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What is the λ-calculus?

• A universal formal system for expressing computation.
• Its terms are formed using the following grammar:

• A variable is a valid term.
• If x a variable and t is a valid term, then so is (λx.t).
• If s and t are valid terms, then so is (s t).

• The λ calculus also provides us with tools to transform
terms, including the operation of β-reduction:

((λx.t) s) β→ t[x := s]

Some examples of terms:

(λx.(xx))(λx.(xx))
λx.λy.(x (x y))
λx.(z (λy.y))
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Combinatorics of the λ-calculus

• General terms are quite complicated. Growth is
super-exponential, generating functions are not analytic. 1
Asymptotic number of general terms still (?) unresolved!

• We focus on linear terms: bound variables must appear
exactly once: λx.(x x), λx.λy.(a (y x)).

• We also consider planar terms: bound variables must
appear in the order they are introduced:
λx.λy.(y x), λx.λy.(a (x y)).

1For the notion of term size given recursively by:
|var|= 1, |(s t)|= |s|+|t|+1, |λx.t|= |t|+1.
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The λ-calculus and maps

• Maps: graphs embedded in an oriented surface without
boundary.

• Closed linear terms are combinatorially intriguing: they
correspond to rooted connected trivalent maps! [1, 2]
Closed planar terms correspond to planar such maps. Open
terms allow for univalent vertices too.
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An example of a term and its corresponding map

λx.λy.y((λz.z) x)
λ

λ

@

@

λ

Where λ annotates abstractions and @ applications.
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Purpose of this work

• How do ”typical” (random, of large size) linear and planar
terms behave?

• How many free variables do they have? How often is a
typical term an abstraction?

• Using tools from analytic combinatorics to obtain
parameter distributions.
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In this talk

We’ll sketch the following results:

Linear λ-Terms
(Differentially Algebraic,

Divergent)

• Limit distribution of free
variables

• Limit distribution of
identity-subterms in closed
terms.

• Limit distribution of closed
subterms in closed terms.

• Probability that term is an
abstraction.

Planar λ-Terms
(Algebraic, Analytic)

• Limit distribution of free
variables for regular and
bridgless terms.

• Probability that regular or
bridgless open term is an
abstraction.
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Free variables in closed linear terms

• Free variables are those not bound by an abstraction. For
example: λx.(a x)

Proposition

The limit distribution of free variables in linear λ-terms of
size n is Gaussian with mean and variance µ = σ2 ∼ 3√n.

Starting point (follows from definition of combinatorial maps):

L(z2,u) = uz2 + z4 + z5 ∂
∂z
(
ln
(
exp(z2/2)⊙ exp(z3/3+ uz)

))
where L counts open linear λ-terms with u tagging free variables.
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Free variables in closed linear terms

Proof Sketch
Saddle-point analysis of Hadamard product yields:

[zn] exp
(
z3/3 + uz

)
=

 1
6

√
2
√
3 n−

1
2

√
π

−
1
36

√
2
√
3u2n−

5
6

√
π

+ O
(
n−

7
6
) eun

1/3+n/3n−n/3

[zn] exp
(
z2/2

)
∼

1
2

e1/2+n/2(√
1 + n

)1+n √
π

−
1
2

e1/2+n/2(
−
√
1 + n

)1+n √
π

While an application of Bender’s theorem [3, Theorem 1] gives

2[zn] ddz ln(A(z
1/2,u)) = n

(
[zn]h(z,u)− 1

2 [z
n−2]h(z,u)

)
+O

(
[zn−4]h(z,u)

)
for A(x,u) = exp(z2/2)⊙ exp(z3/3+ uz)
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Distribution of identity-subterms in closed linear terms

• Identity terms: terms which are α-equivalent to λx.x. For
example: λx.(x (λy.y)).

• They appear as loops in the corresponding map.
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Distribution of identity-subterms in closed linear terms

• Identity terms: terms which are α-equivalent to λx.x. For
example: λx.(x (λy.y)).

• They appear as loops in the corresponding map.

(λx.x)(λy.y(λz.z(λw.w)))
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Distribution of identity-subterms in closed linear terms

Proposition

The limit distribution of identity-subterms in closed linear
λ-terms is Poisson of parameter λ = 1.

Proof Sketch: Use moment pumping on

G = (u− 1)z2 + zG2 + ∂

∂uG

where G counts closed linear terms with u tagging
identity-subterms.
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Distribution of identity-subterms in closed linear terms

Justification for

G = (u− 1)z2 + zG2 + ∂

∂uG

Terms are either identity-terms, applications, or

tt ↔
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Distribution of identity-subterms in closed linear terms

For the pumping, note that the k-th derivative of the eq. may
be written as

∂k

∂uk
G− S− 2z G ∂k

∂uk
G =

∂k+1

∂uk+1
G

with S, depending on the parity of k, being as follows

⌊ k2 ⌋∑
l=1

2z
(
k
l

)
∂l

∂ul
G ∂k−l

∂uk−l
G, for odd k

⌊ k2 ⌋−1∑
l=1

2z
(
k
l

)
∂l

∂ul
G ∂k−l

∂uk−l
G+ z

(
k
⌊k2⌋

)(
∂⌊ k2 ⌋

∂u⌊ k2 ⌋
G
)2

, for even k
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Distribution of closed subterms in closed linear terms

• Closed subterms: subterms having no free variables.
• Coresponding to non-root-containing connected
components resulting from the deletion of some bridge in
the respective map.
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Distribution of closed subterms in closed linear terms

• Closed subterms: subterms having no free variables.
• Coresponding to non-root-containing connected
components resulting from the deletion of some bridge in
the respective map.

λx.x(λy.y(λz.z))
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Distribution of closed subterms in closed linear terms

Proposition

The limit distribution of closed subterms in closed linear
λ-terms is Poisson of parameter λ = 1.

Proof Sketch: Use moment pumping on

∂W
∂v =

−(zv2W2 + z2 −W)W
zv2(v− 1)W2 + (1− v)W+ vz2

where W counts closed linear terms with v tagging
identity-subterms.

15



Probability that a closed linear term is an abstraction

Proposition
Asymptotically almost surely a random closed linear λ-term
is an abstraction.

Proof Sketch:

It can be shown that [zn]Lc ∼ k · 6n · n! for some constant k.
Compare the coefficients of Lc and 2z4 ∂

∂zLc in

Lc = z2 + zL2c + 2z4 ∂
∂zLc.

where Lc enumerates closed linear λ-terms.
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Distribution of identity-subterms in closed linear terms

Justification for

G = Lc = z2 + zL2c + 2z4 ∂
∂zLc.

Terms are either identity-terms, applications, or

→

17



Distribution of free variables in planar and bridgeless planar
terms

Proposition
The limit distribution of free variables in planar λ-terms of
size n is Gaussian with mean µ = n

8 and variance σ2 = 9n
32 .

Proposition
The limit distribution of free variables in bridgeless planar
λ-terms of size n is Gaussian with mean µ = n

5 and variance
σ2 = 9n

25 .
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Distribution of free variables in planar and bridgeless planar
terms

Both results follow similar steps.

Our starting points are the following two equations

P (z,u) = uz+ zQ (z,u)2 + z (P (z,u)− P(z, 0))
u

Q (z,u) = uz+ zQ (z,u)2 +
z
(
Q (z,u)− u[u1]Q(z,u)

)
u

with P and Q counting planar and bridgless planar terms
respectively and u tagging free variables.

Sketch: use elimination and the quadratic method to obtain
closed form solutions. Proceed by applying, [4, Proposition
IX.17].
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Distribution of free variables in planar and bridgeless planar
terms

Q(z, u) = 1/2 z−1 − 1/2 u−1

+
1
2
1
uz

( 1
3
u2

3
√

−1458 z6 + 6
√
3
√
19683 z8 − 4374 z5 + 324 z2 − 8 z−1z2 − 270 z3 + 1

+ 36 u2z3
1

3
√

−1458 z6 + 6
√
3
√
19683 z8 − 4374 z5 + 324 z2 − 8 z−1z2 − 270 z3 + 1

+
1
3
u2

1
3
√

−1458 z6 + 6
√
3
√
19683 z8 − 4374 z5 + 324 z2 − 8 z−1z2 − 270 z3 + 1

+
1
3
u2 − 4 u3z2 − 2 uz + z2

)1/2
.
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Distribution of free variables in planar and bridgeless planar
terms

While P(z) = A(z, u) + B(z, u) · C(z, u)−1/2 with

A(z, u) =
1
2z

−
1
2u

, B(z, u) =
1
2uz

C(Z, u) = −4 u3z2

+
1
48

u 3
√
1492992 z12 + 8640 z6 + 96

√
3
√
80621568 z18 − 559872 z12 + 1296 z6 − 1z3 − 1

z2

+ 72
uz4

3
√
1492992 z12 + 8640 z6 + 96

√
3
√
80621568 z18 − 559872 z12 + 1296 z6 − 1z3 − 1

+
1
48

u

z2 3
√
1492992 z12 + 8640 z6 + 96

√
3
√
80621568 z18 − 559872 z12 + 1296 z6 − 1z3 − 1

−
1
48

u
z2

+ u2 + z2
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Probability that an open planar or bridgeless planar term is an
abstraction

Proposition
Asymptotically, the probability that an random open planar
(bridgeless planar) term is an abstraction is ρP =

√
2
4

(ρPB = 2
5 ).

Proof Sketch: Estimate
[zn] z(P(z, 1)− P(z, 0))

[zn] P(z, 1) and [zn] z(Q(z, 1)− ([u1]Q(z,u))|u=1)
[zn] Q(z, 1)

Both P(z, 0) and [u1]Q(z,u)|u=1 are analytic at the respective
singularities ρP and ρPB of P and Q. Use the singular
expansions of P,Q at the corresponding singularities to obtain
the desired result.
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Conclusions

• Clear distinctions between the
divergent/differentially-algebraic case of linear terms and
the algebraic one of planar terms.

• Need for: more tools to handle divergent combinatorial
classes, algebraicity results for closed planar terms.

• Future directions: study of β-reduction, typing of linear
terms.

Thank you!
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