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What is the \-calculus?

- A universal formal system for expressing computation.
- Its terms are formed using the following grammar:

- Avariable is a valid term.

- If xa variable and t is a valid term, then so is (Ax.t).

- If sand t are valid terms, then so is (s t).

- The X calculus also provides us with tools to transform
terms, including the operation of g-reduction:

((x.t) s) Dt :=s]
Some examples of terms:
(AX. (X)) (AX.(xx))
AXAY.(x (X Y))
M. (z (Ay.y))



Combinatorics of the \-calculus

- General terms are quite complicated. Growth is

super-exponential, generating functions are not analytic.
Asymptotic number of general terms still (?) unresolved!

"For the notion of term size given recursively by:
lvar|=1,|(s t)|= |s|+[t|+T, | Ax.t]= [t|+1.



Combinatorics of the \-calculus

- General terms are quite complicated. Growth is
super-exponential, generating functions are not analytic.
Asymptotic number of general terms still (?) unresolved!

- We focus on linear terms: bound variables must appear
exactly once: Ax.(x x), Ax.\y.(a (v x)).

"For the notion of term size given recursively by:
lvar|=1,|(s t)|= |s|+[t|+T, | Ax.t]= [t|+1.



Combinatorics of the \-calculus

- General terms are quite complicated. Growth is
super-exponential, generating functions are not analytic.
Asymptotic number of general terms still (?) unresolved!

- We focus on linear terms: bound variables must appear
exactly once: Ax.(x x), Ax.\y.(a (v x)).

- We also consider planar terms: bound variables must
appear in the order they are introduced:

ACAY(Y X), A Ay.(a (x y)).

"For the notion of term size given recursively by:
lvar|=1,|(s t)|= |s|+[t|+T, | Ax.t]= [t|+1.
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The A-calculus and maps

- Maps: graphs embedded in an oriented surface without
boundary.

- Closed linear terms are combinatorially intriguing: they
correspond to rooted connected trivalent maps! [1, 2]
Closed planar terms correspond to planar such maps. Open
terms allow for univalent vertices too.

x (t s) (Azx.t) .



An example of a term and its corresponding map

Ax Y. y((Az.2) x)
A

A
@

Where X\ annotates abstractions and @ applications.
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Purpose of this work

- How do "typical” (random, of large size) linear and planar
terms behave?

- How many free variables do they have? How often is a
typical term an abstraction?

- Using tools from analytic combinatorics to obtain
parameter distributions.



In this talk

We'll sketch the following results:

Linear A\-Terms Planar A-Terms
(Differentially Algebraic, (Algebraic, Analytic)
Divergent) - Limit distribution of free

- Limit distribution of free variables for regular and
variables bridgless terms.

- Limit distribution of - Probability that regular or
identity-subterms in closed bridgless open term is an
terms. abstraction.

+ Limit distribution of closed
subterms in closed terms.

- Probability that term is an
abstraction.
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Free variables in closed linear terms

- Free variables are those not bound by an abstraction. For
example: Ax.(a x)

The limit distribution of free variables in linear A\-terms of
size n is Gaussian with mean and variance p = o> ~ /n.

Starting point (follows from definition of combinatorial maps):
L(Z%,u) = uZ? + 2" + 25% (In (exp(ZZ/Z) ©exp(Z®/3 + uz)))

where L counts open linear A-terms with u tagging free variables.



Free variables in closed linear terms

Proof Sketch
Saddle-point analysis of Hadamard product yields:

_1 _3
("] exp (23/3+uz) _ (|1 avEe _ L VBBRITD +O(rf%) o'/ 3+n/3p=n/3
6 o m %6 7

el/2+n/2 1 el/2+n/2

ﬁ“r”)wmﬁ T = ﬁJrn)wwﬁ

[2"] exp (ZZ/Z) ~ ; (
While an application of Bender’s theorem [3, Theorem 1] gives

2[2”]% In(A(z'/?,u)) =n <[z”]h(z, u) — %[z”_z]h(z, u)) +0 ([2"*]h(z, u))

for A(x, u) = exp(2%/2) ® exp(2®/3 + u2)



Distribution of identity-subterms in closed linear terms

- ldentity terms: terms which are a-equivalent to Ax.x. For
example: Ax.(x (Ay.y)).
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Distribution of identity-subterms in closed linear terms

- ldentity terms: terms which are a-equivalent to Ax.x. For
example: Ax.(x (Ay.y)).
- They appear as loops in the corresponding map.

@E®) (\y.y(A\2.2(QwD)))
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Distribution of identity-subterms in closed linear terms

The limit distribution of identity-subterms in closed linear
A-terms is Poisson of parameter A = 1.

Proof Sketch: Use moment pumping on
G=(u—1)z + 2G>+ 95
ou

where G counts closed linear terms with u tagging
identity-subterms.

"



Distribution of identity-subterms in closed linear terms

Justification for

9
G=(u—-"1N2+2G*+=—G
(u—"1z"+z +8u

Terms are either identity-terms, applications, or
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Distribution of identity-subterms in closed linear terms

For the pumping, note that the k-th derivative of the eq. may
be written as

8k afe Hr+1

with S, dependlng on the parity of Rk, being as follows

L3 [ gl
ZZZ( ) 0 66, for odd k
.

E
L)1

o o R (04 \°
Zz( ) G+z < ) ——G | , foreven Rk
= 8 ouk-t LfJ aul_ij
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Distribution of closed subterms in closed linear terms

- Closed subterms: subterms having no free variables.
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Distribution of closed subterms in closed linear terms

- Closed subterms: subterms having no free variables.

- Coresponding to non-root-containing connected
components resulting from the deletion of some bridge in
the respective map. o

Az.z(Ay.y(Az.2))



Distribution of closed subterms in closed linear terms

The limit distribution of closed subterms in closed linear
A-terms is Poisson of parameter A = 1.

Proof Sketch: Use moment pumping on

ow —(2V*W? 4+ 22 — W)W
o 22(v—1W2 + (1 — V)W 4 vz2

where W counts closed linear terms with v tagging
identity-subterms.



Probability that a closed linear term is an abstraction

Proposition
Asymptotically almost surely a random closed linear A-term

is an abstraction.

Proof Sketch:
It can be shown that [z"]Lc ~ k- 6" - n! for some constant k.
Compare the coefficients of L, and 224 2 L. in

0
le =72 4702 ZZZ*ELC.

where L. enumerates closed linear A-terms.



Distribution of identity-subterms in closed linear terms

Justification for

0
G=Lc=2"+2zI?2 +2Z‘*§LC.

Terms are either identity-terms, applications, or



Distribution of free variables in planar and bridgeless planar
terms

Proposition

The limit distribution of free variables in planar A-terms of

size n is Gaussian with mean p = g and variance o2 = 3—5’

Proposition
The limit distribution of free variables in bridgeless planar

A-terms of size n is Gaussian with mean p = & and variance

2_on
0'—25.



Distribution of free variables in planar and bridgeless planar

terms

Both results follow similar steps.
Our starting points are the following two equations

z(P(z,u) — P(z,0))
u
z(Q(z,u) — u[u"Q(z, u))
u

P(z,u) = uz+2Q(z,u)* +

Q(z,u) = uz+2Q(z,u)* +

with P .and Q counting planar and bridgless planar terms
respectively and u tagging free variables.

Sketch: use elimination and the quadratic method to obtain
closed form solutions. Proceed by applying, [4, Proposition
1X171.
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Distribution of free variables in planar and bridgeless planar

terms

Qz,u)=1/2z""—1/207"

11 /1 53 :
+5— (5 v \/—W45826 + 6311968378 — 437475 + 32472 — 82— 122 — 27023 + 1

uz

L
+36u°7
\3/—145826 +61/31/1968378 — 43742° + 32422 — 827122 — 27023 + 1
1 1

+ -2

—u
g \3/4458z5 +6 V311968328 — 43742° + 32422 — 827122 — 27023 + 1

1 1/2
+guz—4u32272uz+zz) 5
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Distribution of free variables in planar and bridgeless planar

terms

While P(z) = A(z, u) + B(z, u) - C(z, u)~"/2 with

1 1 1
Az, u) = = B(z,u) = e

C(Z,u) = —4 72

1 u€/1492992 712 4 8640 2° + 96 v/31/80621568 2 — 559872712 + 1296 20 — 12> — 1

48 72

uz*

+ 7

2
\3/1492992 712 4 8640 20 + 96 v/31/80621568 218 — 559872712 4 1296 20 — 12° — 1

u

1
S ok
48 2 \/1492992ZW2 + 8640 26 + 96 /31/80621568 z'8 — 559872212 + 129626 — 123 — 1

T u
7*7+u2+zz
2
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Probability that an open planar or bridgeless planar term is an

abstraction

Asymptotically, the probability that an random open planar
(bridgeless planar) term is an abstraction is pp = ‘[

(ppe = 2).

Proof Sketch: Estimate
['] 2(P(z,1) — P(2,0)) _ . [2"] 2(Q(z,1) — (lv'1Q(z, u))lu=1)
[2"] P(z,1) [z"] Q(z,1)

Both P(z,0) and [u"]Q(z, u)|u= are analytic at the respective
singularities pp and ppg of P and Q. Use the singular
expansions of P, Q at the corresponding singularities to obtain

the desired result.
2



Conclusions

- Clear distinctions between the
divergent/differentially-algebraic case of linear terms and
the algebraic one of planar terms.
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Conclusions

- Clear distinctions between the
divergent/differentially-algebraic case of linear terms and
the algebraic one of planar terms.

- Need for: more tools to handle divergent combinatorial
classes, algebraicity results for closed planar terms.

- Future directions: study of g-reduction, typing of linear
terms.

Thank you!

23



Bibliography

@ 0. Bodini, D. Gardy, and A. Jacquot, “Asymptotics and
random sampling for BCl and BCK lambda terms,”
Theoretical Computer Science, vol. 502, pp. 227-238, 2013.

[@ N. Zeilberger, “Linear lambda terms as invariants of rooted
trivalent maps,” Journal of Functional Programming,
vol. 26, 2016.

[@ E. A Bender, “An asymptotic expansion for the coefficients
of some formal power series,” Journal of the London
Mathematical Society, vol. 2, no. 3, pp. 451-458, 1975.

[d P Flajolet and R. Sedgewick, Analytic combinatorics.
cambridge University press, 2009.

2%



