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Lattice Walks in the Quarter Plane

Given: A set of directions
Count: Number of integer lattice walks in the �rst quadrant
using these steps.

For instance, given the step set S = fNE;SE;NW;SWg

there are 9 walks of length 3:
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Realistic Goals

Finding an exact expression for the number of walks of length n
is too hard in general - we seek asymptotic estimates.

If we can classify the generating function as algebraic or
D-Finite (satis�es a linear ODE with polynomial coe�cients)
then we know the form of its growth.

Nature of F (t) Growth of [tn]F (t)

Algebraic c�nns

�(s+1)

D-Finite A�nns log(n)r

Neither ?
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D-Finite Functions

If we know the generating function is D-Finite, we can:

determine its asymptotics (from di�erential equation);

calculate the number of such walks e�ciently;

answer questions about related physical systems (limiting
free energy).
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YES - it is rational!

Asymptotics:
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D-Finiteness is a desirable property. . .
But how do we �nd it?

Tools for proving D-Finiteness:

Closure properties of D-Finite functions

Guess and Check Methods (Bostan & Kauers).

Show the GF is the positive part of a rational function
(Bousquet-M�elou & Mishna).

Tools for proving non D-Finiteness:

Iterated Kernel Method

Boundary Value Method

Asymptotic Form (results of probability and G-Functions)
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Searching for D-Finiteness



History

Of 28 = 256 step sets, there are 79 non-isomorphic 2D models
[Bousquet-M�elou&Mishna 2010].

Step sets which are subsets of

correspond to half space problems, which have been previously
solved [Banderier&Flajolet 2001].

Also, subsets of

will never leave the origin, so these are also not considered.
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X
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q(i; j;n)xiyjtn

which counts the number of walks of length n ending at (i; j)
satis�es an obvious functional equation.
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we de�ne the characteristic function
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y

x
+

1

xy
+
x

y



Tools

The generating function

Q(x; y; t) =
X

n;i;j�0

q(i; j;n)xiyjtn

which counts the number of walks of length n ending at (i; j)
satis�es an obvious functional equation. For example, with the
step set

we de�ne the characteristic function

S(x; y) := xy +
y

x
+

1

xy
+
x

y



A functional equation

Q(x; y; t) = 1 + tS(x; y)Q(x; y; t)

�t(y
x
+

1

xy
)Q(0; y; t)

�t(x
y
+

1

xy
)Q(x; 0; t)

+
t

xy
Q(0; 0; t):



A functional equation

Q(x; y; t) = 1 + tS(x; y)Q(x; y; t)

�t(y
x
+

1

xy
)Q(0; y; t)

�t(x
y
+

1

xy
)Q(x; 0; t)

+
t

xy
Q(0; 0; t):



A functional equation

Q(x; y; t) = 1 + tS(x; y)Q(x; y; t)

�t(y
x
+

1

xy
)Q(0; y; t)

�t(x
y
+

1

xy
)Q(x; 0; t)

+
t

xy
Q(0; 0; t):



A functional equation

Q(x; y; t) = 1 + tS(x; y)Q(x; y; t)

�t(y
x
+

1

xy
)Q(0; y; t)

�t(x
y
+

1

xy
)Q(x; 0; t)

+
t

xy
Q(0; 0; t):



The Kernel Equation

Begin with the functional equation, re-group the terms and
multiply by xy to give:

K(x;y)�xyQ(x;y)=xy�t(y2+1)Q(0;y)�t(x2+1)Q(x;0)+tQ(0;0) (K)

where K(x; y) = 1� tS(x; y) is called the kernel of the walk.

We now de�ne a group G of bi-rational transformations of the
xy-plane which preserves S(x; y) - and thus K(x; y).
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To begin, write
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1

y
A�1(x)+A0(x)+yA1(x) =

1

x
B�1(y)+B0(y)+xB1(y):

We let G be the group generated by the involutions
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A Partial Result

Theorem (Bousquet-M�elou & Mishna 2010)

23 of the 79 walks correspond to a �nite group, with 22 of

them admitting a D-Finite generating function. The

remaining 56 walks correspond to an in�nite group.

Theorem (Bostan & Kauers 2010)

The 23rd walk with a �nite group (Gessel's walk) has

D-Finite (in fact, algebraic) generating function.

Conjecture (Mishna 2007)

The generating functions Q(1; 1; t) of the 56 walks with

in�nite group are not D-Finite.
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Walks with In�nite Groups

[Mishna & Rechnitzer 2009]
2 of the 56 walks have Q(1; 1; t) non D-Finite

[Kurkova & Raschel 2011]
51 of the 56 walks have Q(x; y; t) non D-Finite

[Bostan, Raschel, Salvy 2012]
51 of the 56 walks have Q(0; 0; t) non D-Finite

[M. & Mishna 2012]
The �nal 3 walks have Q(1; 1; t) non D-Finite



Walks with In�nite Groups

[Mishna & Rechnitzer 2009]
2 of the 56 walks have Q(1; 1; t) non D-Finite

[Kurkova & Raschel 2011]
51 of the 56 walks have Q(x; y; t) non D-Finite

[Bostan, Raschel, Salvy 2012]
51 of the 56 walks have Q(0; 0; t) non D-Finite

[M. & Mishna 2012]
The �nal 3 walks have Q(1; 1; t) non D-Finite



Walks with In�nite Groups

[Mishna & Rechnitzer 2009]
2 of the 56 walks have Q(1; 1; t) non D-Finite

[Kurkova & Raschel 2011]
51 of the 56 walks have Q(x; y; t) non D-Finite

[Bostan, Raschel, Salvy 2012]
51 of the 56 walks have Q(0; 0; t) non D-Finite

[M. & Mishna 2012]
The �nal 3 walks have Q(1; 1; t) non D-Finite



Walks with In�nite Groups

[Mishna & Rechnitzer 2009]
2 of the 56 walks have Q(1; 1; t) non D-Finite

[Kurkova & Raschel 2011]
51 of the 56 walks have Q(x; y; t) non D-Finite

[Bostan, Raschel, Salvy 2012]
51 of the 56 walks have Q(0; 0; t) non D-Finite

[M. & Mishna 2012]
The �nal 3 walks have Q(1; 1; t) non D-Finite



Infinite Group Walks (Non D-Finite�):



3 Techniques to Prove Non D-�niteness



The Iterated Kernel Method [M., Mishna, Rechnitzer]

For the step set

we have the functional equation

xyK(x;y)�Q(x;y)=xy�ty2Q(y;0)�tx2Q(x;0) (K)

where

xyK(x; y) = 1� tS(x; y) = 1� t(x2 + y2 + x2y2):

Note that

Q(1; 1) =
1� 2tQ(1; 0)

1� 3t
:
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The Iterated Kernel Method [M., Mishna, Rechnitzer]

We write
Q(1; 0; t) =

X
n�0

(�1)nYn(t)Yn+1(t);

where the Yn are explicit algebraic functions (degree 2)
determined from the kernel.

We prove that each Yn has a unique singularity, so Q(1; 0) has
an in�nite number of singularities and is not D-Finite.

We can also extract asymptotics and quickly count the number
of such walks.
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Boundary Value Method [Fayolle, Kurkova, Raschel]

Here, the Q(x; 0; t), Q(0; y; t) and Q(0; 0; t) are given as
explicit integral representations.

These are obtained by solving boundary value problems of
Riemann-Carleman type.

The representations prove non D-Finiteness of Q(x; y; t).

Note that this does not imply that Q(1; 1; t) is non D-Finite.



Boundary Value Method [Fayolle, Kurkova, Raschel]

Here, the Q(x; 0; t), Q(0; y; t) and Q(0; 0; t) are given as
explicit integral representations.

These are obtained by solving boundary value problems of
Riemann-Carleman type.

The representations prove non D-Finiteness of Q(x; y; t).

Note that this does not imply that Q(1; 1; t) is non D-Finite.



Boundary Value Method [Fayolle, Kurkova, Raschel]

Here, the Q(x; 0; t), Q(0; y; t) and Q(0; 0; t) are given as
explicit integral representations.

These are obtained by solving boundary value problems of
Riemann-Carleman type.

The representations prove non D-Finiteness of Q(x; y; t).

Note that this does not imply that Q(1; 1; t) is non D-Finite.



Boundary Value Method [Fayolle, Kurkova, Raschel]

Here, the Q(x; 0; t), Q(0; y; t) and Q(0; 0; t) are given as
explicit integral representations.

These are obtained by solving boundary value problems of
Riemann-Carleman type.

The representations prove non D-Finiteness of Q(x; y; t).

Note that this does not imply that Q(1; 1; t) is non D-Finite.



Excursion Method [Bostan, Raschel, Salvy]

A recent probabilistic result [Denisov & Wachtel 2011] implies
that for walks in the quarter plane

[tn]Q(0; 0; t) � K � �n � n�;

where

� = �1� �= arccos(c)
c and � found by solving a polynomial system.

As Q(0; 0; t) is a G-function, the growth exponent � must be
rational if Q(0; 0; t) is D-Finite.
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Excursion Method [Bostan, Raschel, Salvy]

Irrationality of � is proven automatically by:

(1) determining the minimal polynomial, �c, of c

(2) proving that the numerator of �c
�
x2+1
2x

�
contains no

cyclotomic polynomial.

This proves that Q(0; 0; t) is non D-Finite (and thus so is
Q(x; y; t)) for 51 walks.
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Longer Steps
[Bostan, Bousquet-M�elou, M. - in preparation]

This result also applies to walks in 2D with larger steps.

At �rst, we focus on walks that have only a few steps of length
two.

We group the walks by counting sequence, then apply the above
method to �lter walks which appear to be D-Finite.
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Results with One and Two Long Steps

Walks with one large step (4 degenerative):

For 643 sequences, Q(0; 0; t) proven non D-Finite

For 37 sequences, � shown to be rational

32 of 37 sequences have di�erential equations guessed

Walks with two large steps (11 degenerative):

For 5754 sequences, Q(0; 0; t) proven non D-Finite

For 156 sequences, � shown to be rational (69 have guessed
equations)
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Extensions to New Walks
(3D Walks)



Basic Idea

Now, we look at walks in the xyz-plane restricted to the
positive octant.

� � �
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� � �
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A priori, there are 226 = 6:7 � 107 step sets. Although many
have the same counting sequence, this is too large.

We focus on the 83; 682 with 5 steps or less. Bostan and Kauers
conjectured (up to equivalence) 35 D-Finite steps.
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Using the Group

There are 23 cases which can be solved using the group, which
is �nite.

There are 4 step sets which have �nite group, but for which the
argument doesn't hold - these are solved individually.

There are 8 sets with an in�nite group.
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Reduction to 2D

All of the walks with in�nite group can be reduced to 2D!

Example: Consider the step set
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and `mark' the steps by a; b; c; d; e. Then

(x) b � (c+ d+ e)

(y) b+ c � e

(z) (c+ d+ e) � a

If (x) is satis�ed then (y) must be satis�ed!
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Reduction to 2D

Thus, we get b � (c+ d+ e) � a.
But this is the same as the restriction on

We can write Q(x; y; z; t) = Q0(X;Y ;T ), where

T = t(1 + y + y2)1=3 X =
zT

t
Y =

xyt

T
:

As Q0(x; 1=x; t) is algebraic, so is Q
�
x; y; 1

xy ; t
�
.
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Picking D-Finite Cases

Thus, we can �lter the D-Finite walks as follows:

(1) Filter all walks that reduce to 2D

(2) Filter out the walks with �nite group�

(3) Prove the walks with �nite group are D-Finite
(if possible)

With 6 Steps, we get (in terms of unique counting sequences):

134 = 34 + 77� + 23 reducible walks

65 with a �nite group that are proven D-Finite

31 with a �nite group that can't be proven using existing
methods.
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Conclusion
So far we have:

classi�ed� all walks with unit steps in 2D

developed (some) automatic methods for classi�cation

started classifying walks with longer steps and those in 3D

We would like to:

have a better characterization of D-Finiteness

understand the role of the group better

develop more robust methods - start looking at steps with
multiple colours
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