Arc complex and strip deformations of decorated polygons

Pallavi Panda

Université de Luxembourg

Arc complex

 \mathcal{P}_n : a convex Euclidean polygon with $n \ge 4$ vertices.

 $\mathcal{A}(\mathcal{P}_n)$: a flag, pure simplicial complex constructed in the following way:

- 0-simplices ←→ diagonals,
- For $k \ge 1$, k-simplices \longleftrightarrow (k+1) pairwise disjoint and distinct diagonals.

Examples

Examples

A classical result

A classical result from combinatorics about the topology of the arc complex of a polygon.

Theorem

The arc complex $\mathcal{A}(\mathcal{P}_n)$ $(n \ge 4)$ is a sphere of dimension n - 4.

Crash course on hyperbolic 2-space

The upper half plane model

- Hyperbolic metric: $ds^2 = \frac{dx^2 + dy^2}{y^2}$
- The boundary: $\partial_{\infty}\mathbb{H}^2 = \mathbb{R} \cup \{\infty\}$
- Orientation-preserving isometry group:

$$\operatorname{PSL}(2,\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid ad - bc = \pm 1 \right\}, \quad z \mapsto \frac{az + b}{cz + d}.$$

Other models

Poincaré disk model

$$\mathbb{H}^2:=\{z\in\mathbb{C}\,|\,\|z\|<1\}$$

Other models

Hyperboloid model

$$\mathbb{H}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = -1, \ z > 0\}$$

Klein's projective model

 $\mathbb{H}^2 = \mathbb{P}\{(x,y,z) \in \mathbb{R}^3 \,|\, x^2 + y^2 - z^2 < 0\}$

Types of Isometries: Elliptic

Elliptic transformations

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Types of Isometries: Parabolic

Parabolic Transformations and their orbits

$$\begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}, t \in \mathbb{R}$$

Types of Isometries: Hyperbolic

Hyperbolic transformations

$$\begin{bmatrix} \exp^{l/2} & 0 \\ 0 & \exp^{-l/2} \end{bmatrix}, l > 0$$

Ideal polygons

An **ideal** n-gon Π_n^{\diamondsuit} , $n \ge 3$ is the convex hull in \mathbb{H}^2 of n points in $\partial_{\infty}\mathbb{H}^2$.

Fact: *G* acts triply transitively on $\partial_{\infty}\mathbb{H}^2$.

Thus, the deformation space

$$\mathfrak{D}(\Pi_n^{\diamondsuit}) \simeq \{ (\text{induced}) \text{ complete finite-area metrics } \}$$

 $\simeq \mathbb{B}^{n-3}$

Once-punctured polygons

A **once-punctured** n**-gon** Π_n^{\diamond} : Glue two consecutive edges of a (n+2)-gon, using a parabolic isometry. Thus, $\mathfrak{D}(\Pi_n^{\diamond}) \simeq \mathbb{B}^{n-1}$.

Arcs and arc complex

Definition

Arcs (up to isotopy): $\alpha : [0,1] \hookrightarrow S \text{ s.t } \alpha(0), \alpha(1) \in \partial S$.

Definition

The arc complex is a simplicial complex $\mathcal{A}(S)$:

- $\mathcal{A}(S)^{(0)} = \{\text{isotopy classes of arcs}\}\$
- $\mathcal{A}(S)^{(k)} = \{(k+1) \text{-tuple of pairwise disjoint isotopy classes}\}$

Ideal polygons to Euclidean polygons

Arc complex of Π_n^{\diamond}

Figure: The arcs and the arc complex of Π_4^{\diamond}

Penner's sphericity results

Theorem (Penner)

- The arc complex $\mathcal{A}\left(\Pi_n^{\diamondsuit}\right)$ of an ideal polygon Π_n^{\diamondsuit} $(n \ge 4)$ is a PL-sphere of dimension n-4.
- The arc complex $\mathcal{A}\left(\Pi_n^{\diamondsuit}\right)$ of an once-punctured polygon Π_n^{\diamondsuit} $(n \ge 2)$ is a PL-sphere of dimension n-2.

New Rule: Coloured vertices and permissible arcs

Consider the subcomplex $\mathcal{Y}(\mathcal{P}_n)$ generated by G-G, R-G diagonals.

Examples

The subcomplex $\mathcal{Y}(\mathcal{P}_6)$

Rejected R-R diagonals

Examples

Rejected R-R diagonals

The subcomplex $\mathcal{Y}(\mathcal{P}_4^\times)$

Conjecture

Conjecture

Let \mathcal{P}_n (resp. \mathcal{P}_n^{\times}) be a polygon with bicoloured vertices. Then the sub complex $\mathcal{Y}(\mathcal{P}_n)$ (resp. $\mathcal{Y}(\mathcal{P}_n^{\times})$) is a closed ball of dimension 2n-4 (resp. 2n-2).

A partial solution: Use *decorated* hyperbolic (once-punctured) polygons to show that the interior is an open ball of right dimension.

Decorated polygons

Decorate each vertex with a horoball.

Undecorated Π_3^{\diamondsuit}

Decorated with horoballs

Horoball connections

The geodesic joining two decorated vertices \mathbf{v}_1 , \mathbf{v}_2 is called their horoball connection. Its length is given by the hyperbolic length of the intercepted geodesic segment.

Decorated metrics

The deformation space of decorated polygons

$$\mathfrak{D}(\widehat{\Pi_n^{\Diamond}}) = \mathfrak{D}(\Pi_n^{\Diamond}) \times \mathbb{R}^n = \mathbb{B}^{2n-3}.$$

The deformation space of once-punctured decorated polygons

$$\mathfrak{D}(\widehat{\Pi_n^{\diamondsuit}}) = \mathfrak{D}(\Pi_n^{\diamondsuit}) \times \mathbb{R}^n = \mathbb{B}^{2n-1}.$$

Permitted arcs in decorated polygons

Arcs in a decorated ideal triangle $\widehat{\prod_{3}^{\circ}}$

G-G and R-G diagonals in \mathcal{P}_6 with alternate G,R partitioning

$$\mathcal{A}(\Pi_n^{\diamondsuit}) = \mathcal{Y}(\mathcal{P}_{2n})$$

Pruned arc complex

- The interior of the arc complex is called the *pruned* arc complex.
- Simplices not contained in the boundary decompose the polygon into disks with at most one decorated vertex. These are called *filling* simplices.

Admissible cone

Definition

The *admissible cone* of a decorated possibly punctured polygon Π is defined to be the set of all infinitesimal deformations of the decorated metric $m \in \mathfrak{D}(\Pi)$ that uniformly lengthen all horoball connections. It is denoted by $\Lambda(m)$.

Lemma

The admissible cone of a decorated (possibly punctured) polygon Π , endowed with a metric m, is an open convex subset of $T_m\mathfrak{D}(\Pi)$.

Hyperbolic strip deformations

Hyperbolic strip deformation along a finite arc α with strip template $(\alpha_g, p_\alpha, w_\alpha)$.

Parabolic strip deformations

Parabolic strip deformation along an infinite arc.

The strip map

Infinitesimal strip deformation:

$$\begin{array}{cccc} f_{\alpha} & : & \mathfrak{D}(\Pi) & \longrightarrow & T\mathfrak{D}(\Pi) \\ & m & \mapsto & f_{\alpha}(m) \in T_{m}\mathfrak{D}(\Pi) \end{array}$$

The strip map

Infinitesimal strip deformation:

$$\begin{array}{cccc} f_{\alpha} & : & \mathfrak{D}(\Pi) & \longrightarrow & T\mathfrak{D}(\Pi) \\ & m & \mapsto & f_{\alpha}(m) \in T_{m}\mathfrak{D}(\Pi) \end{array}$$

The strip map:

$$\begin{array}{ccccc} f & : & \mathcal{A}(\Pi) & \longrightarrow & T_{[\rho]}\mathfrak{D}(\Pi) \\ & & \sum\limits_{i=1}^N c_i\alpha_i & \mapsto & \sum\limits_{i=1}^N c_if_{\alpha_i}(m) \end{array}$$

The strip map

Infinitesimal strip deformation:

$$\begin{array}{cccc} f_{\alpha} & : & \mathfrak{D}(\Pi) & \longrightarrow & T\mathfrak{D}(\Pi) \\ & m & \mapsto & f_{\alpha}(m) \in T_{m}\mathfrak{D}(\Pi) \end{array}$$

The projectivised strip map:

$$\mathbb{P}f : \mathcal{A}(\Pi) \xrightarrow{f} T_m \mathfrak{D}(\Pi) \xrightarrow{\mathbb{P}^+} \mathbb{P}^+ T_m \mathfrak{D}(\Pi)
x = \sum_{i=1}^{N} c_i \alpha_i \mapsto \sum_{i=1}^{\dim \mathfrak{D}(\Pi)} c_i f_{\alpha_i}(m) \mapsto [f(x)]$$

Main theorems

Theorem (P.)

Let Π_n^{\diamond} $(n \geq 3)$ be a decorated n-gon with a metric $m \in \mathfrak{D}(\Pi_n^{\diamond})$. Fix a choice of strip template. Then the projectivised strip map $\mathbb{P}f$, when restricted to the pruned arc complex $\mathcal{P}\mathcal{A}(\Pi)$, is a homeomorphism onto the projectivised admissible cone $\mathbb{P}^+(\Lambda(m))$.

Theorem (P.)

Let $\widehat{\Pi_n^{\diamond}}$ $(n \geq 2)$ be a decorated once-punctured polygon with a metric $m \in \mathfrak{D}(\widehat{\Pi_n^{\diamond}})$. Fix a choice of strip template. Then the infinitesimal strip map $\mathbb{P}f$, when restricted to the pruned arc complex $\mathcal{P}\mathcal{A}(\widehat{\Pi_n^{\diamond}})$, is a homeomorphism onto the projectivised admissible cone $\mathbb{P}^+(\Lambda(m))$.

Motivation

Theorem (Danciger-Guéritaud-Kassel)

Let $S = S_{g,n}$ or $T_{h,n}$ be a compact hyperbolic surface with totally geodesic boundary. Let $m = ([\rho]) \in \mathfrak{D}(S)$ be a metric. Fix a choice of strip template $\{(\alpha_g, p_\alpha, w_\alpha)\}_{\alpha \in \mathcal{K}}$ with respect to m. Then the restriction of the projectivised infinitesimal strip map $\mathbb{P}f : \mathcal{P}\mathcal{A}(S) \longrightarrow \mathbb{P}^+(T_m\mathfrak{D}(S))$ is a homeomorphism on its image $\mathbb{P}^+(\Lambda(m))$.

Here the admissible cone $\Lambda(m)$ consists of all infinitesimal deformations that uniformly lengthen every non-trivial closed geodesic.

 $\widehat{\Pi_n^{\diamond}}$: a decorated ideal triangle.

 $\widehat{\Pi_n^{\diamond}}$: a decorated ideal triangle.

•
$$\mathfrak{D}(\widehat{\Pi_3^{\diamond}}) \simeq \mathbb{B}^3$$
,

 $\widehat{\Pi_n^{\diamond}}$: a decorated ideal triangle.

- $\mathfrak{D}(\widehat{\Pi_3^{\diamondsuit}}) \simeq \mathbb{B}^3$,
- Finite arc complex; $\mathcal{PA}(\widehat{\Pi_3^{\Diamond}}) \simeq \mathbb{B}^2$,

 $\widehat{\Pi_n^{\diamond}}$: a decorated ideal triangle.

- $\mathfrak{D}(\widehat{\Pi_3^{\diamondsuit}}) \simeq \mathbb{B}^3$,
- Finite arc complex; $\mathcal{P}\mathcal{A}(\widehat{\Pi_3^{\Diamond}}) \simeq \mathbb{B}^2$,

Theorem

The projectivised strip map $\mathbb{P}f:\mathcal{PR}(\Pi_3^\diamondsuit)\longrightarrow \mathbb{P}^+\Lambda(m)$ is a homeomorphism.

Theorem

The projectivised strip map $\mathbb{P}f:\mathcal{PH}(\Pi_3^{\diamondsuit})\longrightarrow \mathbb{P}^+\Lambda(m)$ is a homeomorphism.

Idea of the proof:

Theorem

The projectivised strip map $\mathbb{P}f:\mathcal{PH}(\Pi_3^{\diamondsuit})\longrightarrow \mathbb{P}^+\Lambda(m)$ is a homeomorphism.

- ② $\mathbb{P}f$ is proper.

Theorem

The projectivised strip map $\mathbb{P} f: \mathcal{PH}(\Pi_3^{\diamond}) \longrightarrow \mathbb{P}^+\Lambda(m)$ is a homeomorphism.

- **3** Steps (1) and (2) imply that $\mathbb{P}f$ is a covering map.

Theorem

The projectivised strip map $\mathbb{P}f:\mathcal{PH}(\Pi_3^{\diamond})\longrightarrow \mathbb{P}^+\Lambda(m)$ is a homeomorphism.

- Pf is proper.
- Steps (1) and (2) imply that $\mathbb{P}f$ is a covering map.
- Domain, codomain are simply connected. Conclude.

Step 1: Local homeomorphism

Remark: Every point $x \in \mathcal{PR}(\Pi_3^{\diamond})$ is contained in the interior of a unique filling simplex σ_x .

Figure: codim $(\sigma_x) = 0$, codim $(\sigma_{x'}) = 1$

Step 1: Local homeomorphism

Case 1: Local homeomorphism around x, with codim $(\sigma_x) = 0$.

It is enough to show

Theorem

Let σ be a codimension zero simplex of the arc complex. Then the set $B = \{f_{\alpha}(m) \mid \alpha \in \sigma^{(0)}\}$ forms a basis of $T_m \mathfrak{D}(\widehat{\Pi_3^{\diamond}})$.

Step 1: Local homeomorphism

Case 2: Local homeomorphism around x, with codim $(\sigma_x) = 1$.

It is enough to show that

Theorem

$$\begin{split} \text{Let } \sigma_1, \sigma_2 \in \mathcal{A}\left(\widehat{\Pi_3^\lozenge}\right) \text{ s.t } \operatorname{codim}\left(\sigma_i\right) &= 0 \text{ for } i = 1, 2, \operatorname{codim}\left(\sigma_1 \cap \sigma_2\right) = 1 \\ \text{and } \operatorname{int}\left(\sigma_1 \cap \sigma_2\right) &\subset \mathcal{P}\mathcal{A}(\widehat{\Pi_3^\lozenge}). \text{ Then,} \end{split}$$

$$\operatorname{int}\left(\mathbb{P}f(\sigma_1)\right)\cap\operatorname{int}\left(\mathbb{P}f(\sigma_2)\right)=\varnothing.$$