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The leading root of the partial theta function



The basic set-up, reviewed

e Start from a formal power series

o0

f(a:,y) - Zan(y>xn

ith lim v, = o
n—oo

and coefficients lie in a commutative ring-with-identity-element R.

e There exists a unique formal power series xo(y) € R|[y]] satisfying
f(zo(y),y) = 0. We call xy(y) the leading root of f.

e Since xy(y) has constant term —1, we write xo(y) = —&o(y)
where §(y) =1+ O(y).

e We saw in Lecture #2 that &y(y) can be computed by

— An elementary method.
— A method based on the explicit implicit function formula.

— A method based on the exponential formula.



Method based on the explicit implicit function formula

e In Lecture #2 we derived the formula

ﬁ = Z Z ( _”Z”i) ﬁ(—manxy)

where
. a,(y) —1 forn=0,1
an(y) for n > 2

e Can this formula be used for proofs of nonnegativity???

&)(y)ﬁ — 1
5

e Recall the definition: &y(y) € Sp in case = 0

(coefficientwise nonnegativity)
e Empirically 1 know that &(y) € S5 when a,(y) = a, y""~V/2
and

(a) B > —2 with ay, = 1 (partial theta function)
(b) 8 > —1with o, = 1/n! (deformed exponential function)

(c) B> —1with ay, = (1 —q)"/(q;q)n, and ¢ > —1

e How can we see these facts from this formula???
lopen combinatorial problem]

e All these examples have @,(y) = 0. The factors (—1)" then
seem to cause trouble.



A very simple case: Alternating signs

Proposition. Suppose that
(—D)"a,(y) = 0  forallm >0

where
. an(y) —1 formn=0,1
an(y) for n > 2

Then &)(y) € Sp and in fact

oy 5—1>§:

n=0
in the following cases:
(a) B
(b) 8=
(c) B = —3 whenever ay(y) = a1(y) =1
(d) 8

= —1 whenever ay(y) = 1

—(2k — 1) whenever ay(y) = a1(y) = 1 and
ag(y):...—ak_l( ) =10

Proof. Follows almost immediately from

Wi 5 2 () e

(a) Set f = 1. Then the RHS of the Proposition comes from the
term m = 1. All the other terms are = 0 since (—1)"@,(y) = 0

and (5—14-27%) > 0.
m — 1



(b) Set § = —1 and observe that the sum can be restricted to

5 — 1+ Z n; _ 1
m — 1

and we get the RHS of the Proposition. If m > 2 we have

Y n; > 2, so0 that f — 1+ ) n; is a nonnegative integer and

1 Z.
hence (ﬁ +Zn> > 0.
m — 1

Ni,...,Ny > 1. If m = 1 we have

(c) is analogous to (b), but using 8 = —3 and observing that the
sum can be restricted to nq,...,n,, > 2, so that m > 2 implies

(d) is analogous to (b), but using # = —(2k — 1) and observing that
the sum can be restricted to nq,...,n, > k, so that m > 2
implies > n; > 2k.



A slight strengthening (by rescaling of f)

Corollary.
(a) If (—1)”2”8; = 0 for all n # 1, then &(y) € S; and satisfies
1
&)(y) - Cbo(y) + i(_nn an(y>

(b) If 1 - a1(y) = 0 and (—1)"an<y) = 0 for all n > 2, then
ao(y) ao(y)
&o(y) € S_1 and satisfies

(0. 9]

y) (—1) & v

1 al( n(
O 2 L) 20(3)

n

Proof.
(a) Apply part (a) of the Proposition to f(x,y)/a1(y).
(b) Apply part (b) of the Proposition to f(x,y)/ao(y).



Alternative (elementary) proof of the Corollary

e No need to use explicit implicit function formula. Just bare hands!

e Proof of part (a): Start from the equation f(—&(y),y) =0,
divide by a1(y), and add &(y) to both sides:

foly) = 2 Sy @l

ar(y)

n=2

e The unique solution to this equation can be found iteratively as
follows: Define a map F: R|ly|]| — R||y]] by

(Fo)y) = WS @l

a(y)

and define a sequence 5(()0)’&()1)’ ... € R[[y]] by 5(()0) — 1 and
fékﬂ) =F §ék) . I then claim that

d <V <P <=2

and that
&) = &ly) + Oy .

Proof of claim:

— If f(y) and g(y) are formal power series satisfying 0 < f < g,
then the hypotheses of the Corollary [part (a)] guarantee that
0=Ff=2Fyg

— Applying this repeatedly to the obvious inequality 0 < 5(()0) = Sél),
we obtain féo) = 581) < 582) =<...



— Likewise, if f(y) and g(y) are formal power series satisfying
f(y)—g(y) = O(y") for some ¢ > 0, then it is easy to see that

(FHy) = (Fg)(y) = Oy™)  [since an(y)/ai(y) = O(y)
for all n > 2].

— Applying this repeatedly to the obvious fact 681) (v) —ﬁéo) (y) =
Oly), we obtain & (y) — & (y) = O™).

— It follows that fék)(y) converges as k — oo (in the topology
of formal power series) to a limiting series €ém)(y), and that
this limiting series satisfies F. féoo) = 5800) . But this means

that €ém)(y) = &o(y). Tt also follows that €ék) (y) = &ly) +
O(y**1). The inequality of the Corollary is precisely the

statement &y > f(()l).

e The proof of part (b) is similar.

e Can parts (c¢) and (d) of the Proposition be given a similarly
elementary proof?

e Can results analogous to the Proposition be proven for the spaces
Sgwith 8 #1,-1,-3,-5,...7
But isn’t the case of alternating signs too trivial?

e After all, the most interesting examples have constant signs.

e Then the irritating factors (—1)" cannot be avoided.



The partial theta function Oy(z,y) = > " y""=1/2
n=0

(which has constant signs!)

It seems that &(y) € Sy

Eo(y) = 1T+y+ 2% +49° + 9y* + 219" + 525 + 133y" + 3513°
+948y” +2610y™ + ... + terms through order 359%

and indeed that &(y) € S_1:

Soly) ' = 1-y—y —y’ —2y" — 4y’ — 10y° — 25y" — 66y°
—178y” — 490y'Y — ... — terms through order y5%

and indeed that &y(y) € S_o:

S =1-2y—y —y' =2 — Ty — 18y — 50y°
—138y” — 386y'Y — ... — terms through order y5%

Can we prove any of this???

Yes!!!



Proof for the partial theta function

e Use standard notation for g-shifted factorials:

n—1

wn%==11ﬂ—a¥)

(g = [[0—ag’) forlg <1
=0

o A pair of identities for the partial theta function:
o0

E:lm MR = y)o (=21 Y)oc >

(W Y)n (=25 9)n

n

n=0

an n(n—1)/2 _ (_37;3/)00 Z( <_$>”yn

0 Y, y)n (—ZU, y)n

as formal power series and as analytic functions on (z,y) € C x D

2

° Rewrite these as

n nn 1 - yn
E T = %ym-ﬂ%yh>l+x+§
i) | nl(y,y%zé—xy;y%zll

annnl :<$yy

e Brackets on the RHS (minus the initial 1+3}) have alternating signs in

77/ 77/2
1+x+§: ]

xyw

(i.e. have nonnegative coefficients as a series in —z and y)
e So we have reduced to the easy case of alternating signs!
e The second identity has ag(y) = 1, so we prove also &y(y) € S_1.

e With a bit more work we can prove &y(y) € S_s.

10



The preceding proof, written more explicitly

e Let’s say we use the first identity:

O0(,y) = (i ¥)oo (—TY; Yoo |1+ T+ > — ’

e So O(z,y) = 0 is equivalent to “brackets = 0.
o Insert z = —&y(y) and bring &y(y) to the LHS:

fly) = 1+ — v
n=1 _131(1 — ) _131[1 — y&o(y)]

e This formula can be used iteratively to determine &y(y),
and in particular to prove the strict positivity of its coefficients:

e Define the map F: Zl|y|]| — Z|[y]] by

FOW) =1+ — v
10— T - ety

J=1

e Define a sequence SSO), fél), ... € Z[ly]] by 5(()0) = 1 and gék“) _ ffék).
e Then & <& < ... 2 & and &"(y) = &) + 0",

e In particular, klim gé“(y) = &o(y), and &y(y) has strictly positive

coefficients.

e Thomas Prellberg has a combinatorial interpretation of &y(y)

and fék) (y).

11



Elementary proof of the first identity

e Proof uses nothing more than Euler’s first and second identities
(£ ) (4 9)

(@)oo = Z_; (¢:q)n

valid for (t,q) € D x D and (¢, q) € C x D, respectively.
o Write

an n(n—1)/ an nn12(. (y;y)oo

YY) (YY) s

e Insert Euler’s first identity for 1/(y n+l.

Op(z,y) = (y;y)oozx y.

S
2

Mf
<

= By xy)oo —~ (Y )k (—21 Y

e This identity goes back to Heine (1847), but does not seem to
be very well known.

e [t can be found in Fine (1988) and Andrews and Warnaar (2007).
e Did anyone know it between 1847 and 1988777

12



Proof of the first and second identities

e A simple limiting case of Heine’s first and second transformations

(0; @)oo (@25 q) o
(€ @)oo (23 Qe

2¢1(a7 b7 ¢ q, Z) - 2¢1(C/b7 Z,az;q, b)

(¢/a;q)s0 (a2;q)o
(€ @)oo (25 @)oc

for the basic hypergeometric function

201(a,b;cq,2) = 2¢1(abz/c,a;az;q,¢/a)

2¢1(a’7 b; c; q, Z) = ( . <

n

I

o
—~
o
)
~—
3

e Just set b = ¢ and z = —x/a, then take a — oo and ¢ — 0.
e This is how Heine (1847) proved the first identity.

e Heine didn’t know his second transformation, which is apparently
due to Rogers (1893).

e Who first wrote the second identity for the partial
theta function???

e Surely it must have been known before Andrews and Warnaar
(2007)!17?!
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Can any of this be generalized?

e Recall our friend

e n(n—1)/2
"y
ZC
Y0 Zl+q -(I+qg+...+¢")

n:O

e Can this proof be extended to cases ¢ #£ 07
e Here is a general identity:

y n(n—1)/2

(4 @)n oo

1)t gle+1)/2

Z @0(55(16, y)

=0

ng

e Can deduce generalizations of the first and second identities for
the partial theta function:

0 o yn(n—l)/Q B
—~ (¢

(1Y) o~ (=1 V2 y"

(@ @)oc ; (a:9) ( ; (Y y)n (=" y)n
i o yn(n—l)/Q B
—~ (¢ q)n

1 > (—1) q€(€+1)/2 0 —:Uqf n yn2
> =) (—2¢"; ) =q)

(@D = (0 (YY) (—2¢"Y)n

e But [ don’t know what to do with these formulae, because of the
factors (—1)°.
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