SHELLSORT (Survey Talk)

Shellsort and Shellsort networks

Ancient results

Old results

Average-case analysis

Variants of Shellsort

New ideas

```
shellsort(itemType a[], int 1, int r)
{
   int incs[16] =
      { 1391376, 463792, 198768, 86961, 33936,
        13776, 4592, 1968, 861, 336, 112, 48,
        21, 7, 3, 1 };
   int i, j, h, v;
   for (k = 0; k < 16; k++)
      for (h = incs[k], i = 1+h; i <= r; i++)
        {
           v = a[i]; j = i;
           while (j > h \&\& a[j-h] > v)
             { a[j] = a[j-h]; j -= h; }
           a[j] = v;
        }
}
```

Running time depends on increment sequence

Solved problem:

* running time is

Open problems:

- * "best" increment sequences for practical N
- * average-case analysis for any interesting sec
- * N log N variants
- * variants corresponding to log N depth network

UPPER BOUND

Use following increments

1	2	4	8	16	32	64	128	256
•	3	6	12	24	48	96	192	384
•		9	18	36	72	144	288	576
•			27	54	108	216	432	864
•				81	162	324	648	1296
•					243	486	962	1924
•						729	1458	2916
•							2187	4374
•								6561

Total running time is

Applies to networks

Too slow in practice

LOWER BOUND

If increment sequence is "almost geometric" then total running time must be

Use the following increments

1 8 23 77 281 1073 4193 16577

Increment sequence not "almost geometric"

Connection to "Frobenius problem"

Smaller of two bounds

first bound

second bound

Use first bound for small increments

Use second bound for large increments

Total running time is

A country wishes to issue k different stamps

- * Number of values that cannot be achieved?
- * Largest value that cannot be achieved?

Examples

Two stamps, relatively prime (Curran-Sharp, 1884)

Three stamps (Selmer, 1977)

Chazelle Upper Bound

Generalize Pratt "network" construction

Example

1	7	49	343	2401	16807	117649
•	8	56	392	2744	19208	134456
•		64	448	3136	21952	153664
•			512	3584	25088	175616
•				4096	28672	200704
•					32768	229376
•						262144

Total running time is

Choose parameter optimally (restrict to logarithmic number of passes)

Too slow in practice

	Sedge	wick-Inc	erpi	Upper	Bound	1		J
Start	with	a "basis	" of	relat	ively	prime	numbe	rs
	1	3 7		16	41			
Build	a sec	quence wi	th e	very nu	umber	the p	roduct	of
a	basis	number a	and					
a	numbe	r earlier	: in	the se	quenc	е		
1 1	.*3	1*3* 7	1*3*	7*16	1*3	* 7*16	* 41	
. 1	.*7	1*3*16	1*3*	7*41	1*3	* 7*16	*101	
•		1*7*16	1*3*	16*41	1*3	* 7*41	*101	
•			1*7*	16*41	1*3	*16*41	*101	
•					1*7	*16*41	*101	
1	3	21		336		1	3776	
Ŧ	כ ד	21 10		961			2026	
•	/	40		1069			5950	
•		112		1968		8	0901	
•				4592		19	8768	
•						46	3792	

Asymptotically optimal (same as Chazelle)

Fast in practice

Using M increments on a file of size N requires

at least

comparisons in the worst case, for some c>0.

Applies to any algorithm that

* uses a number of passes compare-exchanging items at a fixed increment
* does at least comparisions on each pass
* does not disturb k-ordering once achieved

Complexity "gap"								
thousand	10	3	9	78				
million	20	4	22	482				
billion	30	6	43	1933				
trillion	40	9	78	6233				

UPPER BOUND

passes:
total cost:

LOWER BOUND

passes:
total cost:

AVERAGE CASE

No results for any interesting sequences Simulations show

average case close to worst case for sequences designed to worst case Average case (two or three increments)

Analysis of (h, 1) Shellsort (Knuth)

Analysis of (h, k, 1) Shellsort (Yao)

Asymptotic result for three increments?

Shakersort (Incerpi, Sedgewick, 1984)

Shellsort "network"
Do one "cocktail shaker" pass
 (not full insertion sort)
 for each increment
 Choose increments close to
 Always seems to sort (!)

Poonen's bound applies; can't always sort

Can serve as basis for probabilistic sorting network with N log N comparators

Variants

try more sophisticated increment sequences do multiple shakes for each increment add 1-shakes at end if necessary

DISADVANTAGE

network is "depth" N

Bricksort (Sedgewick, Lemke, 1995)

Shellsort "network"
Do one "brick" pass
 (not full shaker pass)
 for each increment
 Choose increments close to
 Always seems to sort (!!)

Poonen's bound applies?

Can serve as basis for probabilistic sorting network of "depth" log N

Variants

try more sophisticated increment sequences do multiple brick passes for each increment add 1-passes at end if necessary

Average-case analysis??

Analysis of Bricksort