Shellsort and Shellsort networks

Ancient results

Old results

Average-case analysis

Variants of Shellsort

New ideas

## Shellsort

shellsort(itemType a[], int l, int r)
int incs[16] = \{ 1391376, 463792, 198768, 86961, 33936, 13776, 4592, 1968, 861, 336, 112, 48, $21,7,3,1$ \};
int $i, j, h, v ;$
for ( $k=0 ; k<16 ; k++$ )

$$
\text { for }(h=\text { incs }[k], i=1+h ; i<=r ; i++)
$$

\{

$$
v=a[i] ; j=i ;
$$

$$
\text { while }(j>h \& \& a[j-h]>v)
$$

$$
\{a[j]=a[j-h] ; j-=h ;\}
$$

$$
a[j]=v ;
$$

\}
\}

Running time depends on increment sequence

Solved problem:

* running time is

Open problems:

* "best" increment sequences for practical $N$
* average-case analysis for any interesting sec
* $N \log N$ variants
* variants corresponding to loa N depth networ


## Pratt Bounds (1971)

## UPPER BOUND

Use following increments

| 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| - | 3 | 6 | 12 | 24 | 48 | 96 | 192 | 384 |
| - |  | 9 | 18 | 36 | 72 | 144 | 288 | 576 |
| - |  |  | 27 | 54 | 108 | 216 | 432 | 864 |
| - |  |  |  | 81 | 162 | 324 | 648 | 1296 |
| - |  |  |  |  | 243 | 486 | 962 | 1924 |
| - |  |  |  |  |  | 729 | 1458 | 2916 |
| - |  |  |  |  |  |  | 2187 | 4374 |
| - |  |  |  |  |  |  |  | 6561 |

Total running time is

Applies to networks

Too slow in practice

LOWER BOUND

If increment sequence is "almost geometric" then total running time must be

## Sedgewick Upper Bound (1982)

> Use the following increments $\begin{array}{llllllll}1 & 8 & 23 & 77 & 281 & 1073 & 4193 & 16577\end{array}$

Increment sequence not "almost geometric"

Connection to "Frobenius problem"

Smaller of two bounds
first bound
second bound

Use first bound for small increments

Use second bound for large increments

Total running time is

## Frobenius Problem

A country wishes to issue $k$ different stamps

* Number of values that cannot be achieved?
* Largest value that cannot be achieved?


## Examples

Two stamps, relatively prime (Curran-Sharp, 1884)

Three stamps (Selmer, 1977)

## Chazelle Upper Bound

Generalize Pratt "network" construction

Example

| 1 | 7 | 49 | 343 | 2401 | 16807 | 117649 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - | 8 | 56 | 392 | 2744 | 19208 | 134456 |
| - |  | 64 | 448 | 3136 | 21952 | 153664 |
| - |  |  | 512 | 3584 | 25088 | 175616 |
| - |  |  |  | 4096 | 28672 | 200704 |
| . |  |  |  |  | 32768 | 229376 |
| . |  |  |  |  |  | 262144 |

Total running time is

Choose parameter optimally
(restrict to logarithmic number of passes)

Too slow in practice

Start with a "basis" of relatively prime numbers

$$
\begin{array}{lllll}
1 & 3 & 7 & 16 & 41
\end{array}
$$

Build a sequence with every number the product of a basis number and
a number earlier in the sequence

| 1 | 1*3 | 1*3*7 | 1*3* 7*16 | 1*3* 7*16* 41 |
| :---: | :---: | :---: | :---: | :---: |
| - | 1*7 | 1*3*16 | 1*3* 7 * 41 | 1*3* 7*16*101 |
| - |  | 1*7*16 | 1*3*16*41 | 1*3* 7*41*101 |
| - |  |  | 1*7*16*41 | 1*3*16*41*101 |
| - |  |  |  | 1*7*16*41*101 |
| 1 | 3 | 21 | 336 | 13776 |
| - | 7 | 48 | 861 | 33936 |
| - |  | 112 | 1968 | 86961 |
| - |  |  | 4592 | 198768 |
| - |  |  |  | 463792 |

Asymptotically optimal (same as Chazelle)

Fast in practice

## Poonen Lower Bound

Using M increments on a file of size $N$ requires at least
comparisons in the worst case, for some $\mathrm{c}>0$.

Applies to any algorithm that

* uses a number of passes compare-exchanging items at a fixed increment
* does at least comparisions on each pass
* does not disturb k-ordering once achieved


## Complexity "gap"

| thousand | 10 | 3 | 9 | 78 |
| :--- | :--- | :--- | ---: | ---: |
| million | 20 | 4 | 22 | 482 |
| billion | 30 | 6 | 43 | 1933 |
| trillion | 40 | 9 | 78 | 6233 |

UPPER BOUND
passes:
total cost:

LOWER BOUND
passes:
total cost:

AVERAGE CASE

No results for any interesting sequences Simulations show
average case close to worst case for sequences designed to worst case

## Average case (two or three increments)

Analysis of (h, 1) Shellsort (Knuth)

Analysis of (h, k, 1) Shellsort (Yao)

Asymptotic result for three increments?

Shellsort "network"
Do one "cocktail shaker" pass
(not full insertion sort)
for each increment
Choose increments close to
Always seems to sort (!)

Poonen's bound applies; can't always sort

Can serve as basis for probabilistic sorting network with N log N comparators

Variants
try more sophisticated increment sequences do multiple shakes for each increment add 1-shakes at end if necessary

DISADVANTAGE network is "depth" N

Shellsort "network"
Do one "brick" pass
(not full shaker pass)
for each increment
Choose increments close to
Always seems to sort (!!)

Poonen's bound applies?

Can serve as basis for probabilistic sorting network of "depth" $\log \mathrm{N}$

Variants
try more sophisticated increment sequences do multiple brick passes for each increment add 1-passes at end if necessary

Average-case analysis??


