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In 2016 there were breakthroughs in sphere-packing in 8
dimensions and 24 dimensions.

This work came on the heels of earlier work on sphere packing
in 3 dimensions, from Johannes Kepler to Thomas Hales, as
well as work on sphere packing in 2 dimensions, commenced
by Axel Thue and Laszlé Fejes-T6th.

But for other values of n, we know very little, and | suspect
that we still aren’t asking exactly the right question.


https://arxiv.org/abs/1603.04246
https://arxiv.org/abs/1603.04246
https://arxiv.org/abs/1603.06518

| want to take a fresh look at n = 2.

It's “obvious” that in two dimensions, the optimal packing is
the six-around-one hexagonal close packing.

But is it obvious what “optimal” means, or what it should
mean?

It's my hope that by sharpening our notion of what it means
for something to be an optimal sphere-packing, we'll obtain a
coherent notion of what it might mean to classify all the
optimal packings in n dimensions.



Part I: Density and optimality for sphere-packings



A sphere-packing of R" is a collection of balls in R"” with
disjoint interiors.

The density of a packing is

lim A(SN B,)/A(B,),
r—o0
where B, is the ball of radius r centered at 0,
S is the union of the balls in the packing, and
A is n-dimensional Lebesgue measure.



Define A,, as the supremum of all densities of sphere-packings
in R™ with all spheres having radius 1.

It's not hard to show that some packing achieves this
supremum.

Trivially, A; = 1.



The density of a 4-around-1 disk-packing is 7 ~ 0.79 (the
fraction of a square joining 4 adjacent centerpoints covered by
disks).



The density of a 6-around-1 disk-packing is \/LE ~ 0.91 (the
fraction of a triangle joining 3 adjacent centerpoints covered

by disks).




Axel Thue and Laszlé Fejes-T6th's theorem: A, = 7/+/12.



Let P be a packing of the plane by unit disks. If P is a
hexagonal close packing, then P achieves density A,.

Partial converse: Let P be a periodic packing of the plane by
unit disks. If P achieves density A,, then P is a hexagonal
close packing.

Can we delete the word “periodic’™?



Let P be a packing of the plane by unit disks. If P is a
hexagonal close packing, then P achieves density A,.

Partial converse: Let P be a periodic packing of the plane by
unit disks. If P achieves density A,, then P is a hexagonal
close packing.

Can we delete the word “periodic’™?

No.



Counterexample 1:



Counterexample 2:




Counterexample 3:



Morally, these counterexamples seem like “cheats’.

How can we sharpen our notion of optimal packing to rule
them out?

We'll use an analytic trick of the sort that number-theorists
have been using for over a century.

To see the analytic trick in action without geometric
complications, let's take things down a dimension first.



Part Il: Packing problems in the natural numbers

(based on Germ Order for One-Dimensional Packing,
see also https://arxiv.org/abs/1807.06495 after Wednesday
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Given a finite nonempty subset B of IN (a packing body), say
that a set T C N is a translation set for B iff the translates
B+ n (ne€ T) are disjoint.

The density of the packing is the density of the set B + T.
Running example: B ={0,3,5}, T ={0,1,7,8,14,15,...}.

The density of T is 2/7; the density of B+ T is
|B| x2/7T=6/7.
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Packings that achieve maximal density exist but are not
unique.

(...because, for instance, deleting a translate of B, or shifting
all the translates of B to the right, doesn't affect the density
of the packing)

We need a more refined way of measuring density.

What we present here can be viewed as a way of measuring
infinitesimal density, though it is more naturally thought of as
a way of measuring infinite cardinality in IN.



The generating function of S C N is |S|g := > . q", which
converges for all -1 < g < 1.

T is a translation set for B iff |B|, | T|, has all coefficients
equal to 0 or 1.



|B|q = 1‘|‘q3‘|‘q57
Ty = 1+qg+q" +®+q"*+¢®°+...,

Bl, |Tl, = 3
1Blg [Tlq 149+ +q" +¢°+¢®+q¢ +¢*+q°+....



|S|4 is the power series expansion of a rational function iff
(the indicator sequence of) the set S is eventually periodic;
i.e., iff there exist N > 0 and d > 1 such that for all n > N,
neSifftn+deS.



‘T‘q — 1+q_'_q7_'_q8_'_q14+q15+'“

_ 1l+4g
- =g
21 +5+
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The way we extend the notion of density is by paying attention
to all the terms in the expansion, not just the first.



We say S = S’ iff there exists € > 0 such that |S|, > |S'|, for
all—e<g< 1l

We call this the germ-ordering on (generating functions of)
subsets of IN.

Write S > S"iff S = S§" # S.



Deleting an element from a set makes the set smaller:
{0,1,7,8,14,15,...} = {1,7,8,14,15,...}
Increasing one or more elements of a set makes the set smaller:
{0,1,7,8,14,15,...} = {1,2,8,9,15,16,...}

The germs of rational generating functions are totally
ordered.



Main result: For every packing body B, every
germ-maximal translation set for B is rational,
hence the maximal T is unique if it exists.

It is not necessarily true that the germ-maximal translation set
is periodic; e.g., for B ={0,7,11}, the germ-maximal
translation set is

{0,1,3,6,9, 15,18,21,...},
which is infinitesimally bigger than the periodic set
{0, 3,6,9,12,15,18,21,...}

(since {1} is infinitesimally bigger than {12}).



Proposition: T is a translation set for B iff the set
T—T:={t—t:tt € T} isdisjoint from the set

Thus finding the maximum packing of a body B in IN is a
special case of finding the maximal D-avoiding subset of IN,
where D is a finite set of positive integers.

The prerint Germ Order for One-Dimensional Packing (at
https://arxiv.org/abs/1807.06495 after Wednesday) by
Abrams et al. proves: For every finite distance-set D,
every germ-maximal D-free set S is rational; hence the
maximal S is unique if it exists.


https://jamespropp.org/June22.pdf
https://arxiv.org/abs/1807.06495

Open problems:
For every B, is there a maximal B-packing?
For every D, is there a maximal D-avoiding set?

The space of germs does not have a good topology, so setting
up compactness arguments is tricky.

Packings that achieve germ-maximality are provably unique
(and periodic) but for all we know there might be packing
bodies B for which maximal packings do not exist.



Aside: We can use our ) < q" trick to measure the sizes
of sets of natural numbers not associated with packings or
distance-avoiding sets.

Example: Let S ={0,1,4,9,...} and T ={0,1,3,6,...}
(the sets of square numbers and triangle numbers). Then

1Sla /1 Tlq = V2
and

1S|g — V2T, = V2/2.

See the MathOverflow post on Comparing sizes of sets of
natural numbers.


https://mathoverflow.net/questions/248994/comparing-sizes-of-sets-of-natural-numbers
https://mathoverflow.net/questions/248994/comparing-sizes-of-sets-of-natural-numbers

What about subsets of Z, e.g., packings in Z?
Here it's less obvious what should replace > < q".

Y nes g™, perhaps?

Such functions are not rational when S is periodic, so we
haven't pursued the matter.

q!"l is more manageable but less natural.

What seems clear is that some of the niceties of packings of IN
disappear, and maximal packings will be periodic, not just
eventually periodic.



Part I1l: Optimal disk packing in two dimensions



Counterexample 1:



Counterexample 2:




Counterexample 3:



Morally, these counterexamples seem like “cheats’.

Let's sharpen our notion of optimal packing in R? using the
same trick we just used in IN.

I'll show three possible approaches to doing this. Two are
principled and one is tractable.



In the first approach, we replace disk packings by point
packings P (using the centers of the disks, no two of which
are at distance < 2).

The size of the infinite set P can be represented as the
divergent infinite sum >\ p 1.

We'll regularize this sum by imposing a smooth cutoff at
distance s from the origin, and then letting s go to infinity.

(Cf. the definition of density as lim,_,.c A(S N B,)/A(B;);
this imposes a sharp cutoff at distance r, and gets rid of the
divergence by a rescaling.)



Let gs(x,y) :=exp —(x® + y?)/s?, so that
(1) for all (x,y) € R? gs(x,y) — 1 ass — oo, and

(2) for all s>0,/ gs < 00.

R2

For P a discrete point-set in IR? containing no two points at
distance < 2 (so that the unit disks centered at points in P
have disjoint interiors), let

|Pls = Z(x,y)eP gs(x,y) < oo.

If P is finite, |P|s — |P| as s — oc.



Main idea: When P is infinite, |P|s diverges as s — oo, but
the precise way it diverges gives information about the point
set P.

In particular, for many non-optimal packings P,
we can expand |P|s as as® + s + v + o(1), where
» « tells us about density,
» [ tells us about line defects (see Counterexample 3), and

» ~ tells us about point defects (see Counterexamples 1 and
2),
and moreover «, 3, are independent of the choice of origin.

We'll come back to this later.



Theorem (Cohn): Let P be a point-packing of the plane.
If P is a hexagonal close packing, then |P|; = Ays? + o(e™).



Theorem (Cohn): Let P be a point-packing of the plane.
If P is a hexagonal close packing, then |P|; = Ays? + o(e™).

Conjectural converse: Let P be a point-packing of the plane.
If |P|s = Aps® + o(1), then P is a hexagonal close packing.

“Evidence”: The counterexamples | discussed above are not
counterexamples to this conjecture.

But I've had trouble making progress with this definition.



Second approach: Go back to using disks instead of points.
Let up be Lebesgue measure restricted to the union of the
disks.

Let

(P). = / g dyip.
]R2



Compare: |P|s can be defined as the integral of g5 with
respect to a “Dirac comb™: a measure on R? in which each
point in P is assigned mass 1.

| will sometimes call |P|s the Dirac regularization of the
divergent sum Z(x,y)es 1, in contrast to the disk regularization
(P)s (and in contrast to the Delaunay regularization [P]s to be
described next).



Third approach (“gerrymandering”): Redistribute the mass of
the disks, so that the mass associated with a sector of a disk
gets reapportioned uniformly throughout its Delaunay cell.

(Note: “Delaunay” = “Delone”.)

In a point-packing, a Delaunay cell is an inscriptible polygon
whose vertices are points of the packing and whose
circumcircle encircles no points of the packing.



. A

Let fip be the reapportioned measure, and let

[P, = / g. diir.
RZ



Main Theorem: Let P be a distance-2 point-packing. Then
[P]s = mQs? + o(1) (i.e., [P]ls — mAys® — 0) if and only if
P is a hexagonal close packing.



Lemma (original source?): In a disk packing of the plane, no
Delaunay cell can have local packing density exceeding 7//12.
That is, the fraction of a Delaunay cell that is covered by disks
of the disk-packing cannot exceed ﬂ/\/ﬁ Furthermore,
equality holds if and only if the cell is an equilateral triangle.

Recall that jip is Lebesgue measure of intensity 1 on the disks
reapportioned uniformly over the Delaunay regions (yielding a
“piecewise-Lebesgue”’ measure of intensity everywhere < A,),

and that [P]s = [ & dfip.


https://arxiv.org/abs/1009.4322

If P* is a hexagonal-close packing, fip is the uniform measure
Ao\ (where X is Lebesgue measure) on R?.

Otherwise, fip < Ay everywhere (by the Lemma) AND there
exists at least one Delaunay cell C whose fip measure falls
short of A A\(C) by some positive amount, say c; then
liminf([P*]s — [P]s) > c, and since [P*]s = mA»5? + o(1), we
cannot have [P]; = mA,s% + o(1).

This completes the proof.



All three ways of regularizing |S| (Dirac, disk, and Delaunay)
give rise to germ-orderings with s — 1; in each case,
germ-maximality implies the complete saturation property.

(A packing is completely saturated if for no n is it possible to
remove n disks and then add back n+ 1 disks.)

It is not known whether there exist completely saturated
packings other than hexagonal close packings of disks.

Conjecture: Let P be a distance-2 point-packing. For each
of the three orderings, P is germ-maximal if and only if P is a
hexagonal close packing.

Note: the functions | - |s, ( - )s, and [ - |5 all extend to higher
dimensions.



Part IV: Suboptimal disk packing in two dimensions



A valuation is a finitely-additive measure from a set-algebra
into an abelian group: v(AU B) = v(A) + v(B) — v(AN B),
inclusion-exclusion, etc.

A polyhedral set in R" is a set specified by some Boolean
formula in n variables involving finitely many linear equations
and inequalities.

Equivalently, it's a set that belongs to the set-algebra
generated by open and closed half-planes.



Conjecture ("Throwing Gaussian darts at a polyhedral
target"), proved for n=1and n=2:

If S is a (not necessarily compact) polyhedral subset of R”,
the probability that a Gaussian N(0,c) random variable
lies in S is given by p(c)/c" plus an error term that

goes to zero, where p(+) is a polynomial of degree n.



Proving this theorem is essentially equivalent to setting up a
valuation v, on polyhedral sets that assigns to each (not
necessarily compact) polyhedral subset of R" a generalized
n-dimensional volume in a non-Archimedean ordered ring
extension of R.



If S is a compact polyhedral subset of R", v,(S) will be the
ordinary n-dimensional Lebesgue measure of S, but if S is a
noncompact polyhedral set (of full dimension), v, will be an
“infinite” element of the non-Archimedean ordered ring R[p],
where p is a formal infinite element satisfying

l<<p<<p? << << pn

I'll sometimes informally call the valuation v, a “measure” even
though it's not countably additive or real-valued.

I'll focus on the cases of R and R?. I'll sometimes call v
“length” and v, “area”, omitting the modifier “generalized”.



Warning: Often a translation T carries a polyhedral set S into
a proper subset or proper superset of itself.

E.g., S=[0,+00) or (—00,0] in R, T:x~— x+1.

In cases like this, we can't expect S and T(S) to have the
same measure.

But as we'll see there are compensations for this lack of
symmetry.



The polyhedral subsets of R! are unions of isolated points,
finite open intervals and infinite open rays.

Isolated points have measure 0.

Define v4(/) := length(/) if / is a finite interval,
vi([x, +00)) =p — x, and vi((—o0,x)) = p + x.

In particular, v1([0, +00)) = v1((—00,0]) = p,
v1((—o0, +00)) = 2p > p.



Theorem: There is a unique valuation on polyhedral sets in R?
taking values in the ordered ring R[p] satisfying the following
four properties:

(1) Monotonicity: If S is a subset of S/, v»(S) < wa(5').

(2) Consistency with Lebesgue measure: If S is compact,
v2(S) is the Lebesgue measure of S.

(3) Fubini property: If S = A x B, w(S) = vi(A)wvi(B).

(4) Rotational invariance: If S and S’ are related by rotation
about the origin in R?, »(S) = w(5').



Specifically, v»(S) is an element of p?R + pR + R in which
the coefficients of p2, p!, and p° are determined by the
coefficients of s2, s, and s° in the Laurent expansion of
[ e CH/5 dx dy in 1/s around s = oo.

2 T 2
p? corresponds to 7%,

p! corresponds to ‘/7%51, and
p° corresponds to 1s°.



What do properties (1)—(4) have to do with asymptotics of
the integral of e C*+¥9)/s* over a set §?

(1) Monotonicity: The integrand is nonnegative.

(2) Consistency with Lebesgue measure: When S is compact,
the integrand goes to 1 uniformly.

(3) Fubini property: The integrand factors as e/ e y?/s,

(4) Rotational invariance: The integrand is invariant under
rotation.



Why is v, is uniquely determined by properties (1)-(4)?

Proof sketch:

Triangulate S, using a mix of ordinary triangles, ideal triangles
with 1 point at infinity, and ideal triangles with 2 points at
infinity.

Show that for each kind of triangle T, properties (1)-(4)
uniquely determine the generalized area of T.



For some suboptimal packings, all the Delaunay cells are
equilateral triangles and squares, each covered with its
appropriate local packing density, and the union of the squares
is a union of rectangles and half-strips (each full strip can be
viewed as the union of two half-strips).

We call this special sort of polyhedral set a network of
“hallways and junctions” (where a doubly-infinite hallway is
considered to be two hallways):









A network with 3 hallways and 1 junction:




Theorem: Suppose that all the Delaunay cells of P are
triangles and squares with side-length 2 forming a network
of hallways and junctions. Then

[Pl = (82) s — (W)(87"%) s + (A)(20) + o(1),

where A, = W/\/ﬁ
§ =7w/V12 — w/4,
W = the sum of the widths of the infinite hallways, and
A = the total area of the junctions.

Note that the choice of origin makes no difference.



Application to crystal defects:
In a packing that's close to a hexagonal close packing,

point defects lead to networks with area on the order of 1,
line defects lead to networks with area on the order of p, and
density defects lead to networks with area on the order of p2.

Can such a “defect calculus” be applied to other sorts of
defects in 2D and 3D lattices?



Part V: The trouble with three dimensions



Conjecture: the |P|;-optimal, (P)s-optimal, and [P]s-optimal
3D sphere packings are the Barlow packings (the uncountably
many packings formed by layers of hexagonal close-packed
spheres).



Theorem: There is NO valuation on polyhedral sets in R3
taking values in the ordered ring R[p] satisfying the following
four properties:

(1) Monotonicity: If S is a subset of S/, v3(S) < v3(5').

(2) Consistency with Lebesgue measure: If S is compact,
v3(S) is the Lebesgue measure of S.

(3) Fubini: If S = A x B with polyhedral sets A C R and

B C R?, w(S) = vi(A)wa(B).

(4) Rotational invariance: If S and S’ are related by rotation
about the origin in R3, v3(S) = v3(5’).



What's going wrong:
1 —X2/52 1 ) 1 4
‘[Ovl“s: Oe dX:1—§5 +E5 ...

The nonzero coefficient of s7= in |[0, 1]|s makes a nonzero
contribution to the constant term of |[0, 1] x [0, 00) x [0, 00)|s.

2

So we lose the Fubini property when we truncate the o(1) part
of the germ.

Possible fix: Retain all the terms.



Part VI: Odds and ends



Lewis Bowen, Charles Holton, Charles Radin, and Lorenzo
Sdun have an interesting approach to optimal packings whose
philosophical motivations are similar to ours:

“Even though it would be intuitively satisfying to declare that
the problem of optimally dense packings of E? by disks of
fixed radius has the unique solution discussed above (Figure
1), there has been no satisfactory way to exclude some other
packings of the same density, for instance those obtained by
deleting a finite number of disks from this packing.” (See also
https://arxiv.org/pdf/math/0302056.pdf.)

However, the theory I've outlined today applies in situations
where theirs doesn’'t. Here is one such situation.


https://emis.math.unistra.fr/journals/MPEJ/Vol/11/1.pdf
https://arxiv.org/pdf/math/0302056.pdf

Let P and P’ be two disk-packings of a quadrant, as below.
P is better at filling the quadrant than P’ by exactly

1/4 of a disk, in the sense that |P|s — |P|s,

(P)s — (P')s, and [P]s — [P']s all converge to 1/4.



Is P the best packing of disks in a quadrant?
Do we even know there exists a best packing?

It's not clear to me how to employ compactness principles or
contraction arguments or other analytic tools to prove
existence of an optimum.



Going back to disk-packing of the whole plane, it's not obvious
that there exists a best non-optimal disk-packing. But |
believe there is one.

Gap conjecture: The most efficient non-optimal disk-packings
are hexagonal close packings with one disk missing.

Note that Counterexample 3 from earlier does not disprove
this; no matter how small € is, if you displace a half-plane’s
worth of disks by ¢, the amount of deficiency introduced
corresponds to removal of infinitely many disks.

(Also, Kuperberg, Kuperberg, and Kuperberg have shown that
packings like Counterexample 3 are not completely saturated.)


https://arxiv.org/pdf/math/0303366.pdf

I'm hoping that other people, with various analytic and
geometric insights, will help me figure out how to advance

this point of view of packings.

Thank you!

These slides can be found at
http://jamespropp.org/paris20a.pdf.
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