Log Design

Hybrid log to address word/object granularity tradeoffs

Flexible use of word/object logs in same transaction

Applications specify the transaction type

Word- and object-based logs are maintained separately

Optimization - Miss Reduction

Reduces misses by 1-2% compared to CAA+

NVWA

With increasing rate of hash operations, more gains

-5

0

5

10

15

R
ed

u
ct

io
n

 i
n
 M

is
se

s
(%

)

re
la

ti
v
e

to
 J

IT
 a

ll
o
ca

ti
o
n

End Client Apps. Spec Bench

CAA + NVWA +Hybrid

Estimated Impact on Runtime

Half-Half : Half the misses reduced are NVM writes

Full Writes: All misses reduced are NVM writes

One-third: 1/3 of misses reduced are NVM writes

Gains in runtime improvement can be substantial

 with optimizations that reduce misses by ~2%

-20

0

20

40

R
ed

u
ct

io
n

 i
n
 e

x
ec

u
ti

o
n

ti
m

e
(s

ec
)

re
la

ti
v

e
to

b
as

el
in

e

End Client Apps. Spec Bench

Half and…
Full Writes

Summary & Future Work

 Efficient use of NVM requires cross-stack changes to applications and

systems

Analysis of dual use NVM shows potential high impact of NVMPersist on

NVMCap

Impact reduced via: page contiguity, NVM-aware user library allocator, and

hybrid logging

Improvements result in ~12%-13% reduced cache misses, with consequent

substantial gains in applications performance

 Future work: DRAM vs. NVM data structures (e.g., OS allocator)

 Analysis of power implications

=> ‘Think Memory’, not cores!

Shared Platforms: Performance Effects

• Current hypervisors are limited in their ability to meet

performance needs and isolation for multiple hosted

Applications

• Application performance depends on resources beyond

CPU + Memory: shared resources: Memory Bandwidth*, I/O

• Shared resources not as easily partitioned as CPU, Memory

in hardware (limited support e.g., NUMA)

• Application resource requirements are

elastic along multiple resource dimensions

• State of art hypervisor resource managers and arbitration

offer inadequate solutions to manage elasticity with isolation

39

Shared Platforms: Performance Effects

• Arbitrary interference for resource shares may have

detrimental performance implications

• Some applications more sensitive to interference than others

• Interference: an application’s resource shares imposing on

another’s sensitive resource shares

40

Challenges for Resource Managers of Shared Platforms

How to improve isolation of multiple performance properties,

leveraging limited support in hardware?

How to further efficiently arbitrate and manage elastic

application resource demands when multiple varying

performance requirements need to be met?

Costs of resource-reallocation to maintain elasticity may be

non-trivial.

41

Thanks!

‘’Think Memory’: encouraging you to

rethink ‘storage, I/O, and ‘memory’

(usage and management) for future

multicore platforms

lIntel Restricted Secret l43

Applications Analyzed…
OpenCV based FaceRecognition *

Generates training database from images

Database is in a XML format

For recognition, Eigen vector analysis of source with database

(150 image database with train/recognize)

Snappy Compression *

Fast compression library from google.

Importance on speed rather than compression ratio (2GB)

JPEG Conversion Library

Standard Linux/Windows JPEG library

We use the JPEG to BMP conversion utility

Most time spent on image decoding (similar to X264)

Read and Write Intensive (5000 images)

Crime/DBACL – Diagramic Bayesian Classification (Machine Learning)

Classified user emails/documents (500 MB of documents)

pMem - Memory (DRAM) Usage

M
em

o
ry

 u
sa

g
e

(M
B

)

Blck-SSD

pMem- IO

pMem- Full

pMem I/O – NVM only for persistence

pMem- Full – NVM for persistence and as additional memory

Blck-SSD – Block-based SSD usage

pMem – Page Access Latencies

NVM (pMem) Mneymosyne DRAM

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

P
a
g
e
 a

cc
e
ss

 l
a
te

n
c
y

 f
o

r
2

0
0

0
 p

a
g
e
s

FaceRec JPEG Snappy gthumb Crime

-40

-20

0

20

40

60

80

100

120

pMem M-RD

R
e
d

u
c
ti

o
n

 (
%

)
r
e
la

ti
v

e
 t

o
 B

lc
k

I
/O

M-SSD
M-RD

pMem
Blck-RD

M-SSD
M-RD

pMem
Blck-RD

M-SSD
M-RD

pMem
Blck-RD

M-SSD
M-RD

pMem
Blck-RD

M-SSD
M-RD

pMem
Blck-RD

0

10

20

30

40

50

60

70

System time(sec)

User time (sec)

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
)

FaceRec JPEG Snappy CrimeGThumb

pMem for Persistence - Performance Gains

•RD – RamDisk, M-mmap, Blck- Block based access

•Worst case: 4%-6% overhead compared to DRAM when

using NVM for execution and storage

•Avoids high context switch costs compared to 'mmap'

User-kernel switch

reduction

relative to Blck-IO

Optimizing Checkpoints Using NVM as Virtual Memory

 Sudarsun Kannan, Dejan Milojicic

 Ada Gavrilovska, HP Labs (Palo Alto)

 Karsten Schwan

 CERCS - Georgia Tech

