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partition function are dual graphs to triangulated 2d surfaces.

@ Therefore, the model defines a certain statistical ensemble over discrete
geometries through its perturbative series interesting, e.g., from the point
of view of quantum gravity.

@ An important technique is the large N expansion, which is controlled by
the topology of the surfaces dual to Feynman graphs: in particular, the
leading order contribution to the partition function is given by the planar
graphs.

@ Thus, the large N expansion allowed to study in detail the planar sector of
the models and use them, for example, for enumeration of planar maps
(and much more).

@ By simultaneous scaling of N and the coupling constant, the
double-scaling limit allowed to define a continuum limit, where all
topologies contribute, which was then possible to connect to 2d gravity.

Motivation

@ However, only recently a similarly powerful control over random tensor
model partition functions has been achieved by restricting the class of
graphs that arise from the perturbative series. ..
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Tensor models and the large N expansion

NLO of MO
i @ A tensor model is specified by its partition function
Ma
Z(\) = / {H d¢cd¢>c} o7 S(0edeite)
Toneor where ¢, are rank-d complex tensors of size N,
models andv
Ry S(Be, e M) Z .- b — Z AeVi(Be, 6.)

and aa . ¢c = Zil,...,id ((]55)1'1,._.,1'(1 (qﬁc)il,m,id, 1 = ].7 ey N for all k.
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@ A tensor model is specified by its partition function

Z(h) = / {H d¢cd¢c} e et
where ¢, are rank-d complex tensors of size N,

S(¢e; o3 M) Z¢ Ce — Zwtasc, :

and ¢, - de =3, (¢C)” g (0)ir,igs i =1,..., N for all k.
@ Feynman graphs arise as graphical representations of summands in the
perturbative expansion of the partition function

Z(M\t) = i/ [Hd@dqﬁe] (Z&W(qﬁc,ia))ke*&gc'%,
k=0 c :

where exp(— 3" 4, - ¢.) is just a product of Gaussian measures for the
tensor components of all tensors.
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Tensor models and the large N expansion

NLO of MO
modl @ For any order k in the perturbative series, the contributing terms are

o represented by Feynman graphs with k vertices, connected by oriented
edges labelled by the index c. The edges encode the Isserlis-Wick
pairings in calculating the expectation values of monomials for the
Gaussian measure: E[z1z2 - - x2p] = >, [ Flziz;].

Tensor @ The free energy F := N~ %1n Z may be expressed as a sum over the

the large N connected vacuum Feynman graphs I as

expansion

Fu) =S AM),

where A(T") is called the amplitude of the graph.
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o represented by Feynman graphs with k vertices, connected by oriented
edges labelled by the index c. The edges encode the Isserlis-Wick
pairings in calculating the expectation values of monomials for the
Gaussian measure: E[z1z2 - - x2p] = >, [ Flziz;].

Tensor @ The free energy F := N~ %1n Z may be expressed as a sum over the
models and

the large N connected vacuum Feynman graphs I as
expansion
F(h) = AD),
T
where A(T") is called the amplitude of the graph.
@ The large N expansion is facilitated by the fact that we have
A() oc N~

Thus, the expansion in 1/N is controlled by the degree w.

@ Different tensor models may incorporate different classes of graphs and
possibly also have different expressions for the degree w.
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@ Colored tensor models were introduced by Razvan Gurau in 2009:
Feynman graphs for d dimensions may be represented as bipartite
(d 4+ 1)-edge-colored regular graphs of vertex-degree d + 1.

@ The edge-coloring allows for an improved control over the perturbative
expansion and the graph combinatorics. In particular, the degree w has
a simple expression in terms of topological data of certain 2d
subgraphs of the colored graphs called jackets.

@ Recently, the large N expansion of colored tensor models has been
under intensive investigation. Some very important recent advances:

@ The first derivation of the large N expansion for colored tensor models.
[Gurau (2011)]

@ The leading order (w = 0) sector is given by the so-called melonic graphs,
which correspond to a subclass of triangulations of a d-sphere.
[Bonzom, Gurau, Riello, Rivasseau (2011)]

@ The next-to-leading order (w = 1) sector was classified and summed over.
[Kaminski, Oriti, Ryan (2013)]

@ All orders in w were classified and enumerated, and the existence of a
double-scaling limit established.
[Gurau, Schaeffer (2013)] and [Dartois, Gurau, Rivasseau (2013)]
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model @ The multi-orientable tensor model introduced by Adrian Tanasa in 2011:
e Incorporates a strictly larger set of graphs than the corresponding
: rank-4 colored tensor model.
bipartite graphs
Edge-colorable Colored Multi-orientable
graphs graphs graphs
Multi-
orientable .
tensor non bipartite non bipartite graphs
model graphs

[Dartois, Rivasseau, Tanasa (2013)]

How much of the large N scaling properties of colored tensor models
generalize to this larger family of tensor graphs?
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@ The edges and vertices of the multi-orientable tensor model can be

represented as
N2
= X
7\

@ The strands, representing the tensor indices, can be classified into
three types [Dartois, Rivasseau, Tanasa (2013)]

N\ h

X - pap@

T S~

@ The strands running inside the vertices (green) are called inner strands
while the others (blue and red) are called outer strands.
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Multi-orientable tensor model

NLO of MO
bt @ By removing any one of the three types of strands, we end up with a
Ma ribbon graph, called a jacket of the original tensor graph:
Raasakka
<D)d (@
orientable
tensor
model @ The degree of a MO graph is the sum over the genera of the jackets

o=
J
The genus g is obtained through the Euler characteristic formula
1
gr=1=5(Fs = Ls+Vy) e N2 (1),

where F;, Lj,V; = # of faces, lines, vertices of J.
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Leading order in 1/N for the multi-orientable tensor model

Rl @ The leading order w = 0 is still given by the melonic sector obtained by

model sequential melonic insertions to the elementary melon.
Rassalda [Dartois, Rivasseau, Tanasa (2013)]

SRS L
HH <) égﬁ .
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tensor @ The leading order w = 0 is still given by the melonic sector obtained by
model sequential melonic insertions to the elementary melon.
Rassakia [Dartois, Rivasseau, Tanasa (2013)]
() ) &) &)
R~ K™ XK~ K ™
model @

@ The melonic graphs can be mapped to trees, and thus counted exactly.
The leading order series has the same behavior as the colored model:

)\2 2-70 1
FLo x const. + <1 — )\—%) , no =3
[Bonzom, Gurau, Riello, Rivasseau (2011)]
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® The multi-orientable next-to-leading order sector is given by w = 1/2,
because of non-orientable jackets, not w = 1 as for colored models.

@ Simplest NLO graph is the double-tadpole:

w(l2ep) = 3 97 =3 Wl > Tap) = 3

@ Any insertion of a melonic 2-point subgraph conserves the degree.
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But are the graphs so obtained all the possible NLO (w = 1/2) graphs?
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Lemma 1:

Let " be an MO vacuum Feynman graph, and I'; an MO 2-point subgraph of
T'. Let us denote by I'/T'; the graph obtained by replacing I's inside T" with a
propagator. We then have the relation

w(T) = w(T'/T2) + w(T2),

where T'; denotes the vacuum graph obtained by gluing the external legs of
T'; to each other.

@O
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T'. Let us denote by I'/T'; the graph obtained by replacing I's inside T" with a
propagator. We then have the relation

w(T) = w(T'/T2) + w(T2),

where T'; denotes the vacuum graph obtained by gluing the external legs of
T'; to each other.
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Easy to prove using the helpful expression w(I') = 3 + SVF — Fr, which can
be derived from V; = Vr, L; = Lr = 2Vr and ZJ Fy=2Fr.
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A NLO melon-free graph is a graph with w = % and no melonic 2-point
subgraphs.

@ The double-tadpole is an NLO melon-free graph, since it does not
contain melonic 2-point subgraphs.

@ All NLO graphs can be obtained by melonic insertions into the
melon-free NLO graphs.

NLO graphs
for the MO
model
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A NLO melon-free graph is a graph with w = % and no melonic 2-point
subgraphs.

@ The double-tadpole is an NLO melon-free graph, since it does not
contain melonic 2-point subgraphs.

@ All NLO graphs can be obtained by melonic insertions into the
melon-free NLO graphs.

= The melon-free graphs classify the NLO graphs into families related
through insertions and contractions of melonic 2-point subgraphs.

It is then sufficient to focus on the melon-free NLO multi-orientable graphs.
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A NLO melon-free graph is a graph with w = % and no melonic 2-point
subgraphs.

@ The double-tadpole is an NLO melon-free graph, since it does not
contain melonic 2-point subgraphs.

@ All NLO graphs can be obtained by melonic insertions into the
melon-free NLO graphs.

= The melon-free graphs classify the NLO graphs into families related
through insertions and contractions of melonic 2-point subgraphs.

ey Itis then sufficient to focus on the melon-free NLO multi-orientable graphs.
for the MO
model

Definition:

A graph is 2-particle-irreducible (2PI) if it does not contain any proper
non-trivial 2-point subgraphs.
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A NLO melon-free graph of the MO model is 2-particle-irreducible. l

w1 +(4.)2:1/2

S —

<
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A NLO melon-free graph of the MO model is 2-particle-irreducible.

w1 +(4.)2:1/2

S —

<

(i) By Lemma 1, either wy = 0 and w2 = 1/2, or vice versa.
(w; is the degree of the corresponding vacuum graph.)

(i) w = 0 only for the propagator and melonic 2-point graphs.
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A NLO melon-free graph of the MO model is 2-particle-irreducible.

w1 +(4.)2:1/2

S —

<

(i) By Lemma 1, either wy = 0 and w2 = 1/2, or vice versa.
(w; is the degree of the corresponding vacuum graph.)

(i) w = 0 only for the propagator and melonic 2-point graphs.
= The part with w = 0 must be a propagator for a melon-free graph.
= No non-trivial 2-point subgraphs in a NLO melon-free graph.
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Main theorem:
The only NLO melon-free graph of the MO model is the double-tadpole.
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Main theorem:
The only NLO melon-free graph of the MO model is the double-tadpole.

Assume T is a NLO melon-free graph.

@ The jacket formed by outer strands is always orientable [DRT (2013)],
thus its genus is always an integer, so it is zero for a NLO graph.
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The only NLO melon-free graph of the MO model is the double-tadpole.

Assume T is a NLO melon-free graph.

@ The jacket formed by outer strands is always orientable [DRT (2013)],
thus its genus is always an integer, so it is zero for a NLO graph.

= Fr,, = Vr + 2 for the number of faces formed by the outer strands.

= w(l) =343V — (Fro + Fr,i) = 1 4+ 1V — Fr i, where I ; is the
number of faces in I" formed by the inner strands.

NLO graphs
for the MO
model
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Main theorem:
The only NLO melon-free graph of the MO model is the double-tadpole.

Assume T is a NLO melon-free graph.
@ The jacket formed by outer strands is always orientable [DRT (2013)],

=

4

thus its genus is always an integer, so it is zero for a NLO graph.
Fr,, = Vr + 2 for the number of faces formed by the outer strands.

UJ(F) =3+ %V — (FF,o + FF,i) =1+ %VF — FFJ‘, where FF,i is the
number of faces in I" formed by the inner strands.

Since the outer jacket is planar, the graph may be drawn on a plane so
that the inner faces intersect only at vertices.

For a connected graph with Fr; > 1 any inner face must always
intersect another inner face.
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Main theorem:
The only NLO melon-free graph of the MO model is the double-tadpole.

Assume T is a NLO melon-free graph.

@ The jacket formed by outer strands is always orientable [DRT (2013)],
thus its genus is always an integer, so it is zero for a NLO graph.

Fr,, = Vr + 2 for the number of faces formed by the outer strands.

w(F) =3+ %V — (FF,o + FF,i) =1+ %VF — FFJ‘, where FF,i is the
number of faces in I" formed by the inner strands.

¢4

@ Since the outer jacket is planar, the graph may be drawn on a plane so
that the inner faces intersect only at vertices.

@ For a connected graph with Fr; > 1 any inner face must always
intersect another inner face.

We may then concentrate on the properties of inner faces.
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Now, assume that I" is a NLO melon-free graph with Fr; > 1, and there is
an inner face f in T", which intersects the other inner faces of I" only twice.
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Now, assume that I" is a NLO melon-free graph with Fr; > 1, and there is
an inner face f in T", which intersects the other inner faces of I" only twice.
(i) f must intersect the same face twice, since the number of intersections
between any pair of faces is even.
(i) f cannot intersect itself, because this would correspond to a non-trivial
2-point subgraph in T, but T" is 2P, since it is NLO melon-free.
(i) There are no further intersections between f and other faces of T'.
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Now, assume that I" is a NLO melon-free graph with Fr; > 1, and there is
an inner face f in T", which intersects the other inner faces of I" only twice.
(i) f must intersect the same face twice, since the number of intersections
S between any pair of faces is even.
forthe MO (i) f cannot intersect itself, because this would correspond to a non-trivial
2-point subgraph in T, but T" is 2P, since it is NLO melon-free.
(i) There are no further intersections between f and other faces of T'.
=- f divides the plane on which T" is drawn into two separate regions.
= The part of I inside f is a connected 2-point subgraph of I, so it must
be trivial. But then the 2-point subgraph of I" obtained by cutting just

outside f is a melonic subgraph. L
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forthe MO (i) f cannot intersect itself, because this would correspond to a non-trivial
2-point subgraph in T, but T" is 2P, since it is NLO melon-free.
(i) There are no further intersections between f and other faces of T'.
=- f divides the plane on which T" is drawn into two separate regions.
= The part of I inside f is a connected 2-point subgraph of I, so it must
be trivial. But then the 2-point subgraph of I" obtained by cutting just
outside f is a melonic subgraph. CONTRADICTION!
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= Each inner face must intersect the other inner faces at least four times
in a NLO melon-free graph T" with Fr; > 1.
@ Each intersection corresponds to a vertex of I and is shared by exactly
two inner faces.
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R a in a NLO melon-free graph T" with Fr; > 1.
@ Each intersection corresponds to a vertex of I and is shared by exactly
two inner faces.
= The number of vertices obeys Vi > 4 x $Fr; = 2Fp,; for a NLO
melon-free graph I" with Fr; > 1.
= w:l—l—%VF—Fr,iZl.
NLO graphs

for the MO
model
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= Each inner face must intersect the other inner faces at least four times
in a NLO melon-free graph T" with Fr; > 1.
@ Each intersection corresponds to a vertex of I and is shared by exactly
two inner faces.
= The number of vertices obeys Vi > 4 x $Fr; = 2Fp,; for a NLO
melon-free graph I" with Fr; > 1.
= w=1+ 2Vr — Fr; > 1. CONTRADICTION!
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P

Each inner face must intersect the other inner faces at least four times
in a NLO melon-free graph T" with Fr; > 1.

Each intersection corresponds to a vertex of I and is shared by exactly
two inner faces.

The number of vertices obeys Vi > 4 x L Fr; = 2Fr; for a NLO
melon-free graph I" with Fr; > 1.

w=1+ 1Vr — Fr; > 1. CONTRADICTION!
We must have Fr; = 1 for any NLO melon-free graph.

w=14 1Vr —1=1foraNLO graph, so Vp = 1.
The double-tadpole is the only NLO melon-free graph.
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vt = Each inner face must intersect the other inner faces at least four times
Raasakka in a NLO melon-free graph T" with Fr; > 1.

@ Each intersection corresponds to a vertex of I and is shared by exactly
two inner faces.

= The number of vertices obeys Vi > 4 x $Fr; = 2Fp,; for a NLO
melon-free graph I" with Fr; > 1.

= w=1+ %Vp — Fr; > 1. CONTRADICTION!

We must have Fr; = 1 for any NLO melon-free graph.
w=14 1Vr —1=1foraNLO graph, so Vp = 1.
The double-tadpole is the only NLO melon-free graph.

P

NLO graphs
for the MO
model

All graphs contributing to the next-to-leading order of the MO model arise
from insertions of melonic 2-point subgraphs into the double-tadpole.
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Next-to-leading order series for the MO tensor model

NLO o @ Following the classification of NLO graphs, one may determine the sum
mode! over the NLO amplitudes of the model by relating it to the LO series.
e @ Consider the connected and the 1PI 2-point functions G and X.

Raasakka
@ We have Gnro = G2, Lo from the following graphical relation:

NLO series
of the MO
model
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Next-to-leading order series for the MO tensor model

NLO of MO
tensor
model

atti

NLO series
of the MO
model

@ Following the classification of NLO graphs, one may determine the sum
over the NLO amplitudes of the model by relating it to the LO series.

@ Consider the connected and the 1P| 2-point functions G and X.

@ We have Gyro = G% XN Lo from the following graphical relation:

7\
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Next-to-leading order series for the MO tensor model

NLO of MO
tensor

- @ Substituting one to the other, we may solve for
Raasakka o )\Gio
NLO — T ao~xo.~44 -
1—3X2G1,

@ Differentiating the LO two-point function relation Gro = 1 + A>G1 o we
get
Kl Cro = 20G1 o _ 220G
B\ 1—42G3, ~ 1-3xGi,’

where for the last equality we used the LO two-point function identity.

NLO series
of the MO
model
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Next-to-leading order series for the MO tensor model

NLO of MO
e @ Substituting one to the other, we may solve for
Rassalka . G2,
NEO T T 3N GE
@ Differentiating the LO two-point function relation Gro = 1 + A>G1 o we
get
Kl Cro = 220G o _ 220G
X 1—4XG3, ~ 1-3XGh,
where for the last equality we used the LO two-point function identity.
@ Thus, we get the expression
A0
GNLO = 776’140 ’
G2, ON?
NLO series which implies, together with G0 o const. + (1 — (A\2/\2))/2,
of the MO

model

)\2 —-1/2
GNLO X <1 — /\7§> .
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Next-to-leading order series for the MO tensor model

NLO of MO
tensor
model

Matti @ We have from a Schwinger-Dyson equation the relation
Raasakka

0
Gno=1-— 4)\2wa|_0

for the connected two-point function GnLo and the free energy Fuo.

Critical behavior of the NLO free energy:

)\2

2—7NLO
FNLO X (1—)?) , where yno=3/2.

@ Thus we find the same critical value of the coupling constant for the
NLO series as for the LO series. Nevertheless, one has a distinct value
NLO serics for the NLO susceptibility exponent.
of the MO

ks @ Such behavior is indicative of the existence of a double-scaling limit
also for the multi-orientable tensor model.
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Summary & outlook

NLO of MO
tensor @ All next-to-leading order vacuum graphs of the multi-orientable random

model

M tensor model arise from insertions of melonic 2-point subgraphs into
Raasakia the double-tadpole graph.

@ The next-to-leading order free energy has the same critical coupling
constant as the leading order free energy, and a critical exponent 3/2.

09

Summary &
Outlook
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Summary & outlook

NLO of MO
tensor

ensor @ All next-to-leading order vacuum graphs of the multi-orientable random
M tensor model arise from insertions of melonic 2-point subgraphs into
‘ the double-tadpole graph.

@ The next-to-leading order free energy has the same critical coupling
constant as the leading order free energy, and a critical exponent 3/2.

09

@ This indicates a double-scaling limit also for the multi-orientable model.
What about higher orders?

@ In higher orders deviations from the colored model are enhanced.
How to classify generic multi-orientable graphs without the convenience
of color labels?

Summary &

S @ Can one further loosen up the restrictions on the tensor graphs and
retain control over the large NV expansion? Is there a motivation?
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