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Part I

Mahler’s expansion

Mahler’s theorem is the dream of math students:
A function is equal to the sum of its Newton series
iff it is uniformly continuous.

http://en.wikipedia.org/wiki/Mahler’s_theorem

http://en.wikipedia.org/wiki/Mahler's_theorem
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Two basic definitions

Binomial coefficients
(

n

k

)

=

{

n(n−1) ··· (n−k+1)
k! if 0 6 k 6 n

0 otherwise

Difference operator
Let f : N → Z be a function. We set

(∆f)(n) = f(n + 1) − f(n)

Note that

(∆2f)(n)= f(n + 2) − 2f(n + 1) + f(n)

(∆kf)(n)=
∑

06k6n

(−1)k

(

n

k

)

f(n + k)
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Mahler’s expansions

For each function f : N → Z, there exists a unique
family ak of integers such that, for all n ∈ N,

f(n) =
∞

∑

k=0

ak

(

n

k

)

This family is given by

ak = (∆kf)(0)

where ∆ is the difference operator, defined by

(∆f)(n) = f(n + 1) − f(n)
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Examples

Fibonacci sequence: f(0) = f(1) = 1 and
f(n) = f(n − 1) + f(n − 2) for (n > 2). Then

f(n) =
∞

∑

k=0

(−1)k+1f(k)

(

n

k

)

Let f(n) = rn. Then

f(n) =
∞

∑

k=0

(r − 1)k

(

n

k

)
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Examples (2)

The parity function f(n) =

{

0 if n is even

1 if n is odd

then f(n) =

∞
∑

k>0

(−2)k−1

(

n

k

)

Factorial n! =

∞
∑

k=0

ak

(

n

k

)

where the ak are derangements: number of
permutations of k elements with no fixed points:
1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961.
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The p-adic valuation

Let p be a prime number. The p-adic valuation of a
non-zero integer n is

νp(n) = max
{

k ∈ N | pk divides n
}

By convention, νp(0) = +∞. The p-adic norm of n
is the real number

|n|p = p−νp(n)

Finally, the metric dp can be defined by

dp(u, v) = |u − v|p
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Examples

Let n = 1200 = 24 × 3 × 52

|n|2 = 2−4 |n|3 = 3−1 |n|5 = 5−2 |n|7 = 1
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Examples

Let n = 1200 = 24 × 3 × 52

|n|2 = 2−4 |n|3 = 3−1 |n|5 = 5−2 |n|7 = 1

Let u = 512 and v = 12. Then
u − v = 500 = 22 × 53. Thus

d2(u, v) = 2−2 d5(u, v) = 5−3

dp(u, v) = p0 = 1 for p 6= 2, 5
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Mahler’s theorem

Theorem (Mahler)

Let f(n) =
∑∞

k=0 ak

(

n
k

)

be the Mahler’s expansion

of a function f : N → Z. TFCAE:

(1) f is uniformly continuous for the p-adic norm,

(2) the polynomial functions n →
∑m

k=0 ak

(

n
k

)

converge uniformly to f ,

(3) limk→∞ |ak|p = 0.

(2) means that limm→∞ supn∈N

∣

∣

∑∞
k=m ak

(

n

k

)∣

∣

p
= 0.
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Mahler’s theorem (2)

Theorem (Mahler)

f is uniformly continuous iff its Mahler’s expansion

converges uniformly to f .

The most remarkable part of the theorem is the fact
that any uniformly continuous function can be
approximated by polynomial functions, in contrast
to Stone-Weierstrass approximation theorem, which
requires much stronger conditions.
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Examples

• The Fibonacci function is not uniformly
continuous (for any p).
• The factorial function is not uniformly continuous
(for any p).
• The function f(n) = rn is uniformly continuous iff
p | r − 1 since f(n) =

∑∞
k=0(r − 1)k

(

n
k

)

.

• If f(n) =

{

0 if n is even

1 if n is odd
then

f(n) =
∑∞

k>0(−2)k−1
(

n
k

)

and hence f is uniformly
continuous for the p-adic norm iff p = 2.
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Part II

Extension to words

Is it possible to obtain similar results for functions
from A∗ to Z?

Questions to be solved:

(1) Extend binomial coefficients to words and
difference operators to word functions.

(2) Find a Mahler expansion for functions from
A∗ to Z.

(3) Find a metric on A∗ which generalizes dp.

(4) Extend Mahler’s theorem.
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The free monoid A∗

An alphabet is a finite set whose elements are
letters (A = {a, b, c}, A = {0, 1}).
Words are finite sequences of letters. The empty
word 1 has no letter. Thus 1, a, bab, aaababb are
words on the alphabet {a, b}. The set of all words
on the alphabet A is denoted by A∗.

Words can be concatenated

abraca dabra → abracadabra

The concatenation product is associative. Further,
for any word u, 1u = u1 = u. Thus A∗ is a monoid,
in fact the free monoid on A.
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Subwords

Let u = a1 · · · an and v be two words of A∗. Then u
is a subword of v if there exist v0, . . . , vn ∈ A∗ such
that v = v0a1v1 . . . anvn.

For instance, aaba is a subword of aacbdcac.
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Binomial coefficients (see Eilenberg or Lothaire)

Given two words u = a1a2 · · · an and v, the binomial
coefficient

(

v

u

)

is the number of times that u
appears as a subword of v. That is,

(

v

u

)

= |{(v0, . . . , vn) | v = v0a1v1 . . . anvn}|

If a is a letter, then
(

u

a

)

= |u|a. If u = an and
v = am, then

(

v

u

)

=

(

m

n

)
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Pascal triangle

Let u, v ∈ A∗ and a, b ∈ A. Then

(1)
(

u
1

)

= 1,

(2)
(

u

v

)

= 0 if |u| 6 |v| and u 6= v,

(3)
(

ua

vb

)

=

{

(

u
vb

)

if a 6= b
(

u
vb

)

+
(

u
v

)

if a = b

Examples
(

abab

a

)

= 2
(

abab

ab

)

= 3
(

abab

ba

)

= 1
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An exercise

Verify that, for every word u, v,









1
(

u
a

) (

u
ab

)

0 1
(

u
b

)

0 0 1

















1
(

v
a

) (

v
ab

)

0 1
(

v
b

)

0 0 1









=









1
(

uv
a

) (

uv
ab

)

0 1
(

uv
b

)

0 0 1








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Computing the Pascal triangle

Let a1a2 · · · an be a word. The function
τ : A∗ → Mn+1(Z) defined by

τ(u) =



















1
(

u

a1

) (

u

a1a2

) (

u

a1a2a3

)

. . .
(

u

a1a2···an

)

0 1
(

u
a2

) (

u
a2a3

)

. . .
(

u
a2···an

)

0 0 1
(

u
a3

)

. . .
(

u
a3···an

)

...
...

...
... . . . ...

0 0 0 0 . . .
(

u
an

)

0 0 0 0 . . . 1



















is a morphism of monoids.
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Computing the Pascal triangle modulo p

The function τp : A∗ → Mn+1(Z/pZ) defined by

τp(u) ≡ τ(u) mod p

is a morphism of monoids.

Further, the unitriangular n × n matrices with
entries in Z/pZ form a p-group, that is, a finite
group whose number of elements is a power of p.
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Difference operator

Let f : A∗ → Z be a function. For each letter a, we
define the difference operator ∆a by

(∆af)(u) = f(ua) − f(u)

One can now define inductively an operator ∆w for
each word w ∈ A∗ by setting (∆1f)(u) = f(u), and
for each letter a ∈ A,

(∆awf)(u) = (∆a(∆wf))(u)



LIAFA, CNRS and University Paris Diderot

Direct definition of ∆
w

∆wf(u) =
∑

06|x|6|w|

(−1)|w|+|x|

(

w

x

)

f(ux)

Example

∆aabf(u) = −f(u) + 2f(ua) + f(ub)

−f(uaa) − 2f(uab) + f(uaab)
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Mahler’s expansion of word functions

Theorem (cf. Lothaire)

For each function f : A∗ → Z, there exists a unique

family 〈f, v〉v∈A∗ of integers such that, for all

u ∈ A∗,

f(u) =
∑

v∈A∗

〈f, v〉

(

u

v

)

This family is given by

〈f, v〉 = (∆vf)(1) =
∑

06|x|6|v|

(−1)|v|+|x|

(

v

x

)

f(x)
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An example

Let f : {0, 1}∗ → N the function mapping a binary
word onto its value: f(010111) = f(10111) = 23.

(∆vf) =

{

f + 1 if the first letter of v is 1

f otherwise

(∆vf)(ε) =

{

1 if the first letter of v is 1

0 otherwise

Thus, if u = 01001, then
f(u) =

(

u
1

)

+
(

u
10

)

+
(

u
11

)

+
(

u
100

)

+
(

u
101

)

+
(

u
1001

)

=
2 + 2 + 1 + 1 + 2 + 1 = 9.
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Mahler’s expansion of the product of two functions

An interesting question is to compute the Mahler’s
expansion of the product of two functions.
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Mahler’s expansion of the product of two functions

An interesting question is to compute the Mahler’s
expansion of the product of two functions.

Proposition

Let f and g be two word functions. The coefficients

of the Mahler’s expansion of fg are given by

〈fg, x〉 =
∑

v1,v2∈A∗

〈f, v1〉〈g, v2〉〈v1 ↑ v2, x〉

where v1 ↑ v2 denotes the infiltration product.
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Infiltration product (Chen, Fox, Lyndon)

Intuitively, the coefficient 〈u ↑ v, x〉 is the number
of pairs of subsequences of x which are respectively
equal to u and v and whose union gives the whole
sequence x. For instance,

ab ↑ ab = ab + 2aab + 2abb + 4aabb + 2abab

(4aabb since aabb = aabb = aabb = aabb = aabb)

ab ↑ ba = aba + bab + abab + 2abba + 2baab + baba
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Infiltration product (2)

The infiltration product on Z〈〈A〉〉, denoted by ↑, is
defined inductively by (u, v ∈ A∗ and a, b ∈ A)

u ↑ 1 = 1 ↑ u = u,

ua ↑ bv =

{

(u ↑ vb)a + (ua ↑ v)b + (u ↑ v)a if a = b

(u ↑ vb)a + (ua ↑ v)b if a 6= b

for all s, t ∈ Z〈〈A〉〉,

s ↑ t =
∑

u,v∈A∗

〈s, u〉〈t, v〉(u ↑ v)
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Mahler polynomials

A function f : A∗ → Z is a Mahler polynomial if its
Mahler’s expansion has finite support, that is, if the
number of nonzero coefficients 〈f, v〉 is finite.

Proposition

Mahler polynomials form a subring of the ring of all

functions from A∗ to Z for addition and

multiplication.



LIAFA, CNRS and University Paris Diderot

Part III

The pro-p metric
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p-groups

Let p be a prime number. A p-group is a finite
group whose order is a power of p.

Let u and v be two words of A∗. A p-group G
separates u and v if there is a monoid morphism
from A∗ onto G such that ϕ(u) 6= ϕ(v).

Proposition

Any pair of distinct words can be separated by a

p-group.
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Pro-p metrics

Let u and v be two words. Put

rp(u, v) = min
{

|G| G is a p-group

that separates u and v}

d(u, v) = p−rp(u,v)

with the usual convention min ∅ = −∞ and
p−∞ = 0. Then dp is an ultrametric:

(1) dp(u, v) = 0 if and only if u = v,

(2) dp(u, v) = dp(v, u),

(3) dp(u, v) 6 max(dp(u, w), dp(w, v))
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An equivalent metric

Let us set

r′p(u, v) = min

{

|x|

(

u

x

)

6≡

(

v

x

)

(mod p)

}

d′p(u, v) = p−r′
p
(u,v)

Proposition (Pin 1993)

d′p is an ultrametric uniformly equivalent to dp.
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Mahler’s theorem for word functions

Theorem (Main result)

Let f(u) =
∑

v∈A∗〈f, v〉
(

u
v

)

be the Mahler’s

expansion of a function f : A∗ → Z. TFCAE:

(1) f is uniformly continuous for dp,

(2) the partial sums
∑

06|v|6n〈f, v〉
(

u
v

)

converge

uniformly to f ,

(3) lim|v|→∞ |〈f, v〉|p = 0.
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Part IV

Real motivations
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First motivation

Study of regularity-preserving functions
f : A∗ → B∗: if X is a regular language of B∗, then
f−1(X) is a regular language of A∗.

More generally, we are interested in functions
preserving a given variety of languages V: if X is a
language of V, then f−1(X) is also a language of V.

For instance, Reutenauer and Schützenberger
characterized in 1995 the sequential functions
preserving star-free languages.
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Second motivation: continuous reductions

A fundamental idea of descriptive set theory is to
use continuous reductions to classify topological
spaces: given two sets X and Y , Y reduces to X if
there exists a continuous function f such that
X = f−1(Y ).

Our idea was to consider similar reductions for
regular languages. Let us call p-reduction a
uniformly continuous function between the metric
spaces (A∗, dp) and (B∗, dp). These p-reductions
define a hierarchy similar to the Wadge hierarchy
that we would like to explore.
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Languages recognized by a p-group

A language recognized by a p-group is called a
p-group language.

Theorem (Eilenberg-Schützenberger 1976)

A language of A∗ is a p-group language iff it is a

Boolean combination of the languages

L(x, r, p) = {u ∈ A∗ |

(

u

x

)

≡ r mod p},

for 0 6 r < p and x ∈ A∗.
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Uniformly continuous functions

Theorem

A function f : A∗ → B∗ is uniformly continuous for

dp iff, for every p-group language L of A∗, f−1(L)
is also a p-group language.

Thus our two motivations are strongly related. . .
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