

Domain constraint, marking, ending constraint

meander

bridge

Domain constraint, marking, ending constraint

meander

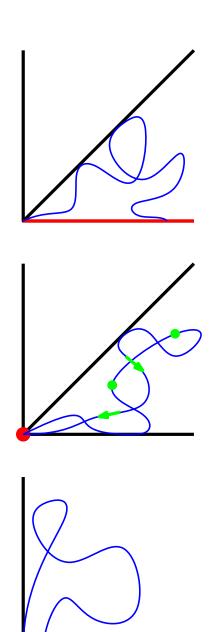
Dyck path with marked steps from 1 to 0

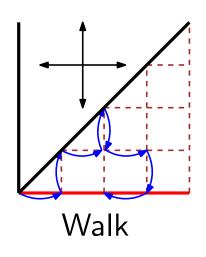
bridge

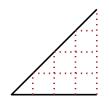
Domain constraint, marking, ending constraint

Axis-walk in the octant

Excursion in the octant with marking



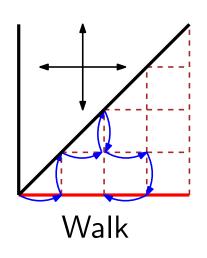


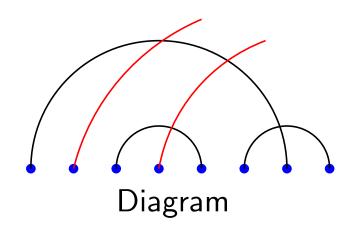


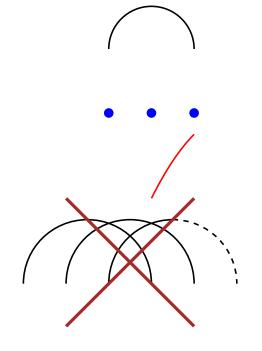
Walk in the (2-dimensional) octant

n step of type N, S, E, O

ending on the axis at (i,0)

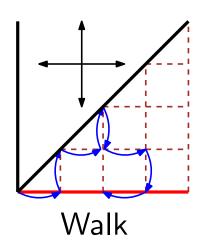


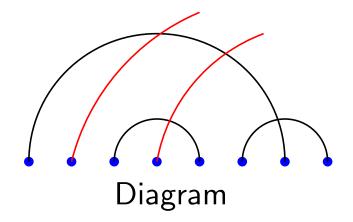




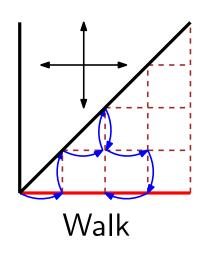
matching diagram of length \boldsymbol{n} with \boldsymbol{i} open arcs

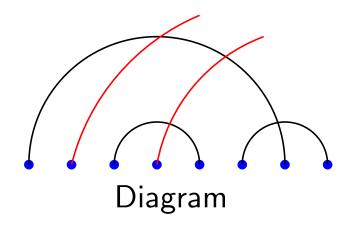
without 3-crossing





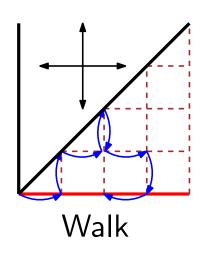
Respective advantages:

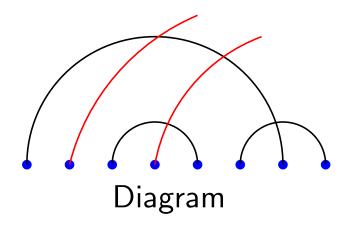




Respective advantages:

- well-known objects
- easy reccurence relations for generating series
- a more natural phrasing of problems



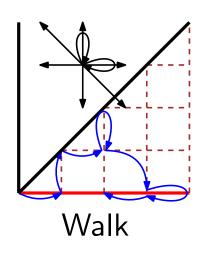


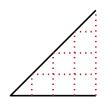
Respective advantages:

- well-known objects
- easy reccurence relations for generating series
- a more natural phrasing of problems

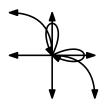
- new generating trees
- easily-removable open arcs

Walks, Tableaux, Diagrams The Hesitating case





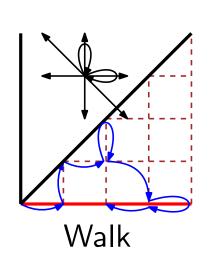
Walk in the (2-dimensional) octant

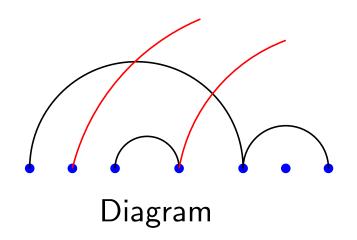


n steps of type N, S, E, O, NE, NS, EO, ES

enging on the axis at (i,0)

Walks, Tableaux, Diagrams The Hesitating case

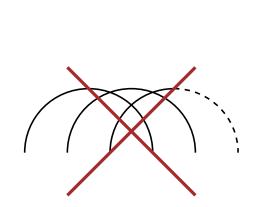


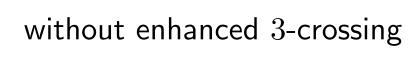


partition diagram

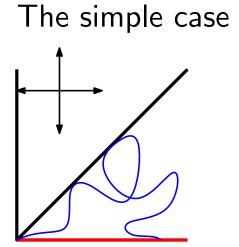
of length n

with i open arcs

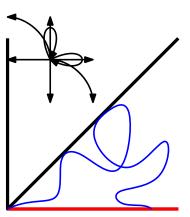




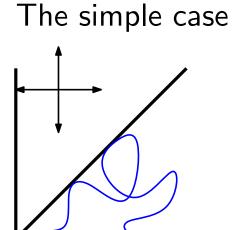
Axis-walk in the octant



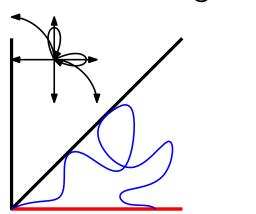
The Hesitating case

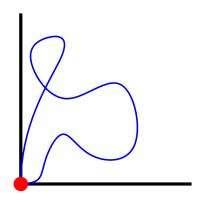


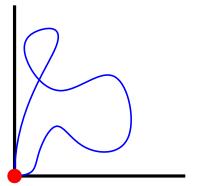
Axis-walk in the octant



The Hesitating case

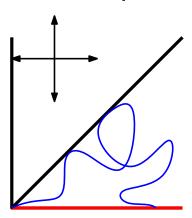




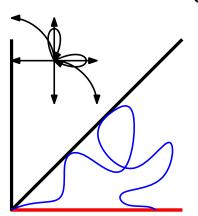


Axis-walk in the octant

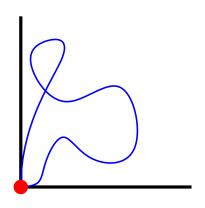
The simple case

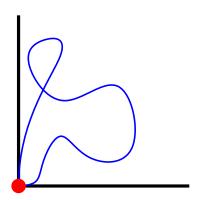


The Hesitating case



Excursion in the quarter-plane





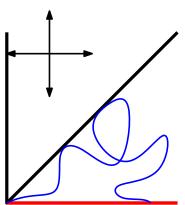
Cardinality

$$C_n \cdot C_{n+1}$$

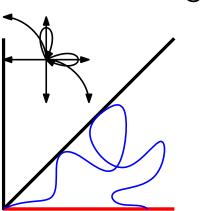
$$\mathcal{B}_{n+1}$$

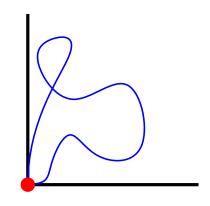
Axis-walk in the octant

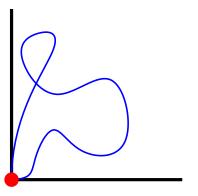
The simple case



The Hesitating case



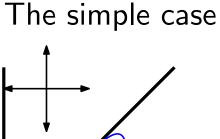


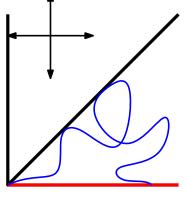


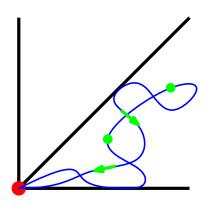
Axis-walk in the octant

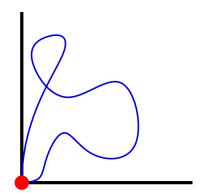
Excursion in the octant with marking

Excursion in the quarter-plane

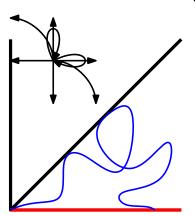


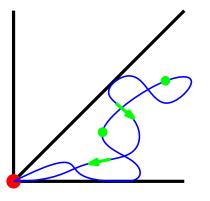


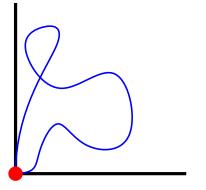




The Hesitating case

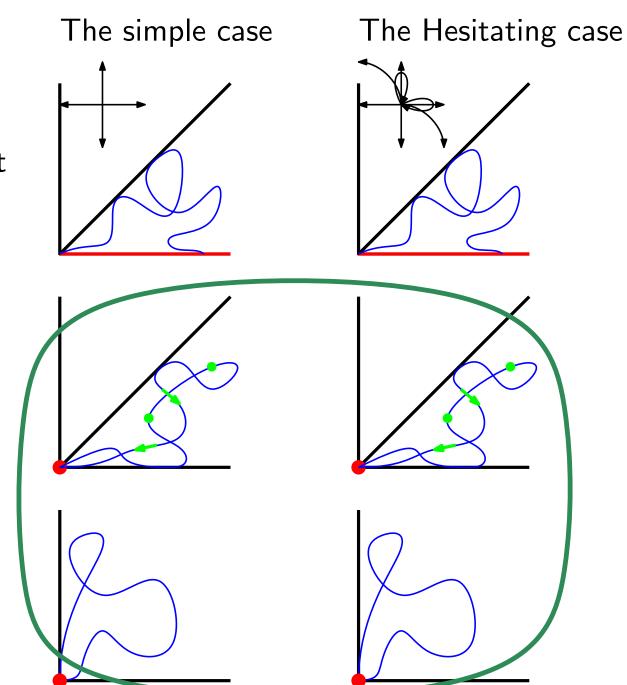






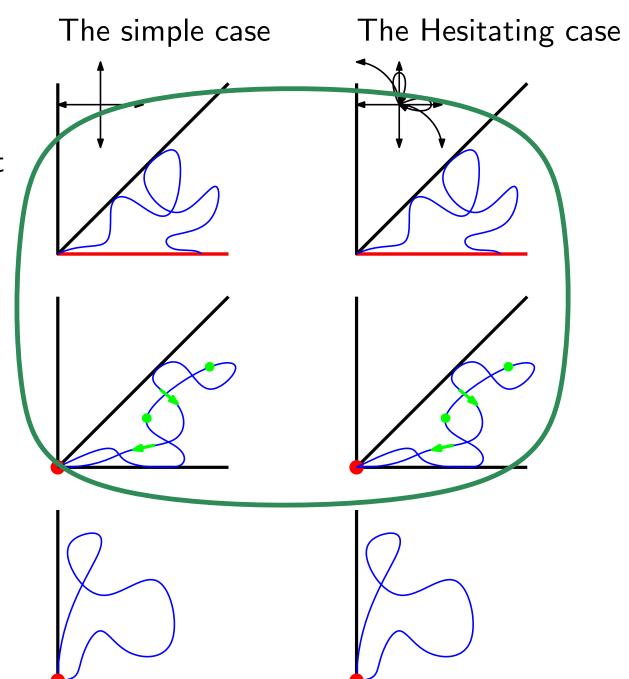
Axis-walk in the octant

Excursion in the octant with marking



Axis-walk in the octant

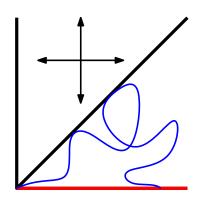
Excursion in the octant with marking

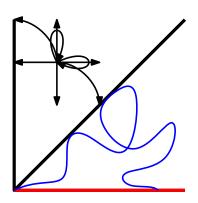


Remove the open arcs in order to get marked excursions in the octant

Simple axis-walk in the octant

Hesitating axis-walk in the octant

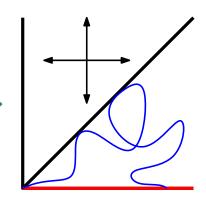




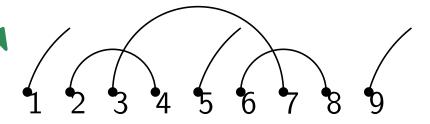
Remove the open arcs in order to get marked excursions in the octant

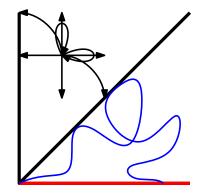
Simple axis-walk in the octant

Hesitating axis-walk in the octant

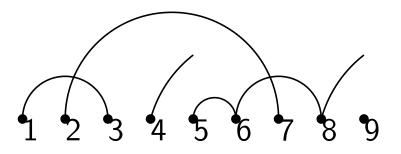


Open matcing diagram without 3-crossing





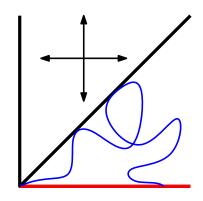
Open partition diagram without enhanced 3-crossing

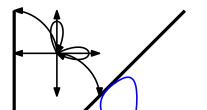


Remove the open arcs in order to get marked excursions in the octant

Simple axis-walk in the octant

Hesitating axis-walk in the octant

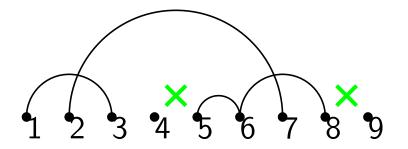




Matching diagram without 3-crossing, with marking

Partition diagram without enhanced 3-crossing, with marking

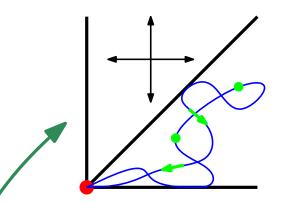


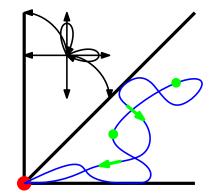


Remove the open arcs in order to get marked excursions in the octant

Simple excursion in the octant with marking

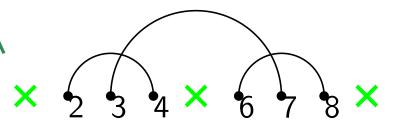
Hesitating excursion in the octant with marking

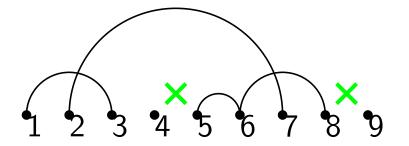


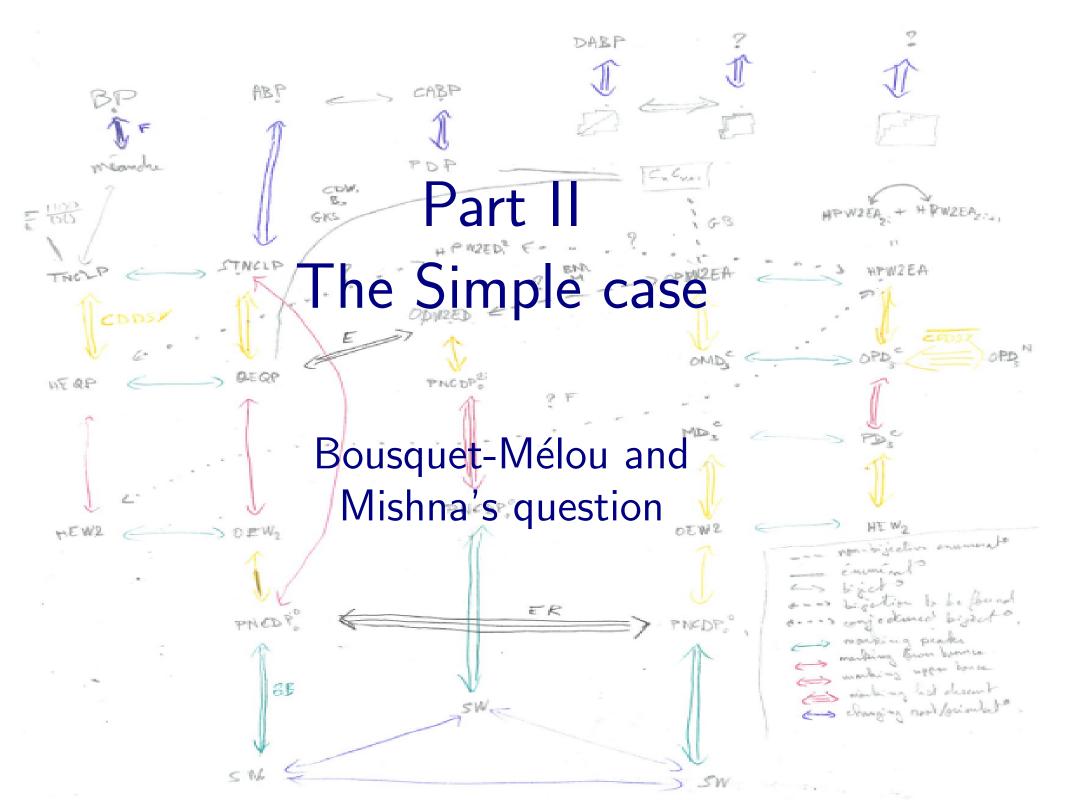


Matching diagram without 3-crossing, with marking

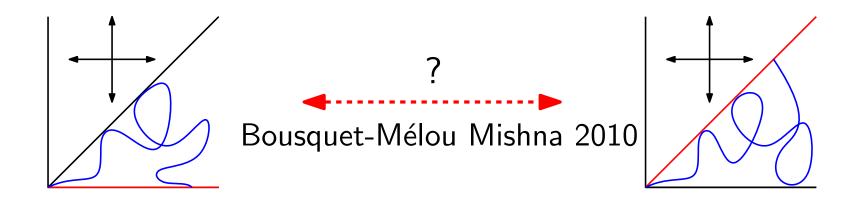
Partition diagram without enhanced 3-crossing, with marking



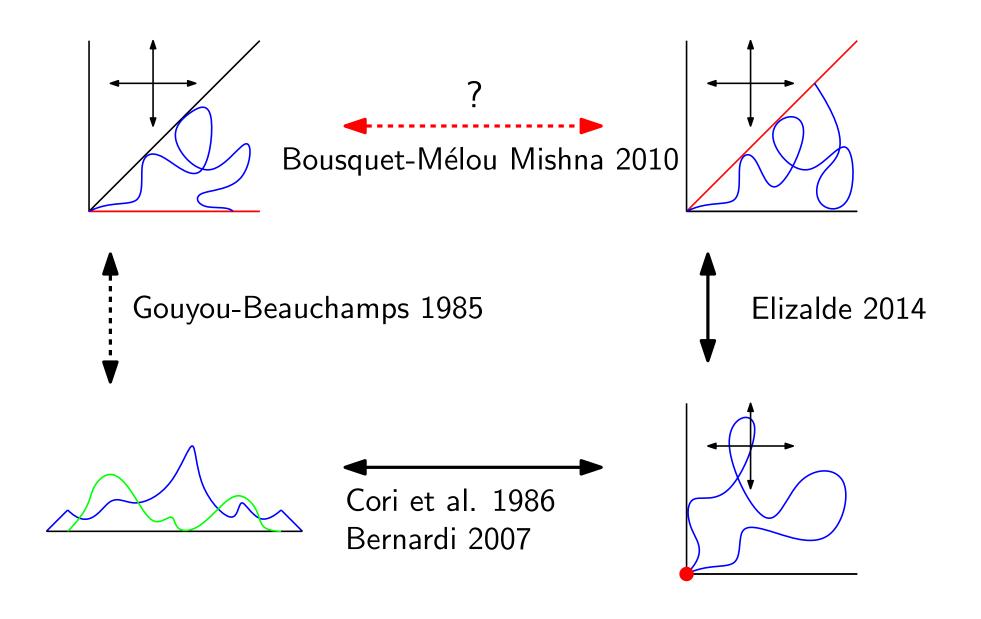




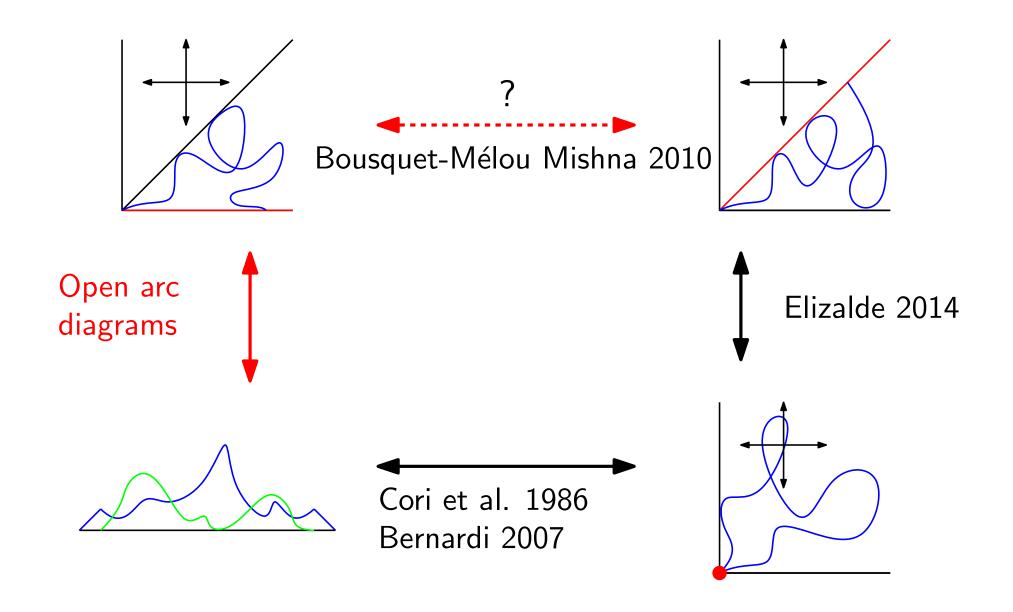
Bousquet-Mélou and Mishna's question



Bousquet-Mélou and Mishna's question



Bousquet-Mélou and Mishna's question



The missing part

Reminder:

Gouyou-Beauchamps 1985 (non-bijective) :

Simple axis-walks in the octant are counted by $C_{\lfloor \frac{n+1}{2} \rfloor} \cdot C_{\lceil \frac{n+1}{2} \rceil}$, where C_n is the n-th Catalan number.

The missing part

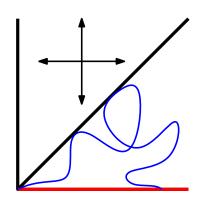
Reminder:

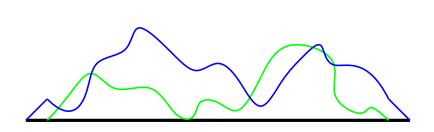
Gouyou-Beauchamps 1985 (non-bijective) :

Simple axis-walks in the octant are counted by $C_{\lfloor \frac{n+1}{2} \rfloor} \cdot C_{\lceil \frac{n+1}{2} \rceil}$, where C_n is the n-th Catalan number.

Objective:

• Build a bijection between Simple axis-walks in the octant of length 2n and pairs of Dyck paths of half-lengths n and n+1.



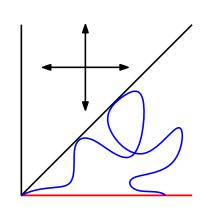


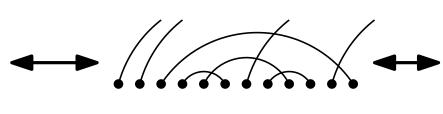
The even case

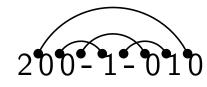
Simple axis-walks in the octant of length 2n

Open matching diagram with no 3-crossing of length 2n

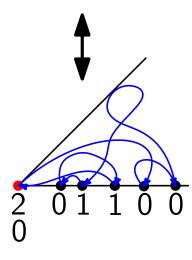
Matching diagram without 3-crossing with weights on open intervals, of size 2n







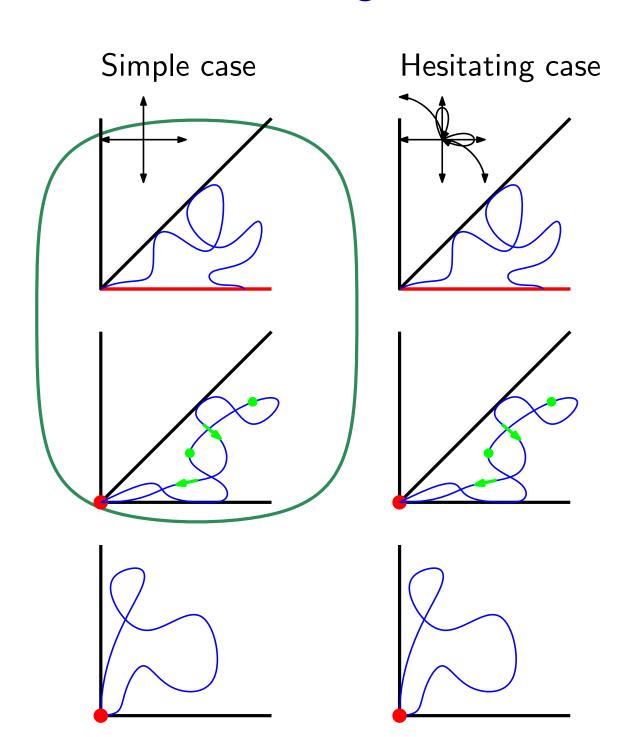
size = length + weight



Simple excursion in the octant, with weights on the axis, of size 2n

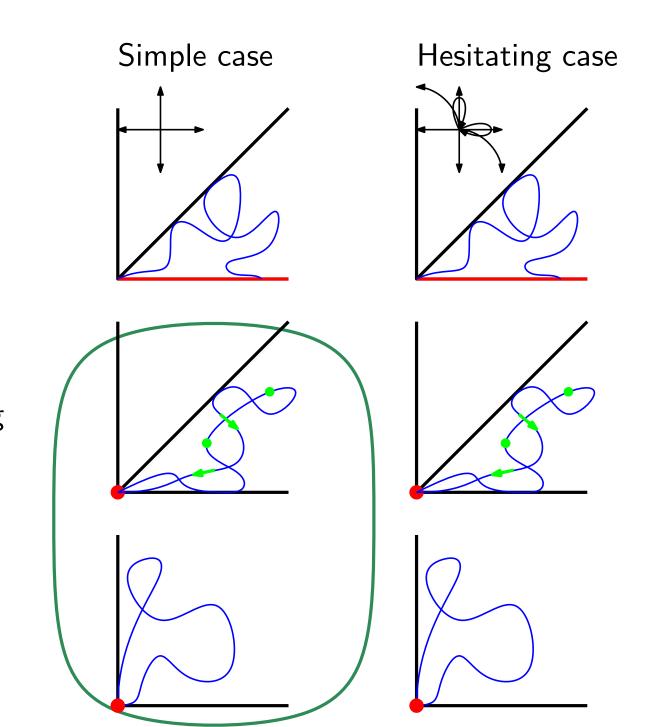
Axis-walk in the octant

Excursion in the octant with marking



Axis-walk in the octant

Excursion in the octant with marking

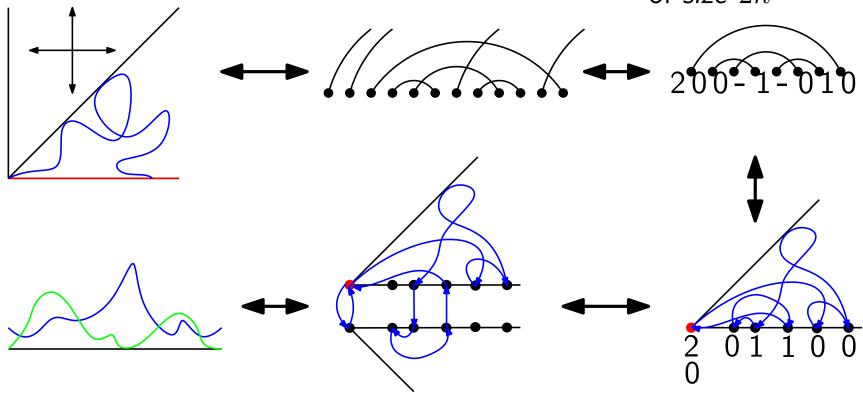


The even case

Simple axis-walks in the octant of length 2n

Open matching diagram with no 3-crossing of length 2n

Matching diagram without 3-crossing with weights on open intervals, of size 2n



Pair of positive paths of length 2n going from (1,0) to (1,0)

Simple inter-diagonals excursion of length 2n

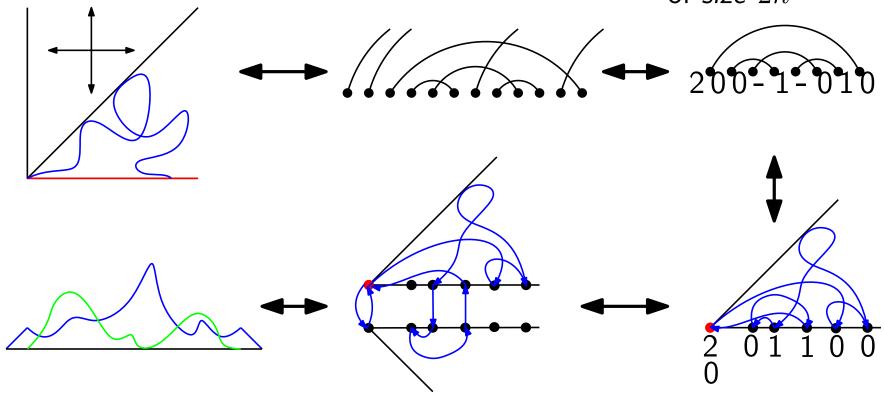
Simple excursion in the octant, with weights on the axis, of size 2n

The even case

Simple axis-walks in the octant of length 2n

Open matching diagram with no 3-crossing of length 2n

Matching diagram without 3-crossing with weights on open intervals, of size 2n



Pair of Dyck paths of half-lengths (n, n + 1)

Simple inter-diagonals excursion of length 2n

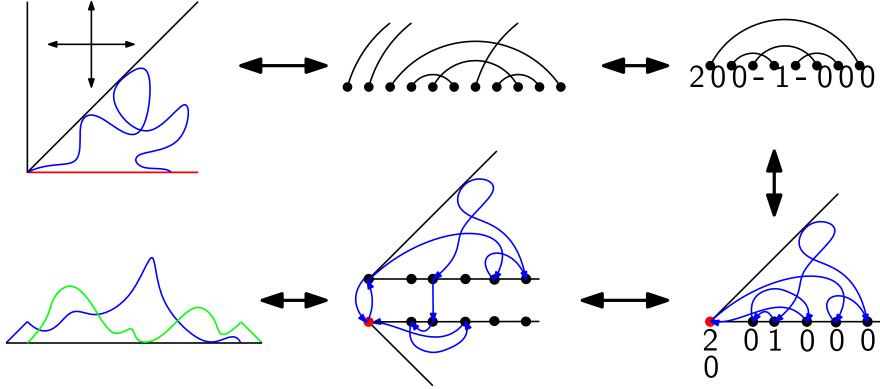
Simple excursion in the octant, with weights on the axis, of size 2n

The odd case

Simple axis-walks in the octant of length 2n+1

Open matching diagram with no 3-crossing of length 2n+1

Matching diagram without 3-crossing with weights on open intervals, of size 2n+1

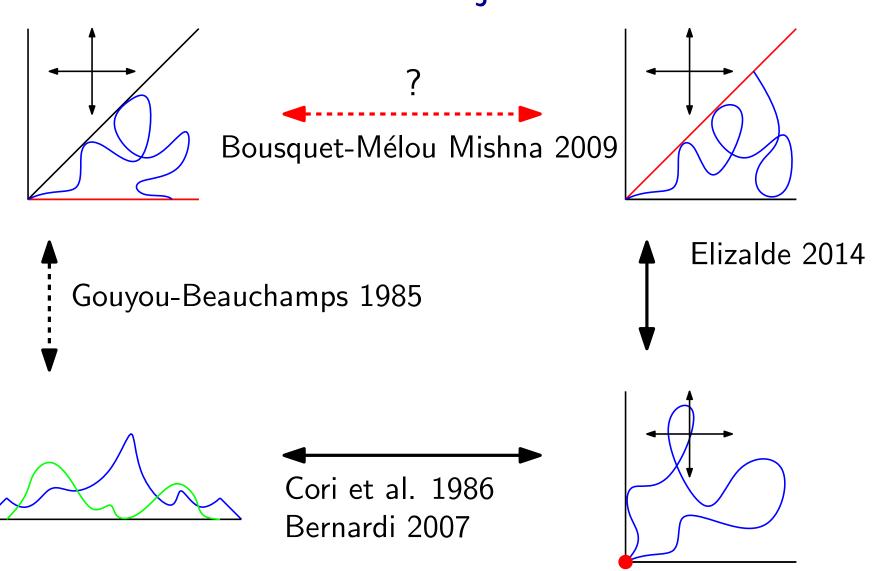


Pair of Dyck paths of half-lengths n+1

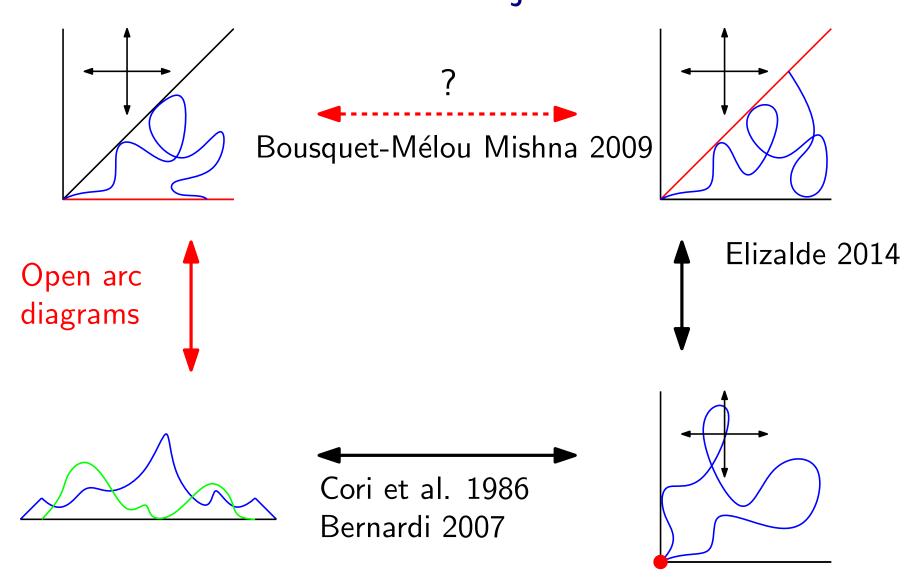
Simple inter-diagonals walk of length 2n+1

Simple excursion in the octant, with weights on the axis, of size 2n + 1

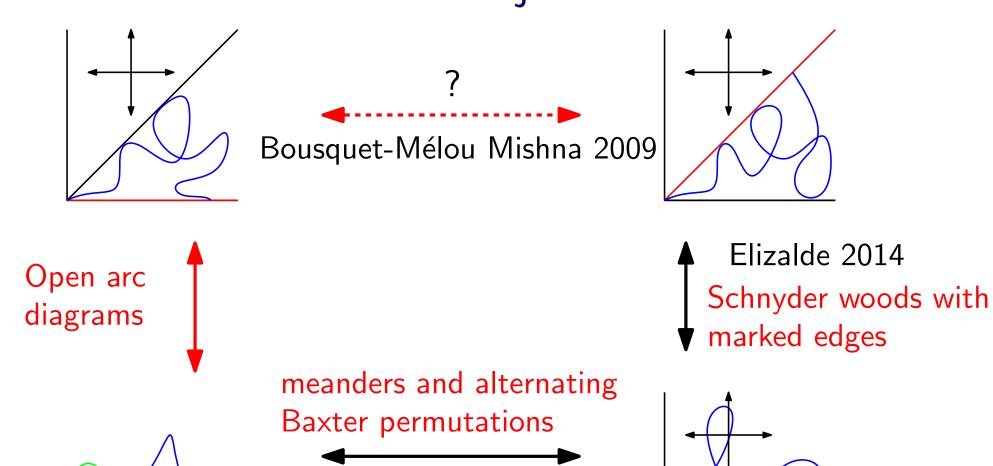
Answering Bousquet-Mélou et Mishna's question : three new bijections



Answering Bousquet-Mélou et Mishna's question : three new bijections

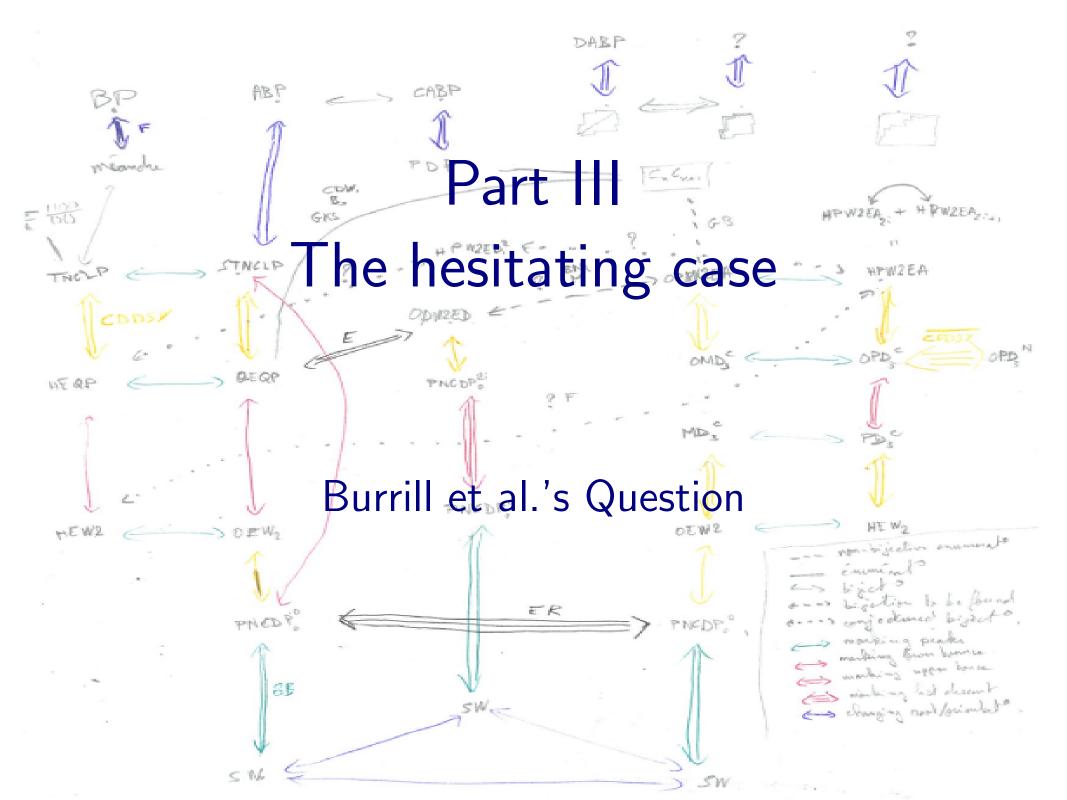


Answering Bousquet-Mélou et Mishna's question : three new bijections

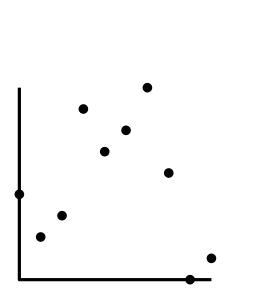


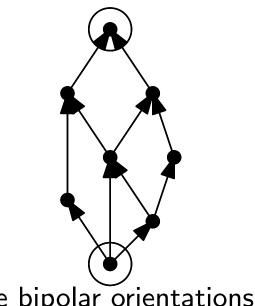
Cori et al. 1986

Bernardi 2007

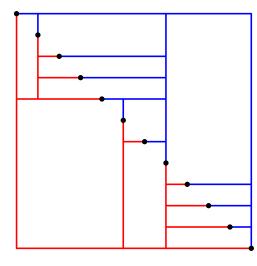


Symmetric Baxter families

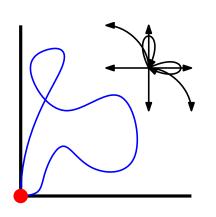




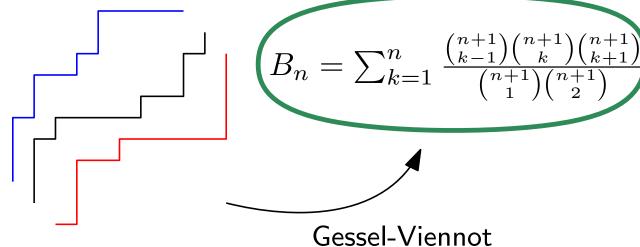
Plane bipolar orientations



Rectangulations of the square

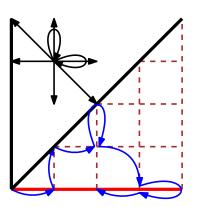


Hesitating excursions in the quarter-plane

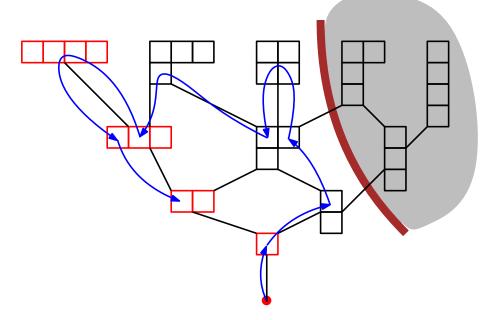


Non-crossing triples of paths

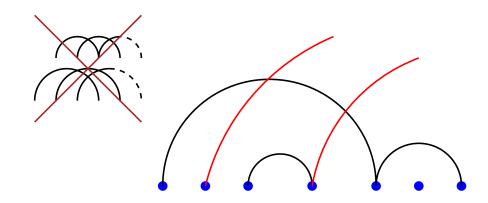
Asymmetric Baxter families



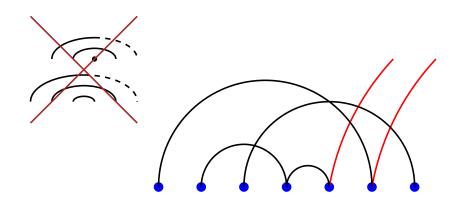
Hesitating axis-walks in the octant



Hesitating tableaux of height at most 2 with a line shape



Open partition diagrams with no enhanced 3-crossings



Open partition diagrams with no enhanced 3-nestings

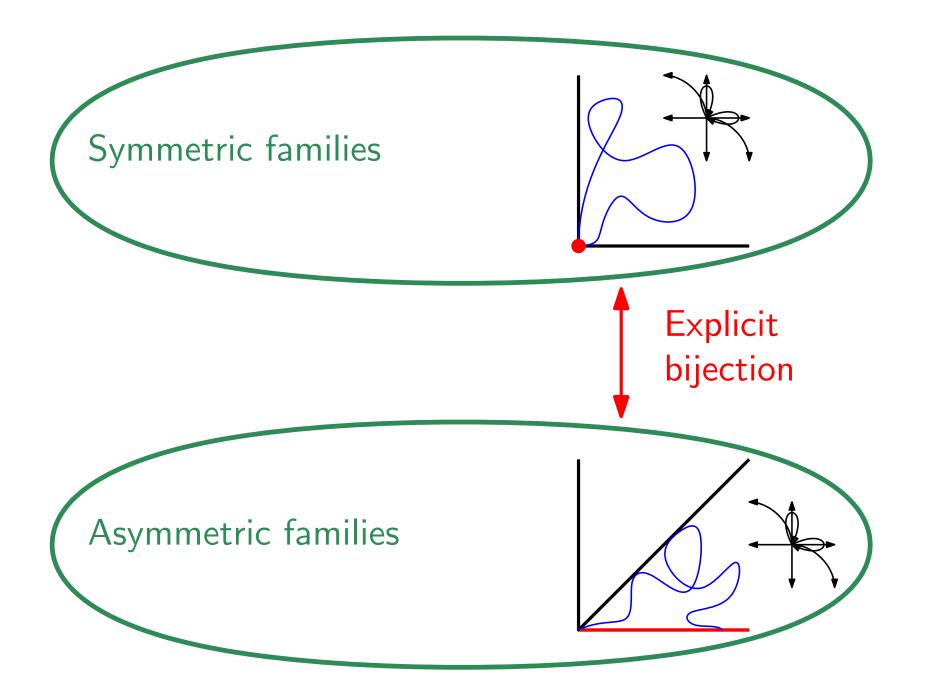
Baxter families

Symmetric families

Xin and Zhang
2008
(non bijective)

Asymmetric families

Baxter families



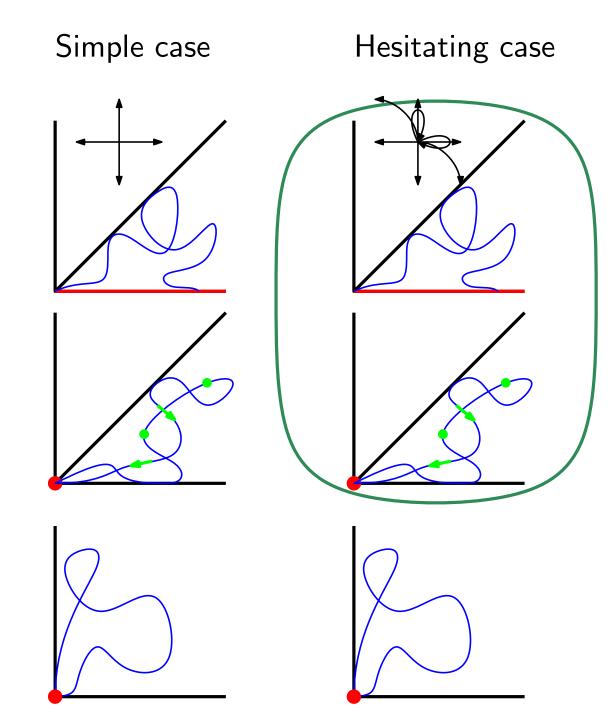
Strategy: Go through marked excursions in the octant

Domain contraint ↔ Ending constraint

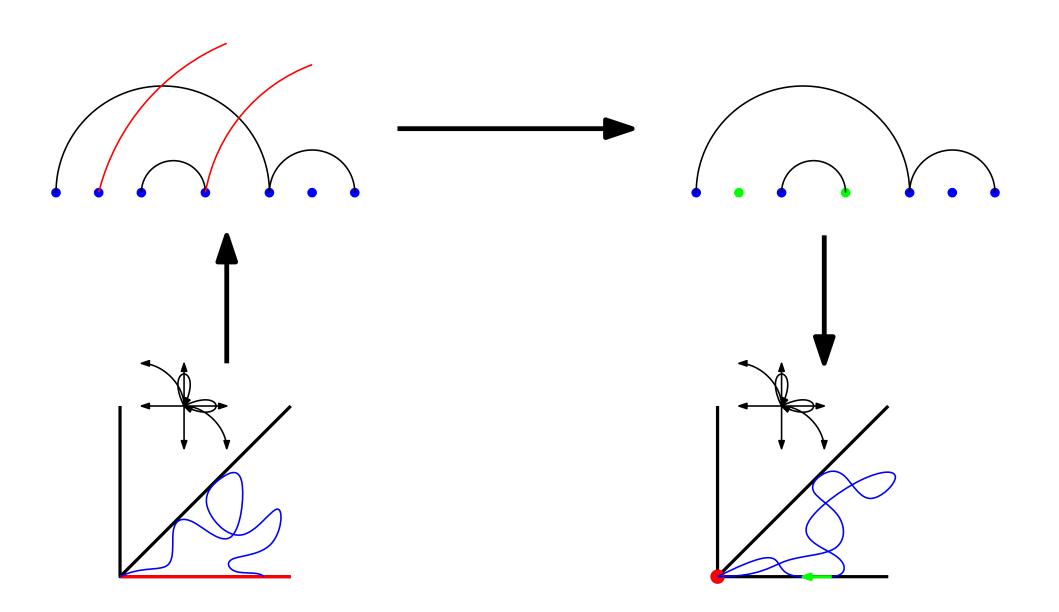
Axis-walk in the octant

Excursion in the octant with marking

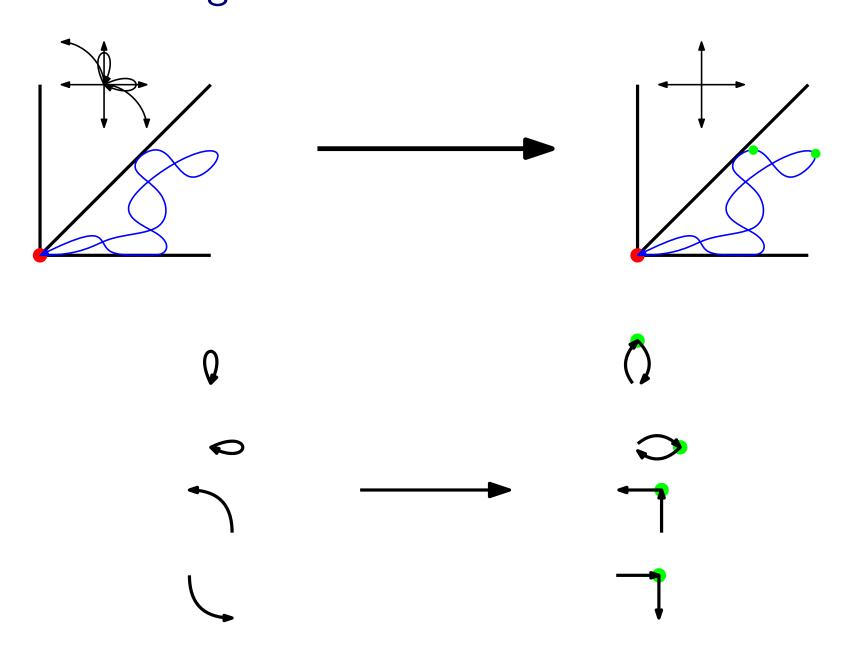
Excursion in the quarter-plane



Strategy:
Go through marked excursions in the octant



Strategy:
Go through marked excursions in the octant



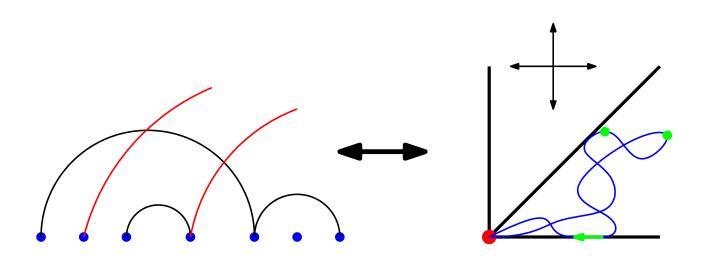
Strategy:

Go through marked excursions in the octant

Open partition diagrams of length n without enhanced 3-crossings

are in bijection with

Simple excursions in the octant of length n with marked peaks and marked W-steps on the axis.

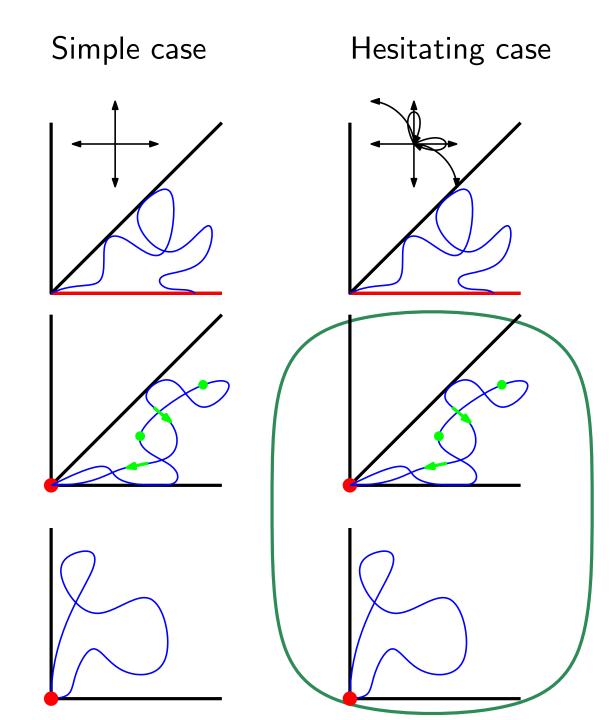


Domain contraint ↔ Ending constraint

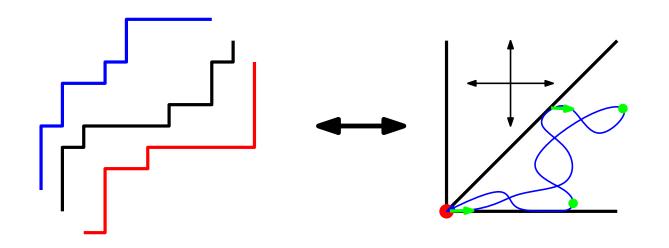
Axis-walk in the octant

Excursion in the octant with marking

Excursion in the quarter-plane



Strategy: Go through marked excursions in the octant



Triples of non-crossing lattice paths of length $\,n\,$ are in bijection with

Simple excursions in the octant of length n with marked peaks and marked steps leaving the diagonal.

Strategy:

Go through marked excursions in the octant

Open partition diagrams of length n without enhanced 3-crossings

are in bijection with

Simple excursions in the octant of length n with marked peaks and marked W-steps on the axis.

Triples of non-crossing lattice paths of length \boldsymbol{n} are in bijection with

Simple excursions in the octant of length n with marked peaks and marked steps leaving the diagonal.

Symmetric distribution of the statistics

Theorem [ER,CFLM]:

There is an explicit bijection between:

- Simple excursions of length n in the octant, with p peaks, i steps leaving the diagonal, and j W-steps on the axis,
 and:
- Simple excursions of length n in the octant, with p peaks, j steps leaving the diagonal, and i W-steps on the axis

Symmetric distribution of the statistics

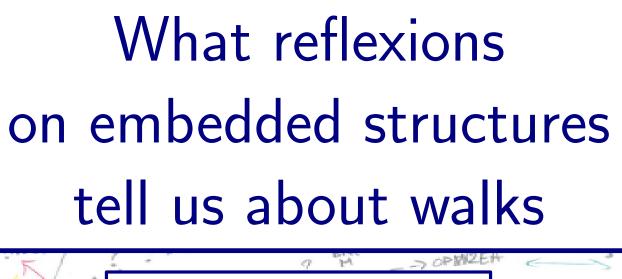
Theorem [ER,CFLM]:

There is an explicit bijection between:

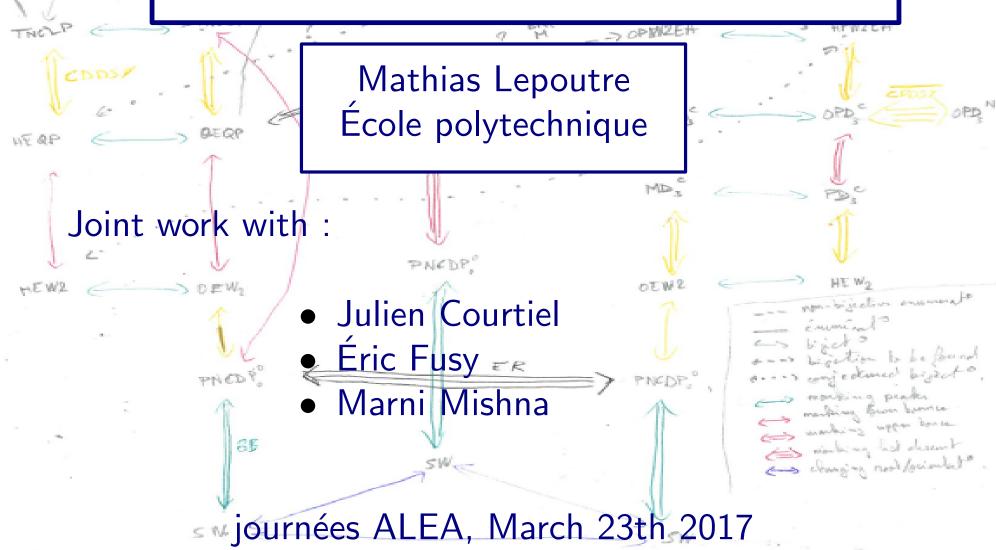
- Simple excursions of length n in the octant, with p peaks, i steps leaving the diagonal, and j W-steps on the axis, and :
- Simple excursions of length n in the octant, with p peaks, j steps leaving the diagonal, and i W-steps on the axis

Proofs:

- Local operations on pairs of non-crossing Dyck paths. (Elizalde, Rubey 2012)
- Reflection of a Schnyder wood (Courtiel, Fusy, L., Mishna 2017)



WZEAZZA,



$$N(n,p) = \frac{1}{p} \binom{n}{p-1} \binom{n-1}{p-1}$$
:

Number of Dyck paths of length 2n with p peaks.

$$N(n,p) = \frac{1}{p} \binom{n}{p-1} \binom{n-1}{p-1}$$
:

Number of Dyck paths of length 2n with p peaks.

Example for n=3

$$N(3,1) = 1$$

$$N(3,2) = 3$$

$$N(3,3) = 1$$

$$N(n,p) = \frac{1}{p} \binom{n}{p-1} \binom{n-1}{p-1} :$$

Number of Dyck paths of length 2n with p peaks.

Properties:

$$\bullet \ \sum_{p=1}^{n} N(n,p) = C_n$$

$$N(n,p) = N(n,n-p+1)$$

$$N(n,p) = \frac{1}{p} \binom{n}{p-1} \binom{n-1}{p-1} :$$

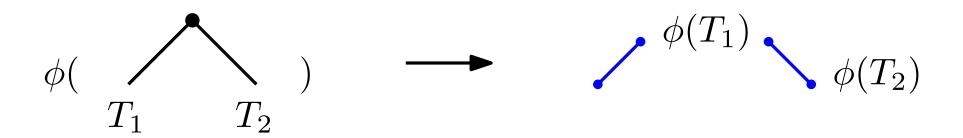
Number of Dyck paths of length 2n with p peaks.

Properties:

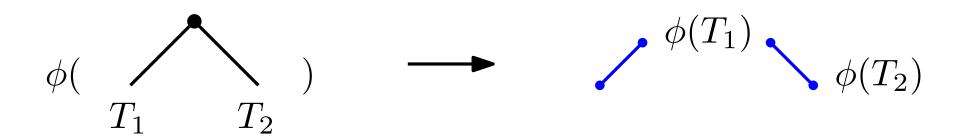
$$\bullet \ \sum_{p=1}^{n} N(n,p) = C_n$$

$$N(n,p) = N(n,n-p+1)$$

A bijection between plane binary trees with n leaves and Dyck paths of length 2n :



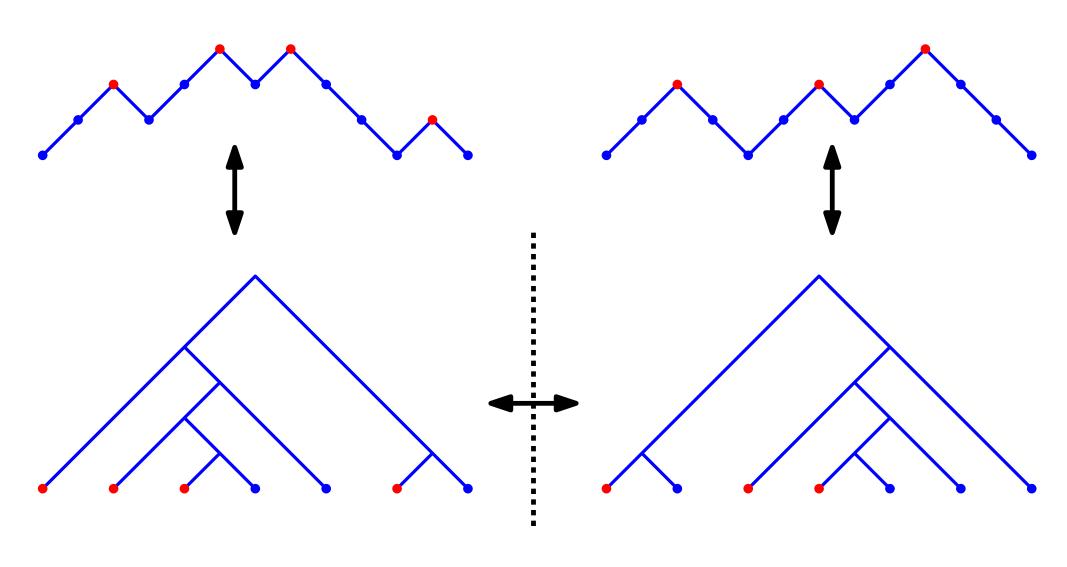
A bijection between plane binary trees with n leaves and Dyck paths of length 2n :



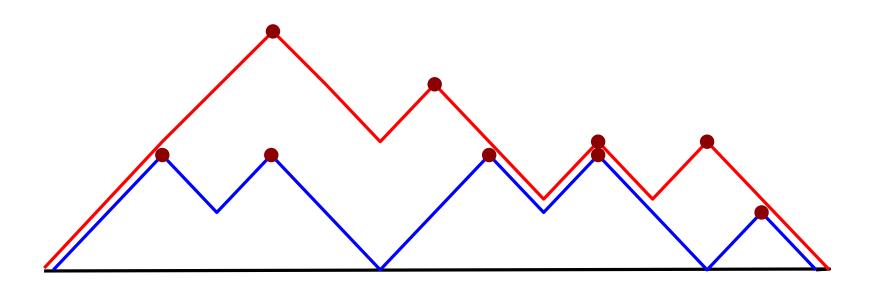
Tracking an interesting parameter :

Number of left leaves —— Number of peaks

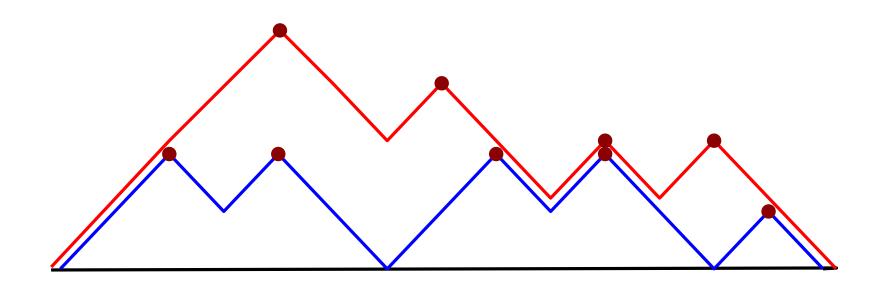
A bijective proof of Narayana numbers symmetry:



Generalisation : Peaks of the pairs of non-crossing Dyck paths



Generalisation:
Peaks of the pairs of non-crossing Dyck paths

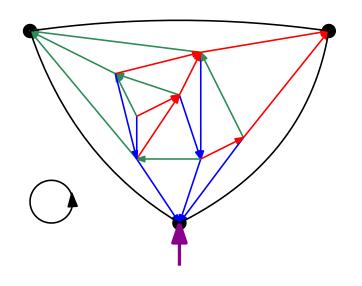


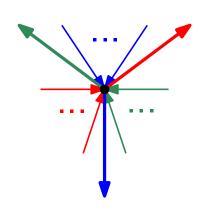
Let N(n, p, q) be the number of pairs of non-crossing Dyck paths of length 2n with p upper peaks and q lower peaks.

Then: N(n, p, q) = N(n, n - q + 1, n - p + 1)

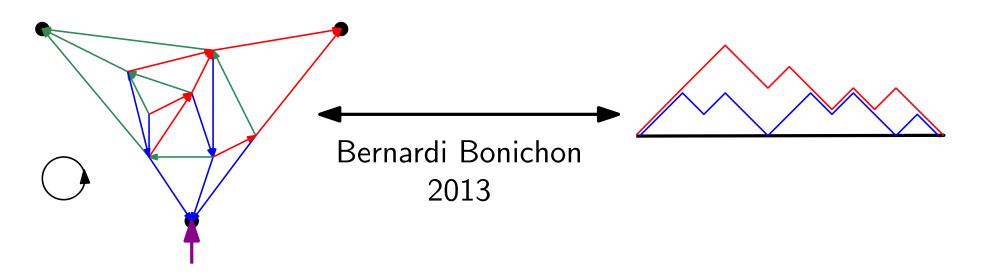
Generalisation: Peaks of the pairs of non-crossing Dyck paths

Schnyder woods of triangulations

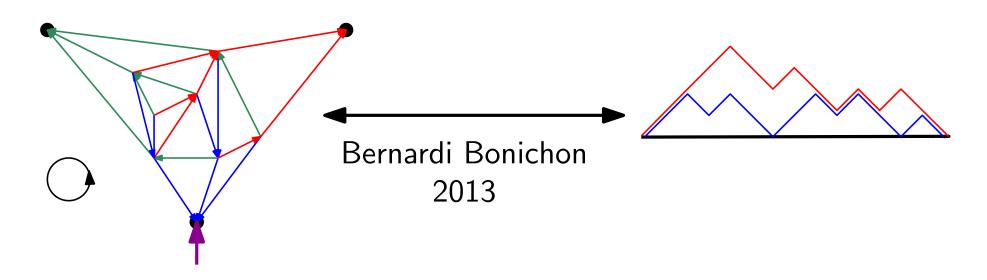




Generalisation : Peaks of the pairs of non-crossing Dyck paths



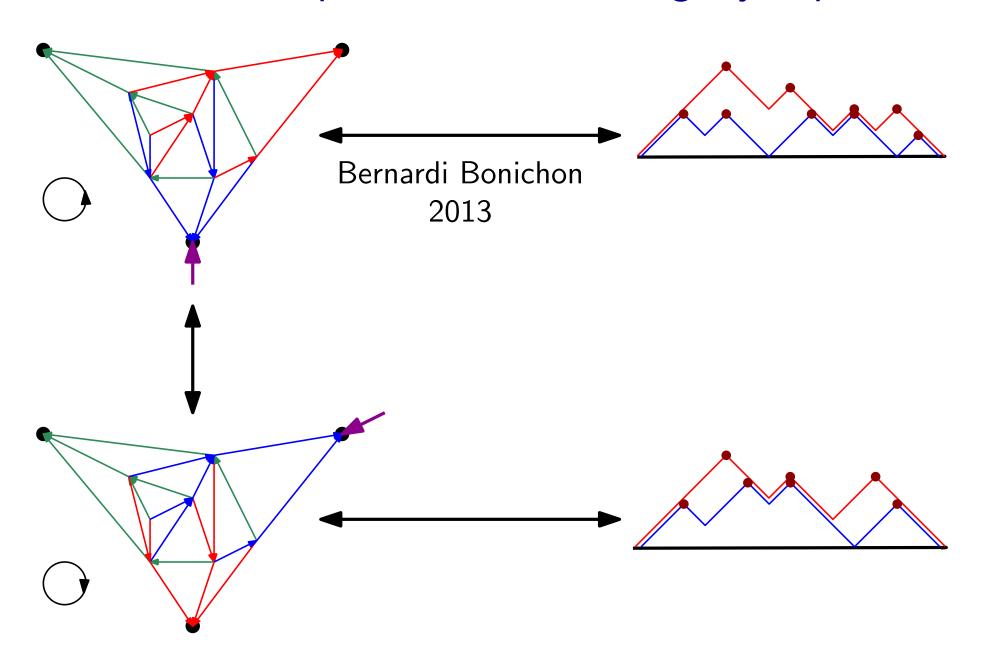
Generalisation: Peaks of the pairs of non-crossing Dyck paths



- Number of blue leaves
- Number of red internal vertices

- Number of blue peaks
- Number of red peaks

Generalisation : Peaks of the pairs of non-crossing Dyck paths



Can this be further generalized?

Let $N(n, p_1...p_k)$ be the number of k-tuples of non-crossing Dyck paths of length 2n with p_i peaks on the i-th paths from the top.

Do we have: $N(n, p_1...p_k) = N(n, n - p_k + 1...n - p_1 + 1)$?

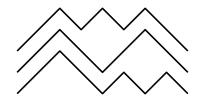
Can this be further generalized?

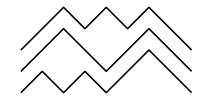
Let $N(n, p_1...p_k)$ be the number of k-tuples of non-crossing Dyck paths of length 2n with p_i peaks on the i-th paths from the top.

Do we have: $N(n, p_1...p_k) = N(n, n - p_k + 1...n - p_1 + 1)$?

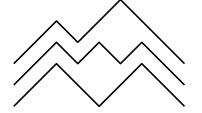
No!

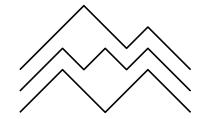
$$N(4,3,2,3) = 2$$





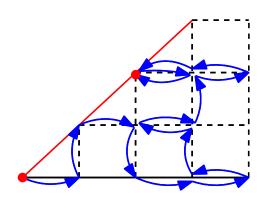
$$N(4,2,3,2) = 3$$

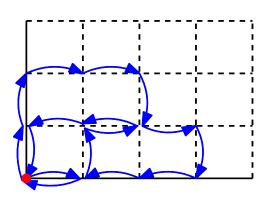




A result on walks in the plane

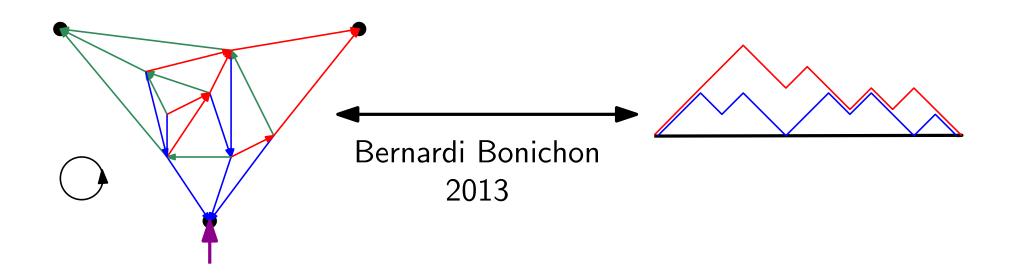
A result on walks in the plane





At given size, there are as many walks in the first octant that end on the x-axis than excursions in the quarter plane.

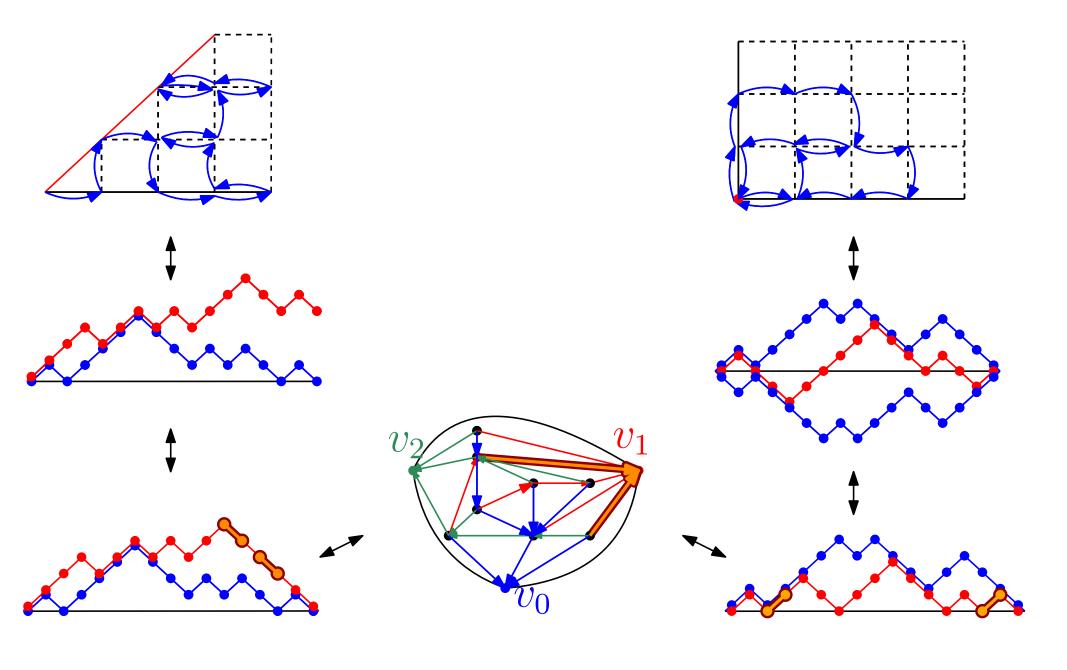
A result on walks in the plane



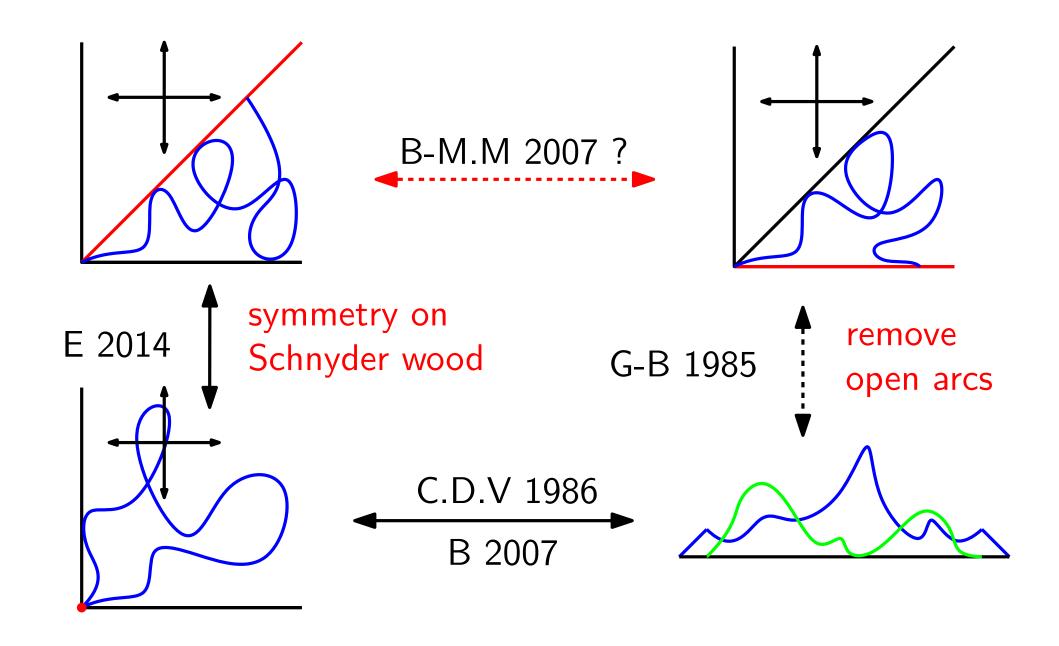
- Number of blue leaves
- Number of red internal vertices
- Blue root-degree
- Red root-degree

- Number of blue peaks
 - Number of red peaks
 - Number of blue steps leaving the axis
- Length of the red last descent

A result on walks in the plane



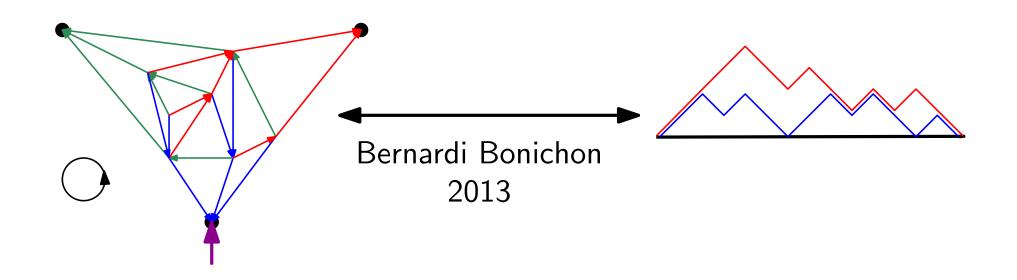
A look at another problem



Another result to prove a conjecture

There exists an explicit involution on pairs of non-crossing Dyck paths that preserves the size and the number of upper peaks, while exchanging the number of lower steps leaving the axis and the number of common up-steps.

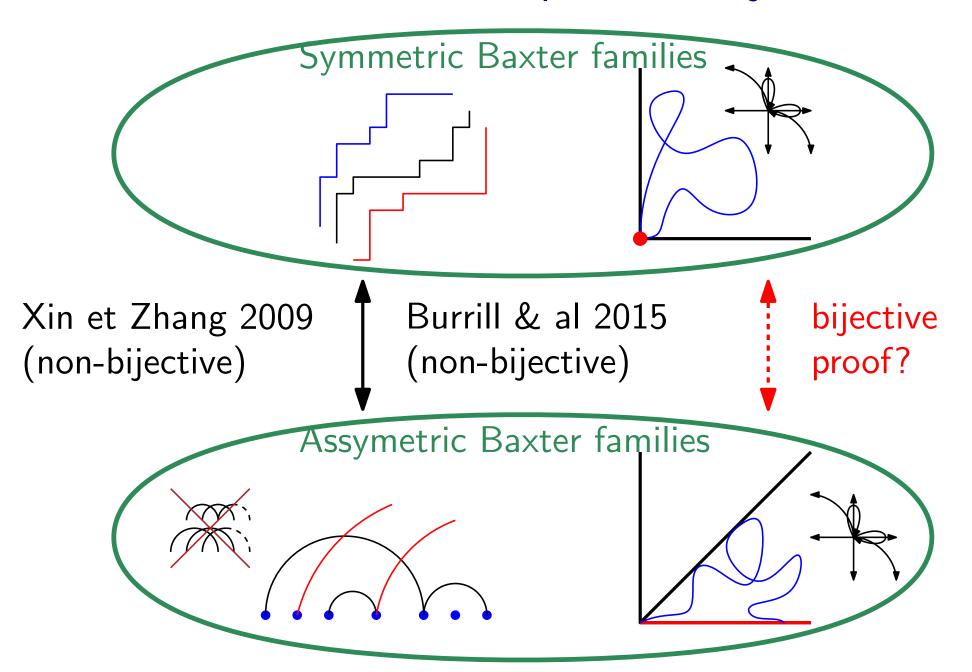
Another result to prove a conjecture



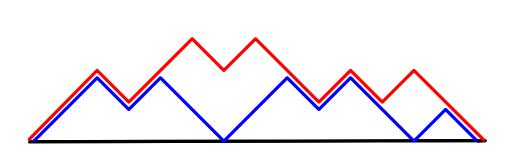
- Number of blue leaves
- Number of red internal vertices
- Blue root-degree
- Red root-degree
- Green root-degree

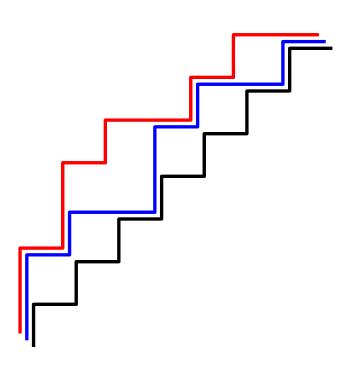
- Number of blue peaks
- Number of red peaks
- Number of blue steps leaving the axis
- Length of the red last descent
- Number of common up-steps

Another result to prove a conjecture

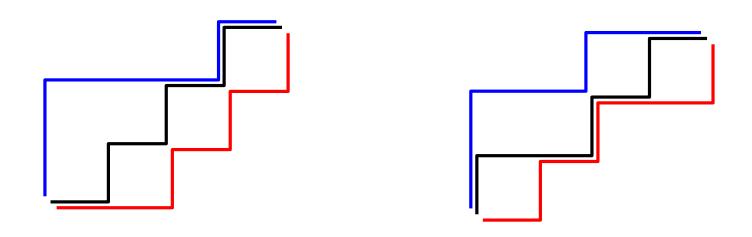


Extending this last result to triples of paths making use of plane bipolare orientations



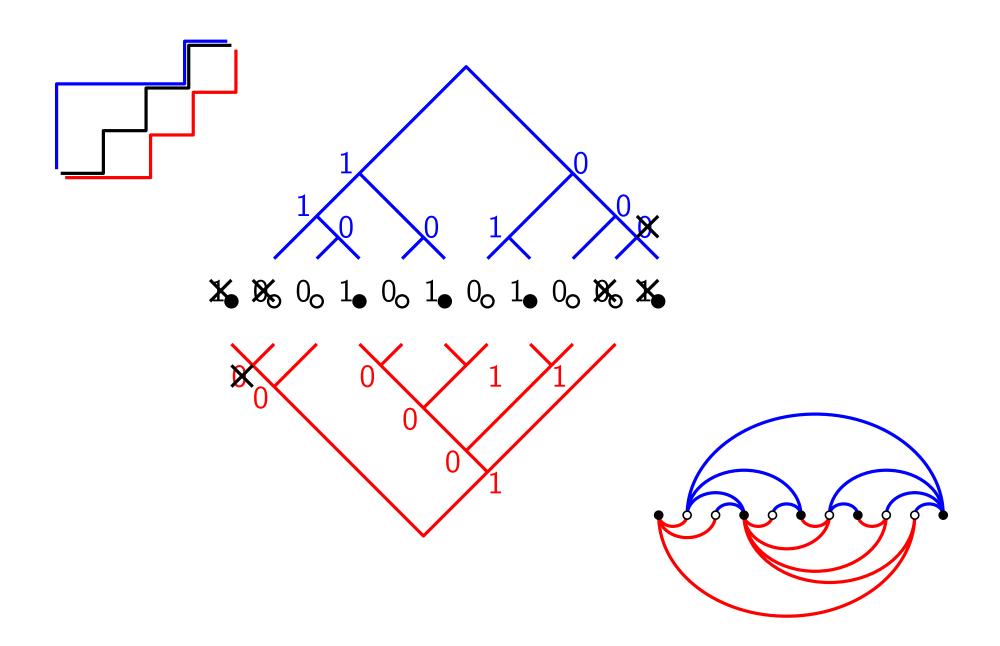


Extending this last result to triples of paths making use of plane bipolare orientations

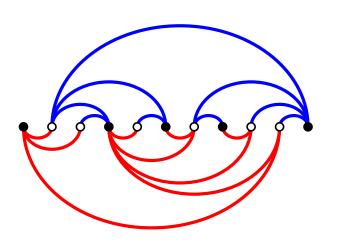


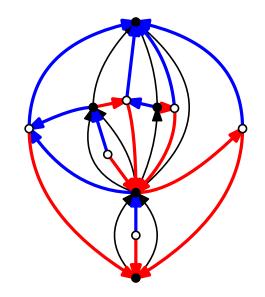
There exists an explicit involution on triples of non-crossing lattice paths that preserves the size, the number of upper peaks, and the number of lower valleys, while exchanging the number higher horizontal contacts and the number of lower horizontal contacts.

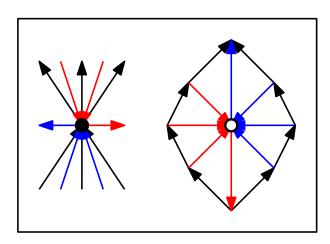
Plane bipolar orientations



Plane bipolar orientations







Plane bipolar orientations

