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1. INTRODUCTION 

This lecture discusses one of the most important question raised by the discov­
ery of quasicrystals: the onset of quasiperiodic order. In fact, one of the main 
problems about quasicrystals is to understand the simple possibility of a non 
periodic long range order, since no two atoms have exactly the same environ­
ment up to infinity. One possible solution to this problem is to consider that 
the order stems from privileged local configurations and is able to propagate 
throughout the structure. This point of view deals with the existence of local 
constraints which would enforce the quasiperiodic order: these are the so-called 
"local rules" , or "matching rules" in tiling language. 

Although the atomic structure of quasicrystals is not linked with quasiperi­
odic tilings in the same strong way that crystals are linked with periodic tilings, 
it makes sense to approach the problem of ordering of quasicrystals through the 
simpler and schematic theory of matching rules for tilings. The reason is that 
experiments suggest that real quasicrystals share a main geometrical property 
with the kind of "canonical tilings" which will be studied here: within experi­
mental resolution. it seems that there is only a finite number of different atomic 
environments (up to a given distance) for atoms in the quasicrystal. This "rigid­
ity" feature, which is described by the "flatness" of the atomic surfaces to be 
defined below, obviously occurs also for tilings, so that the notion of matching 
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rules for tilings, which prescribes how the tiles should be joined together, is 
not so far from the notion of local rules (L. Levitov [1]) which prescribes for a 
quasicrystal what are the allowed local neighbourhoods of atoms. 

In other words, we shall consider here quasiperiodic tilings as abstract pat­
terns carrying the long range order typical of the atomic structures of qua­
sicrystals. 

Thus, from now on, we shall deal only with tilings. For the sake of simplicity, 
we shall develop our arguments for two-dimensional tilings, and even more 
specifically in the case of the octagonal and related tilings. But, as will be 
made clear, the approaches explained in this lecture are by no means limited 
to the two-dimensional case. 

Let us now define more precisely this notion of matching rules. For tilings, 
they consist in decorations (typically, arrowing of the edges of the tiles for 
a two-dimensional tiling) together with a "recipe" which prescribes how the 
decorations of adjacent tiles should fit with each other [1][2][3][4]. We say that 
a tiling admits matching rules when such a set of local constraints enforces the 
quasi periodicity of the tiling (a global property) as soon as they are satisfied 
everywhere in the tiling of the whole space. 

The very existence of such rules is by no means obvious. Matching rules 
for the original Penrose tilings were derived in several forms by Roger Penrose 
using the self-similarity (inflation and deflation) of his tilings. For the sake 
of completeness and reference purpose, we shall give a short account of this 
approach, referring for instance to the paper [3] by F. Gahler for more de­
tails about what he called the composition-decomposition method (the author 
thanks F. Gahler for his help in the redaction of this section). The remainder 
of the paper is devoted to a quite different approach initiated by the author in 
[2] and developed subsequently in collaboration with L. Levitov. 

2. QUASIPERIODIC TILINGS 

We will focus our attention on the best known class of quasiperiodic systems, 
which are the canonical or "Penrose-like" tilings. They are named after Roger 
Penrose, who discovered a strikingly simple non-periodic tiling of the plane 
with five-fold symmetry [5] later studied in detail by N. G. de Bruijn [6]. Al­
though the original construction relied mainly on self-similarity properties (see 
section 3.1) and the quasiperiodicity of the tilings was recognised only later by 
crystallographers and solid state physicists, these tilings are in fact the simplest 
non-trivial quasiperiodic sets of points that one can imagine. 

2.1. Quasiperiodicity 

Let us first recall briefly the definition of quasi periodicity, as developed by H. 
Bohr [7][8][9] and A. S. Besicovic [10]: a function (of d real variables) on an 
affine (d-dimensional) space Ec is said to be quasiperiodic if it is the restriction 



MATCHING RULES 143 

Fig. 1. - Atomic surfaces in the 2 dimensional case; the cut space Ec is the horizontal 
line; the atomic surfaces 0" are line segments transversal to Ec and attached at the 
lattice nodes of A. 

to Ec (embedded as an affine subspace) of a periodic function of n real variables 
defined in a higher-dimensional space IRn. Of course, if the embedded space 
Ec (which will be referred to as the "cut") is rationally oriented with respect to 
the lattice of periods of the periodic function (i. e., if Ec is parallel to a lattice 
subspace) then the restriction of this function to Ec is also periodic. But if the 
direction of the cut is irrational, that is, if the vector subspace parallel to the 
cut contains no point of the lattice besides the origin, then the restriction is 
not a periodic function, but a strictly quasiperiodic one. 

2.2. The Atomic Surfaces 

To describe a quasiperiodic set of points rather than a quasiperiodic function, 
the natural generalisation is to attach to each of these points a Dirac delta and 
to consider them as the d-dimensional restriction p, of a n-dimensional periodic 
measure, say if, instead of the restriction of a periodic (smooth) function. Let 
A be the lattice of periods of this periodic measure. The carrier of if defines 
a A-periodic geometric locus (j which decomposes, in the elementary domains, 
into identical pieces 0". The manifold 0" is called the "atomic surface" and (j is 
the periodic set of atomic surfaces as shown on Fig. l. 

The intersections between the cut and the atomic surfaces, and therefore 
the resulting structure, are well defined each time the cut is transversal to 
the atomic surfaces. The transversality condition means that the cut does not 
intersect any atomic surface on its boundary or on a point where the tangent 
space to the atomic surface is parallel to the cut. This is not a strong restriction; 
it simply means, in a first approach, that the atomic surface boundaries are not 
a too complicated set, such as for example, a fractal set. Observe that since 
the cut Ec is of dimension d and the boundaries of the atomic surfaces are 
(piece-wise smooth) sub manifolds of dimension (n - d - 1) or less, their non-
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intersection is a generic property in mn , which means that almost all choices 
of Ec will work. 

2.3. The cut algorithm 

To generate the quasiperiodic set of points, we simply collect the intersection 
points ofu with Ec. We designate by Ell the vector subspace ofmn defining the 
direction of the cut Ec and by E..L the perpendicular subspace. This algorithm 
is nothing but a slight generalisation (first advocated by P. Bak [U]) of the 
former "hyperspace" formalism developed by Janner and Janssen [12] from the 
pioneer work of de Wolff [13] for modulated and incommensurate structures. 

For a given generic direction of the cut, the technique requires an additional 
set of parameters which specifies the relative location of the cut space Ec with 
respect to A. Indeed, one generates infinitely many "different" quasiperiodic 
set of points by shifting the cut space: observe that for a generic atomic surface, 
two parallel cuts yield isometric structures if and only if they are mapped on 
each- other by a translation belonging to the lattice, up to a translati.on parallel 
to the cut. Such a translation is a vector in mn which projects on the subspace 
orthogonal to the direction of the cut, on a vector belonging to the projection 
of the lattice. Thus we see that the different structures are classified by the 
quotient of this subspace by the projection of the lattice. Since this last set is 
countable, we see that by shifting the cut we generate an uncountable infinity 
of different (non-isometric) structures. 

2.4. Canonical or "Penrose like" tilings 

2.4.1. Definition 

Let us start with the general definition of what we call tHings of the Penrose 
type [14] or canonical tHings: they are obtained by the cut method with one 
atomic surface u per unit cell defined by the projection on E..L along Ell of 
the unit cell "tn of A. To construct a d-dimensional canonical tiling, consider 
in mn the simple cubic lattice Zn generated by the canonical orthonormal 
basis of mn , which spans the unit cube "tn. Then choose any d-dimensional 
subspace Ell in mn , and denote by E..L the orthogonal subspace. We define the 
atomic surface u by projecting orthogonally "tn on E..L. This yields a (n - d)­
dimensional polyhedron, and the corresponding lattice u of atomic surfaces in 
mn is obtained by copying this polyhedron at each vertex e of 7l.n. 

The vertices of our tHings are the intersections of u with any d-dimensional 
plane cut Ec parallel to Ell, and which is everywhere transversal to U, i.e., 
which does not intersect any of the boundaries 8u~ for e E Zn. 

The simplest example of this construction is obtained with n = 2 and d = 1, 
and is depicted on Fig. 1. For an irrationally oriented Ell, we get a quasiperiodic 
tiling of the cut Ec by means of two segments, which are the projections of the 
two edges of the unit square "t2. Although this construction may look rather 
trivial, it deserves attention because the most important features of this class of 
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tilings already appear in this simple case and may be discussed in a dimension­
independent way. 

2.4.2. The oblique tiling 

To prove that we actually get a tiling by means of the projections of the edges 
of the square, the best way is to construct the so-called oblique tiling [15] or 
Kljjtze decomposition [16]. 

The idea is the following: consider any tiling offfin and any plane cut through 
this tiling. Each time the cut is generic, that is, intersects transversally the 
boundaries of the tiles, the traces of the tiles on the cut make up a covering 
of the cut, without overlappings or holes. But this covering is not a tiling in 
general, since there is no reason for the traces of the tiles to belong to a finite 
set of shapes. For instance, consider a cut Ec with an irrational slope through 
the standard square tiling of the plane: since there is no minimal distance 
between the vertices of the tiling and the cut, there is no minimal length for 
the segments of the induced covering of the cut, and this entails that there are 
infinitely many different lengths in this covering, which therefore is not a tiling. 

However, it is possible to adapt the shape of the tiles of a periodic tiling of 
ffin to the direction of the cut, in order to obtain only a finite number of shapes 
in the generic cuts: the trick is to make the boundaries of the tiles parallel to 
either the direction of the cut Ell or to the orthogonal subspace EJ.. For our 
low dimensional case, the construction of this oblique tiling is the following: 

Fig. 2. - Construction of the oblique tiling for the linear quasiperiodic chain. The 
"oblique tiles" are the sum of a (horizontal) tile of the quasiperiodic chain and of its 
so-called "existence domain" (here a vertical segment) 
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let us start with the unit square, spanned by the canonical basis (c1' c2) of rn? 
Defining 7I"1I(resp. 71"1.) as the orthogonal projection on EII(resp. E1.), we set 
ei = 7I"1I(ci) and e~ = 7I"1.(ci) (i = 1,2), in such a way that Ci = ei + e~. Let 
us distort the edge C1 along the broken line defined by the segment e~ follo~d 
by the segment e1. We see that the union {e~, c2} U (e~ + {e1' c2}) of the two 
parallelograms spanned by {el, c2} and {e~, c2} is still a unit cell for the lattice 
71.2. Now, let us proceed to the same decomposition for the vector C2 and each 
parallelogram: we get a new unit cell of 71.2 made of four subcells spanned by 
{ei, e2}, {ei, ~}, {e1' e2} and {eI, e~}. But the two subcells spanned by {ei, 
~} and {e1' e2} are flat and we can omit them, so that we obtain finally only 
two subcells whose union is a fundamental domain of 71.2. The corresponding 
tiling of the plane (gray area on Fig. 2) is the oblique tiling. 

Observe that whatever the order of the decomposition, the resulting tiling is 
the same. Since each tile is the sum of the projection of a basis vector on Ell 
and of the projection of the other on E1., it is clear that any cut Ec parallel 
to Ell which does not intersect the lattice inherits a tiling by means of the 
two projections e1 and e2, which is our quasiperiodic tiling: in fact, the pieces 
of the boundaries of the tiles of the oblique tiling which are parallel to E1. 
(which are called the existence domain of the corresponding tile) have by their 
very construction an union identical to the lattice (j of atomic surfaces (which 
appear as the existence domains of vertices). 

Due to its recursive character, the same argument works in any dimension n. 
Since we double the number of subcells each time we operate the decomposition 
Ci = Ci + c~, we end with 2n subcells. But only those which are spanned by d 
projections ei of basis vectors on Ell and (n - d) projections e~ on E1. have a 
non-zero volume and their number is (~). As in the low dimensions case, one 
easily verifies that the traces of these subcells on E1., which are parallelohedra 
spanned by (n-d) projections e~, exactly cover the atomic surface 0"0 = 7I"1.(rn) 
attached to the origin, so that our construction yields in the general case a tiling 
of the d-dimensional cut Ec by means of the projections of the (~) d-dimensional 
facets of the hypercube 'Yn. 

2.4.3. Octagonal tilings 

The canonical octagonal (or Ammann) tiling, shown in Fig. 3, was first in­
troduced by R. Ammann [17] and F. P. M. Beenker [18], and is obtained in a 
straightforward way as Penrose-like tilings with n = 4, d = 2, and the direction 
of the pair (Ell, E1.) prescribed by the following symmetry considerations: 

Consider a regular octagon in the Euclidean plane and choose four of its 
vertices, no two of them being opposite as shown on Fig. 4. Consider the 
four vectors joining the center of the octagon to these vertices. There exists an 
unique embedding of the plane in JR 4 such that the canonical orthonormal basis 
of JR4 projects orthogonally on our four vectors. Now consider the symmetry 
group 8mm' of the octagon. Since it permutes the vertices of the octagon, 
we can define a 4-dimensional action of this group by the condition that it 



MATCHING RULES 147 

Fig. 3. - A sample of the Ammann octagonal tiling. 

permutes the basis vectors in the same way as the vertices of the octagon, and 
since this action involves only signed permutations, the lattice Z4 spanned by 
the basis is preserved by this action. Then we decompose this representation of 
8mm' into irreducible representations and find two of them, one carried by our 
embedded plane, which is identified with Ell, and the other by the orthogonal 
plane, identified with E.l. 

It is easy to see that the prototypic atomic surface 7r.l (/4) is a regular oc­
tagon, and that the six 2-dimensional facets of 1'4 fall under 7r1l on two orbits 
of tile~: two squares (with orientations differing by a 7r/4 rotation), and four 
rhombi with an acute angle of 7r / 4, again mapped on each other by rotations 
which are multiples of 7r / 4. Observe how the basis vectors {e}, e2, e3, e4} project 
onto the parallel and perpendicular spaces. On the parallel space, they are de-

E.l' 

Fig. 4. - The orthogonal projection on Ell and on E.l of the standard orthonormal 
basis Ci, i = 1, ... ,4 of JR4. 
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duced from each other by a rotation of 11"/4. In the perpendicular space, the 
projections of the same vectors are mapped on each other by a rotation of 511"/4 
(or -311"/4) as shown on Fig. 4. 

3. THE COMPOSITION-DECOMPOSITION METHOD 

3.1. Self-similarity 

In some cases, there exist lattice-preserving linear transformations which com­
mute with the two projections (11"11, 1I"..l)' Such transformations are elements M 
of Gl(n, Z) which preserve the subspaces Ell and E..l. 

Given a tiling associated to the canonical atomic surface 1I"..l (rn), one can 
construct a new atomic surface as 1I"..lM{rn), by taking the projection of the 
image through M of the unit hypercube. Since M preserves Ell and E..l, it 
transforms any cut Ec parallel to Ell into a parallel cut M(Ec) which carries 
the image under the restriction of M to Ell of the tiling carried by Ec. 

Of special interest is the case where M operates on Ell and E..l by homoth­
eties, since in this case the image of the tiling under M is a tiling of the same 
type, but at a different scale: 

IAILI = 1 

This happens in particular when there is an invariance point group of the high­
dimensional lattice, such that Ell and E..L are the only two invariant subspaces, 
carrying irreducible non-equivalent representations of the invariance group. 

Let us give an explicit example with the octagonal tiling. A simple exam­
ination of the projection of the canonical basis onto Ell and E..l shows that 

el + e2 + e3 = (v'2 + 1) e2 in Ell while e~ + e~ + e3 = - (v'2 - 1) e~ in E..l. This 
suggests to construct the matrix: 

M = (J2 + 1 )11"11 - (J2 - 1)1I"..l = ( ~ : [ - ~1 ) 

-1 0 1 

M is easily seen to have all the required properties: it belongs to Gl(4, Z), 
its determinant is 1 and it commutes, by construction, with the action of the 
octagonal group, so that it reduces on Ell to a dilatation of ratio (v'2 + 1) and 

on E..l to a contraction of ratio (1 - v'2). Notice that such a matrix M exists 
also in the icosahedral case. The corresponding "inflation" and "deflation" 
ratios are 2 ± J5. 

Now, our general argument shows that if we replace our original atomic 
surface by an octagon (v'2 - 1) times smaller, then we will find in any cut an 
octagonal tiling scaled by a factor (J2 + 1). In particular, if we consider both 
atomic surfaces: our original one containing the smaller one, we see that we 
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Fig. 5. - A sample of the octagonal tiling, showing some deflated tiles. 

can "extract" from any tiling the vertices of a larger one, by discarding all the 
vertices which correspond to intersections of the cut with the large octagon, 
falling outside the small one, as shown on Fig. 5. In the cut, one can describe 
this operation as the regrouping of clusters of tiles to form larger tiles, and 
this is called a deflation. Since the matrix M is invertible, this process may be 
done in the reverse way: it is possible to "dissect" the tiles of a given tiling, in 
order to obtain a tiling of the same type, but with an edge length shortened by 
a factor (v'2 - 1). This is called an inflation, because it enlarges the number 
of the tiles. 

Observe that for these considerations we are not interested in comparing the 
tiling carried by Ec and M(Ec), because the "absolute" position of the cut is in 
general difficult to assess (due to the so-called local isomorphism property, see 
for instance [19]) unless the tiling has special (global) symmetry properties. On 
the contrary, we are interested in comparing two tilings carried by the same cut. 
This entails that the position of the small atomic surface inside the large one is 
irrelevant: whatever this position, the discarding process explained above will 
lead to a "deflated" tiling. We conclude that generally the inflation/deflation 
constructions are not uniquely defined, although they usually become unique 
if some further natural requirements are imposed. 
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Fig. 6. - Composition and decomposition for the Ammann decoration of the octag­
onal tiling 

3.2. Inflation and quasiperiodicity 

In order to describe these additional requirements, let us first consider the infla­
tion process. A natural requirement is that the (globally defined) inflation can 
be described by a "local" dissection of tiles into smaller ones, which means that 
the dissection follows rules (the decomposition rules) which are purely local in 
the sense that the dissection of each tile depends only on a finite neighbour­
hood of the tile. If we require furthermore that the decomposition rules are 
compatible with symmetry, by treating symmetry-related tiles in a symmetry­
related way, inflation usually becomes unique. In the case of the octagonal 
tiling, this latter requirement implies that the octagonal atomic surface for the 
initial tiling and its inflation are concentric. 

For what follows, it is important that the global and the local definitions of 
inflation define the very same inflation process. The local definition of inflation 
can therefore be used as a tool to generate the tiling: one simply starts with a 
finite seed, for instance reduced to one tile, and repeatedly applies the inflation 
or decomposition procedure, followed each time by a rescaling so as to maintain 
the same size for the tiles. In this way, a tiling of any desired size may be 
constructed. This method has been used in particular when no global methods 
were available (R. Penrose [5J, L. Danzer [20]) or when the atomic surfaces are 
fractal (P. Stampfli [21J, E. Zobetz [22]). 

So far, we have considered a local definition only for inflation. In many cases, 
however, deflation also allows for a local definition, through local rules following 
which one can build "supertiles" from clusters of original tiles (composition 
rules). As for the decomposition rules, locality means here that the composition 
rules should depend only on a finite neighbourhood of the cluster. However, 
locality of deflation is a much less trivial property than locality of inflation. 

Now, if both inflation and deflation allow for a local definition, they can 
be used to prove that a properly chosen set of matching rules enforces the 
quasi periodicity of any tiling in which these rules are satisfied everywhere. 
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Let us illustrate this on the case of the octagonal tiling carrying the Ammann 
decoration depicted on Fig. 12 in section 5 where the origin of this decoration is 
explained. Given the Ammann decoration, the composition and decomposition 
rules can be described in a very local way, as shown on Fig. 6. In fact, one can 
show (see [27]) that any tiling admitting the Ammann decoration (i. e., satisfy­
ing the matching rules) has a unique composition and a unique decomposition 
(whether it is quasiperiodic or not). This is the key property for proving that 
the matching rules enforce the quasi periodicity of the tiling. 

Let T be any tiling carrying the Ammann decoration, and let us consider a 
finite, but otherwise arbitrary patch P from T. We can apply repeatedly the 
(unique) composition process to P, until it is so small that it is obviously a piece 
of a quasiperiodic tiling (notice that all the vertex neighbourhoods allowed by 
the matching rules do occur in the quasiperiodic tHings, as can be checked by 
inspection). But since composition and decomposition are unique and inverse 
of each other, we can conclude that P itself must be a piece of a quasiperiodic 
tiling. Since this is true for any finite P, we have shown that that T must be 
quasiperiodic. 

The procedure described above is actually a method (see [3]) to prove that 
a certain set of matching rules enforces quasiperiodicity. It has been explicitly 
or implicitly used by many authors, including N. G. de Bruijn [6], J. E. S. 
Socolar [23], F. Gahler [3], R. Klitzing, M. Schlott mann and M. Baake [24] [25] 
and probably others. The key requirement for this method to work is that both 
inflation and deflation are unique and local, and that they are defined for all 
tilings satisfying the matching rules. 

4. THE METHOD OF FORBIDDEN PLANES 

We switch now to a quite different approach to the theory of matching rules. 

4.1. Position of the problem 

Let us first observe that, given a canonical tiling and its prototiles as suitable 
projections of facets of the hypercube, it is quite possible to describe any tiling 
made of the same prototiles with a cut through the same lattice of atomic 
surfaces used for obtaining the quasiperiodic tiling: in fact, we can distinguish 
between the subspace En on which is built the tiling and the cut Ec used to 
select the vertices of the high-dimensional lattice which are projected on the 
vertices of the tiles. As soon as the direction of El., considered as the carrier of 
the atomic surfaces and the direction of the projection on En, is irrational with 
respect to the lattice, it is clearly possible to lift in an unique way each vertex 
of an arbitrary tiling on a vertex of the lattice. Then it is possible to dissect 
the tiles in simplices (triangles in two dimensions, tetrahedra in three and so 
one) and to lift these simplices to linear affine simplices of lRn in order to get 
a "faceted" cut which selects the relevant vertices (if it happens that this cut 
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intersects additional atomic surfaces, it is quite clear that it is always possible 
to distort locally the cut in order to remove the extra intersections). Of course, 
the cut is not uniquely defined: any cut which goes through the same set of 
atomic surfaces selects the same set of vertices and defines the same tiling, as 
exemplified on Fig. 7. 

Since our atomic surfaces are topologically balls, it is easy to show that two 
cuts define the same tiling if it is possible to distort continuously one cut until 
it becomes equal to the other without crossing the boundary of any atomic 
surface: in mathematical terms, we say that a tiling is defined by a homotopy 
class of cuts in the complementary of the boundaries of the atomic surfaces. 
The special property of our quasiperiodic tilings is that this homotopy class 
contains a plane (up to now, we have considered mainly these planes), so that 
the problem of proving that a given matching rule enforces the quasiperiodicity 
is to show that every homotopy class of cuts compatible with this rule contains 
a plane. As we shall see, the direction of this plane cannot be arbitrary. 

Our strategy to deal with this problem is best explained by referring to the 
low dimensional model of Fig. 1. We accept now as a cut any line projecting 
one-to-one on Ell along El. and we may distort it as we want as long as the cut 
does not cross any endpoint of an atomic surface. How could we impose through 
local constraints that such a homotopy class of cuts contains a straight line? A 
first step in this direction is provided by the oblique tiling (see Fig. 2). As is 
easily seen, the requirement of getting whole tiles upon projection (i. e., to get 
only the two projections of the edges of the canonical square in the projected 
structure on Ell) is achieved if we impose that the cut does not intersect the 
components of the boundaries of the oblique tiles which are parallel to Ell. Of 
course, this constraint does not forbid the cut from wandering very far, but 
nevertheless results in a kind of local channelling of the cut, of which we are 
looking for a global counterpart. 

Fig. 7. - The curved cut drawn here can be continuously distorted to a straight line 
while generating the same tiling: all curves generating the same tiling belong to the 
same homotopy class (see text). 
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The most natural idea is then to enlarge the line segments that the cut is 
forbidden to cross and to see what happens: in fact, there are only two possible 
situations. The first one corresponds to rational values for the slope of Ell' In 
such a case, for a certain finite enlarging, the endpoints of our line segments 
will connect and the re..<;ulting lines divide the plane into parallel stripes. A 
homotopy class of cuts is made of all possible cuts confined in one of these 
stripes and contains evidently straight lines. The corresponding tilings are 
obviously periodic. 

The other case corresponds to irrational values for the slope of Ell' Then, 
whatever large is the finite enlargement we make on the segments, they will 
never connect and nothing happens: we do not obtain a global channelling in 
this way. 

These considerations may look somehow disappointing, since all we get is that 
we may define matching rules in this way only for periodic tHings. However, 
they are the real key to the theory of matching rules in higher dimension, where 
the "special" directions which allow this machinery to results in matching rules 
are not only the rational ones. We shall now discuss that point. 

4.2. Non-transversality conditions 

In higher dimension too, we can make such a rough classification: if Ell is a 
d-dimensional subspace in IRn, we classify the directions of Ell by the rank of 
the sublattice of 7l.n E IRn which falls on Ell' This rank is d for a "completely 
rational" subspace associated with periodic tilings, and more generally it is the 
number of dimensions along which the tiling is periodic. In the "completely 
irrational" case in which we are interested, cuts parallel to Ell go through at 
most one vertex of 7l.n . Observe that this is equivalent to the fact that the 
projection of 7l.n on E.l along Ejl is uniformly dense (and notice that this is 
independent on the direction of E.l, which is involved here only as the quotient 
IRnjEII)' 

However, this rough classification does not describe sufficiently the situation 
and we have to introduce a finer one. The idea is to consider the projection 
on E.l of the lattice subspaces of dimension t greater than or equal to (n - d) 
(the dimension of E.l). For an arbitrary direction of Ell, the projection covers 
E.l. But for special directions of Ell, there may exists one or several lattice 
subspaces whose projections "loose dimensions" and does not cover E.l. Of 
course, this is the case for the completely rational case, but the important 
point is that such situations may also occur in the completely irrational case. 
In fact, the corresponding property of Ell is that it is not transversal to a lattice 
plane and this does not require Ell to be itself, partially or completely, rational. 

This fact is indeed widely used in quasicrystallography of icosahedral phases: 
all 2-dimensional rational planes spanned by any two integer vectors e and 
M(e) of 7l.6 , where M is the inflation matrix (section 3.1), are not transversal 
to Ell: their projection on Ell are equal to their traces on Ell' For example, 
5-, 2- or 3-fold symmetry 2-dimensional planes project on Ell along lines and 
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not on planes as would be expected in a generic case. This exceptional non­
transversality is the basis of the definition of "rows" and "reticular planes" in 
the quasicrystallography of the icosahedral phases (see for instance [26]). 

In such a non-transversal situation, the projection of 7l..n on El. acquires 
some extra structure: not only this projection is dense in El., but its trace ()n 
the projection of the non transversal lattice subspace is also somewhere dense 
since this projection, which contains a module of rank t, has a dimension lower 
than t. 

This is the situation in which non trivial matching rules may exists. Rather 
than developing the general theory in an abstract way, we shall explain with 
sufficient details the case of the octagonal tiling, which is the most simple case 
but contains all the main ideas, and moreover is very close to the icosahedral 
case of physical interest. 

4.3. The forbidden planes 

Like in the low dimensional model, let us consider the oblique tiling associated 
with the octagonal tiling and explore it by shifting the cut. When the cut is 
in a generic position, then it intersects the boundaries of the oblique tiles only 
on parts parallel to El. and we see in the cut a regular tiling. But when we 
let the cut hit the boundary of one atomic surface, then it intersects around 
that point parts of the boundaries of the oblique tiles which are parallel to Ell: 
namely we see in such a special cut "a flipping hexagon, at the instant where it 
flips". As already observed, to forbid a cut to cross such parts of the boundary 
of the oblique tiles forces it to select whole tiles. 

Now, the remarkable point is that in such a special cut, we find not only one 
flipping hexagon, but a whole infinite family aligned along a so-called "worm" 
(Fig. 8). This comes from the fact that there are translations in Z4 which 
project on El. along the boundary of the atomic surface, and these projections 
fill densely the carrier of this boundary. 

To be more specific, let us consider the segment of the boundary of the 
octagon parallel to e~. Its carrier is the projection of a plane P parallel to the 
lattice plane spanned by (cI, C2 - c4). But this carrier is also the intersection 
of P with El., so that we find in P a rectangular lattice of segments parallel 
to e~. 

On the other hand, our spec~al cut intersects P along a line parallel to el. 
Thus we get exactly the situation of our low dimensional toy-model: a lattice 
(here rectangular) of atomic surfaces (the segments e~ bounding the octagon) 
irrationally oriented with respect to the lattice, and a cut (here a line parallel 
to el) also irrationally oriented: we conclude that we have a quasiperiodic 
distribution of intersections between the cut and the segments, which, viewed 
in the four dimensional space, is a set of intersections of the special cut with 
boundaries of octagons. They are aligned along a straight line and separated 
by finite distances. Each of them belongs to pieces of boundaries of oblique 
tiles, whose traces in the cut build the "flipping hexagons". These hexagons 
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Fig. 8. - Infinite family of flipping hexagons defining a "worm" of the first kind in 
the octagonal tiling 

are separated by One or two squares. 
Observe that this highly non generic situation is the consequence of two 

distinct features of the construction of the octagonal tiling. 
On one hand, the two planes El. and Ell' whose direction is forced by the 

octagonal symmetry, are non transversal to a set of lattice planes, specially 
those of the kind (ell e2 - e4) , but they are infinitely many of them (and in 
fact we shall need another family to make the matching rules) . These planes 
project On lines On El. and the two-dimensional lattice which they contain 
densely fills the projection. This non-transversality property accounts for the 
fact that in the plane P, the cut yields a one-dimensional trace and that the 
given intersection between the cut and the boundary of an atomic surface yields 
a whole lattice of such intersections. 

On the other hand, it is because the boundary of the atomic surface is made 
of segments contained in planes like P that we find in P a lattice of segments. 
Would this segment be replaced by a curve in El., the plane P would still touch 
a lattice of atomic surfaces as soon as it touches one, but it would touch them 
on points instead of whole segments, so that the trace of the cut in P would 
not intersect more than one of them. 

Now we shall apply the naive idea stated in the introduction to this section: 
we shall "fill the holes" between the flipping hexagon by means of decorations 
which result in the dissection of the tiles of the oblique tiling and thus in an 
enlargement of the number of their boundaries. Deferring the explicit construc­
tion to the next section, let us first examine what will be the topological result 
of this construction. 

In fact, the geometry of the boundaries "parallel to Ell" of the oblique tiling 
is not very simple. They are three dimensional facets extending for two dimen-
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sions in Ell and for the other one in EJ... To see how they glue together, let us 
move our special cut: for a given position, we see in the cut a continuous worm 
made of flipping hexagons and of squares coming from the decoration. When 
we move our cut, we recover a regular cut unless we move along ei, in which 
case we keep the worm, whose precise structure changes with the shift of the 
cut along ei, according to the change of the structure defined by the restricted 
cut construction in the plane P. 

For each position of the cut, the worm covers completely its symmetry axis, 
which is a line parallel to el so that when we shift the cut along ei, we see 
that the sets of facets covers completely a plane spanned by ei and el, which 
is parallel to our plane P. Thus we see that this set of facets is a complicated 
"thickening" of a very simple object: a two-dimensional lattice plane, suitably 
shifted. Finally, observe that it is equivalent to ask for the non-intersection 
of the cut with the set of facets, or with the plane on which this set can be 
"retracted" (Le., flattened). 

Thus the final form of our constraint will be the non intersection of the 
cut with a family of lattice planes, which we call forbidden planes. Before 
explaining the consequences of such a constraint, let us describe how a suitable 
decoration of the tiles together with a matching rule may be equivalent to the 
constraint for the cut not to cross the forbidden planes. 

5. DECORATION OF THE TILES 

In this section, will shall describe the decoration scheme first devised by R. 
Ammann for his octagonal tilings. This is not the only possible decoration 
(decorations are never unique) and perhaps not the simplest. However, this 
choice presents the advantage of involving many different topics of this kind of 
construction. 

5.1. A simple case 

Although there is no mathematical difficulty in the constructions that we are 
making, their description may be obscured by the fact that they rely entirely 
on the geometry of the oblique tiling, which is intrinsically four dimensional 
and not so easy to visualise. 

Our first step is to explain why there are holes in the worm which appears in 
the special cuts going through the boundary of one octagon (and thus of a whole 
infinite quasiperiodic set of them). Recall that the boundaries of the oblique 
tiling we are interested in are made of the sum of a tile and of a segment of the 
boundary of its existence domain. Consider for instance the square belonging 
to the flipping hexagon spanned by (e2, e3, e4), which is the "vertical" hexagon. 
This square is (e2, e4) so that its existence domain is the square (ei, e~). If the 
cut touches an atomic surface along ei, say on the point x, the relevant piece 
of the boundary of the oblique tiling is the cube (e2, e4, eD. 
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Now, consider one ofthe squares (el, e3) touching this flipping hexagon along 
the worm (Fig. 9). It has a vertex v shifted from the flipping point x bye2, 
so that the cut pierces the atomic surface of v in the existence domain (~, e~) 
of our square on a point on a diagonal of this existence domain. Since this 
diagonal does not belong to any boundary of the oblique tiling, our square is a 
regular one and does not belong to the forbidden set: in that sense, it is a hole 
in the worm. 

Thus we see that in order to fill this kind of holes and make the whole worm 
a forbidden set, we have to dissect the oblique tiles corresponding to squares 
into several sub-tiles in such a way as to introduce as a new type of boundary 
the sum of a square of the tiling with the diagonals of its existence domain. 
This is readily achieved through the simplest decoration of the edges of the 
tilings, which consists in attaching an orientation to them. 

Consider the existence domain of the origin of an edge, say e3, which is a 
"horizontal" hexagon inscribed in the bottom of the octagonal atomic surface. 
Let us cut this hexagon into two parts along its long (horizontal) diagonal 
(Fig. 10) and let us decide to associate an arrow pointing upward to each edge 
whose origin falls in the bottom half of the hexagon, and pointing downward 
for those whose origin falls in the other half. Now observe that this decoration 
is compatible with the symmetries of this edge: namely, the vertical symmetry 
axis preserves each decorated subdomain, while the associated operation in En 
exchanges the two sides of the edge (so that the arrow have to be symmetric 
with respect to the direction of the edge). Concerning the horizontal symmetry 
axis, the situation is slightly more subtle. This axis maps the existence domain 
of the origin of the edge to the existence domain of its extremity, while the 
associated operation in En exchanges the two end-points of the edge. To get a 
symmetry compatible decoration, we thus have to put a downward arrow in the 
upper half of the upper hexagon and an upward one in the other half. Then we 
verify that we have actually defined an orientation for the edge, since a given 
edge is oriented in the same way, viewed from its origin or viewed from its 
extremity. Then we can set the decoration of the other edges, using associated 
symmetry operations in El.. and in En. 

Fig. 9. - The vertices of the squares close to a flipping hexagon fall on the diagonal 
of their existence domains. 
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Fig. 10. - The orientation of the edges corresponds to the dissection of their corre­
sponding existence domains. 
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Fig. 11. - The decoration of the square induced by the decoration of the edges (left); 
the unique decoration of the rhombus (right). 

Now we come to the corresponding decoration of the tiles themselves, which 
amounts to superimpose the atomic surfaces corresponding to the vertices of 
the tiles, shifting them as required, and to study how the existence domains of 
tiles are partitioned in existence domains of decorated tiles (Fig. 11). What we 
find is that the existence domain of the rhombi are not partitioned, so that we 
get immediately only one kind of arrowed rhombi, with the arrows pointing to 
the obtuse angles. On the contrary, the domain of the squares are partitioned 
in four decorated subdomains by their two diagonals, and that is what we were 
looking for. Observe however that, although there are four subdomains, there 
is only one decorated square, characterised by the fact that parallel edges are 
given the same orientation. But this unique square is attached in different 
orientations to each of the subdomains. 

It remains to see what is the matching rule and how it works. The matching 
rule itself is trivial in this context: it requires to fit tiles together with the 
same orientation for the shared edges (what is trivial is that within the cut 
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construction, each edge is in fact selected only once, together with its arrow 
if it is arrowed). But we have to show why it is forbidden to cross the new 
"internal" boundaries of the decorated oblique tiling (recall that it is forbidden 
to cross the original boundaries in order to get only whole tiles in the cut). 
Now, the point is simply that if we allow a cut to enter into an oblique tile 
through an edge of a given orientation, and then to cross the internal boundary 
corresponding to this orientation, then it will leave the oblique tile through an 
edge having the opposite orientation, and we would get a wrongly decorated 
tile. If we insist to make a tiling with only our "well decorated" tiles, then we 
forbid the cut to cross these new boundaries. Notice in particular that in this 
context, a "fault" is not the mismatch of decorations, which means nothing as 
long as we use continuous cuts. It is the occurrence of an improperly decorated 
tile. 

To sum up, we have set simple decorations of the edges, obtaining one dec­
orated rhombus and one decorated square, such that making a tiling with 
these two tiles alone and matching decorations corresponds to use a cut which 
does not intersect the family of forbidden planes made of four lattices of 2-
dimensional lattice planes spanned respectively by (el, e2 - e4), (e2, el + e3), 
(e3, e2 + e4) and (e4, e3 - ed· 

Alas, this is not sufficient to get the octagonal quasiperiodic tilings (although 
the edge decoration yields matching rules! see section 7). The reason for that 
is quite clear. Recall that the directions of Ell for which we may have matching 
rules are required to be non transversal to a set of lattice planes. But there 
are infinitely many directions of planes which are non transversal to the four 
above-mentioned directions. More precisely, there is a one parameter family 
of them, which all possess the symmetry of the square, and only two of them 
have in addition the full octagonal symmetry. Thus, in order to get matching 
rules for the octagonal tiling, we need to add more forbidden planes in order 
to get a set such that our E.L and Ell will be the only planes non transversal 
to this set. 

5.2. The Ammann decoration of vertices 

The strategy is clear: pick suitable other lattice planes, and devise decorations 
such that using only these new decorated tiles corresponds to not crossing these 
planes, i. e., defines them as forbidden planes. 

In order to illustrate various aspects of this theory, and to honour the clever­
ness ofR. Ammann (see [17), we shall sketch the description of his decorations 
(and finally show that they enforce the quasiperiodicity, a result which may also 
be obtained from a self-similarity approach, as we have already seen). 

First, the choice of the new planes. Besides the planes which project on 
En and E.L on the same directions as the basis vectors, it is natural to try 
those which fall on the bisectors of them, because these bisectors are simple 
directions (diagonals of the rhombi) and correspond also to the diagonal of the 
octagon. Thus we choose the planes spanned respectively by (el + e2, e3 - e4), 
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(C2 + C3,C1 + c4), (c3 + C4,C2 - c1), (c4 - C1,C3 - C2). It is a matter of simple 
algebra to verify that the only planes simultaneously non transversal to the 
whole set of eight directions of planes are our El. and Ell' 

Second, the decoration. It is a vertex decoration, defined through a partition 
of the atomic surface (existence domain of a vertex) much like the previous edge 
decoration was defined through a partition of the existence domains of edges. 
Thus, we divide the octagon in eight sectors by the diagonals running from 
a vertex to the opposite one, and we attach to each sector a mark, arbitrary 
excepted for the fact that it should have the same symmetry as the sector (a 
symmetry axis parallel to a basis vector). Let us choose for the moment the 
generic shape depicted on the upper left of Fig. 12. We complete the decoration 
of the other sectors using symmetry. 

Third, we examine how many different decorated tiles we get. As usual (see 
[19]), we superimpose suitably shifted copies of the octagon and we study the 
decomposition of the existence domain of each tile in subdomains of decorated 
tiles. What we find is that there are many of them, so that we get a lot of 
decorated tiles and this does not look very pretty. However, this complication 
is inessential and we can simplify the decoration using a "reduction trick" that 
we shall now explain. 

Let us proceed by steps. Initially, we have a generic mark attached to each 
vertex and the matching rule consists in putting tiles around each vertex in 
such a way that the marks coming from the different tiles coincide. Observe 
that since the mark is attached to the vertex, it overhangs the edges of the 
tiles. We can give an alternative form to the matching rule by attaching to 
each vertex of tile only the trace of the mark on this tile, and ask to recompose 
the shape of the mark around each vertex. Clearly, these two forms of the 
matching rule are equivalent as long as the trace of the mark on the tile gives 
sufficient information to reestablish the whole mark, and that is the case if the 
shape of the mark is generic enough. 

Next, we can modify and specialise the shape of the mark in such a way 
that some traces of our mark become identical. To see the effect of this proce­
dure, consider two adjacent subdomains of existence in the existence domain 
of a tile. The internal boundary between the subdomains is there because at 
some vertex the tile bears the mark in two different orientations for the two 
subdomains. If we modify the mark up to identify its trace on the tile for these 
two different directions, then we can no longer make any distinction between 
the two subdomains and this amounts to rub out the corresponding internal 
boundary. 

This is a way to simplify the decoration and to decrease the number of 
decorated tiles. Of course, one has to be careful not to go too far: to put 
a disk on each vertex is obviously equivalent to no decoration at all .... A 
remarkable property of the octagonal tiling is that there is a class of shapes for 
the mark, among which the Ammann's "large arrow" , which yield an effective 
decoration with only one decorated square and two decorated rhombi (which 
are mirror images of each other, see Fig. 12). We get only one decorated 
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D 
Fig. 12. - A generic vertex decoration for the octagonal tiling (upper left). The 
Ammann arrow is a special distortion of this generic mark (upper right) which leads 
to three kinds of decorated tiles. Complete Ammann and edge decorations of the 
octagonal tiling (bottom). 

square, because we have rubbed out all the internal boundaries. Those which 
survive in the existence domain of the rhombus are easily seen to be the two 
diagonals: two opposite triangles correspond to the same decorated tile, and 
the two diagonals are symmetry axes associated in Ell to two symmetry axes. 
Each of them exchanges the two decorated rhombi. 

Now, we have to see that these internal boundaries of the existence domains 
of the rhombi are sufficient to provide us with the required supplementary set of 
forbidden planes. To fix the notations, let us consider a special cut piercing an 
atomic surface somewhere on the diagonal spanned by e~ -e~ (or ea +e~). Then 
this cut will pierce also a whole quasiperiodic set of atomic surfaces along the 
same diagonal. Since this cut hits the internal boundary (the long diagonal) of 
the rhombus (e~, e~), which is the existence domain of the rhombus (e3, e4), we 
see in the cut these rhombi as traces of the boundaries of the decorated oblique 
tiling, and similarly for the rhombi (el' e2) through the short diagonal of its 
existence domain (ea,e~). To see that this set ofrhombi covers completely its 
axis (a line parallel to el-e2), let us build the restriction of our four dimensional 
cut construction to the lattice plane (c3 +c4, C2 -cd which intersects our special 
cut along a line. We just have to observe that the trace of the atomic surface in 
this plane, which is its diagonal, is exactly the projection on the trace of El. of 
the unit rectangle of the two dimensional lattice to conclude that we are again 
exactly in the situation of the low dimensional model and that this restricted 
cut construction yields a tiling of the trace of the special cut by means of the 
two projections of the basis vectors, which are nothing but the diagonals of our 
rhombi. 
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Fig. 13. - A worm of the second kind in the octagonal tiling. 

Thus we get a "worm of the second kind" made uniquely of rhombi, which 
does not have holes and covers completely its axis (Fig. 13). Moving the special 
cut along the direction ei - e~ of the diagonal shows as previously that the 
whole plane (c3 + C4, C2 - cd is contained as a retract in the boundaries of 
the decorated oblique tiling. On the other hand, the fact that this plane is 
forbidden results of the same considerations already made: would the cut cross 
the internal boundary, this would result in an improperly decorated rhombus. 

Finally, the whole set of decorations for the octagonal tiling is the superim­
position of the orientation of the edges (Ammann used half-disc rather than 
arrows) and of the vertex decoration. The matching rules require that two ad­
jacent tiles give the same orientation to their common edge and that the mark 
on the vertices fit together to form the large arrow. We know that this set of 
constraint is equivalent to the non-intersection of the cut and the forbidden 
planes. We shall now prove that this entails the quasiperiodicity of our tilings. 

6. THE MAIN THEOREM 

For this, we first need more information about the position of the forbidden 
planes with respect to the lattice, and about their intersections. 

6.1. Position and intersections of the forbidden planes 

Setting once for all the positions of the atomic surfaces such that their centers 
are on the vertices of the lattice 7l.4 , let us begin by the second set of planes 
corresponding to the vertex decoration: since they intersect octagons along a 
diagonal, they go through the vertices of 7l.4 • It is a matter of simple algebra to 
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study their intersections. One finds that they intersect all four on the vertices 
of the lattice and on the body centers, and that in addition each pair of planes 
which are orthogonal in both projections in E.l and Ell intersects on a face 
center. 

Concerning the first family, consider a "horizontal" worm parallel to el. The 
corresponding forbidden plane is parallel to (cl, C2 -c4) but does not go through 
the lattice from which it is shifted twice: first, this plane passes on the boundary 
of the atomic surface and thus is shifted from its center by (-e~ + e~ - e~)/2. 
Second, it is shifted to the axis of the worm. To com pute this shift, observe that 
after the first shift the plane goes through the flipping points of the hexagons 
of the worm, so that we have to shift it to the middle between the flipping 
point and its image under the flip, which are symmetrical with respect to the 
axis of the worm. Since the jump vector is e3 - (e2 + e4), the last shift is 
(-e2 + e3 - e4)/2 so that the total shift from the vertex is (-c2 + C3 - c4)/2. 
Now the plane itself contains cI/2 and we conclude that these planes go through 
the body centers of the lattice. Then one computes easily that they intersect 
all four on the body centers and that like in the previous case the "orthogonal" 
pairs intersect also on face centers. Finally, any two planes coming from the 
two families intersect only on a body center. 

The conclusion is thus that we have three kinds of intersections: pairs of 
"orthogonal" planes coming from both families on the face centers, quadruplets 
of the second family on the vertices, and octuplets of all planes on the body 
centers. 

Our problem is now mathematically clean: we have to show that any cut 
(everywhere transversal to E.l) which does not intersect any forbidden plane 
is homotopic to a plane parallel to Ell. To begin with, we give the following 
description of the homotopy classes in question. 

6.2. Systems of data 

Let us describe the cut by its intersection with each of the fibers of the pro­
jection ?Til on Ell (the fiber above the point x E E" is the plane parallel to 
E.l which intersects E" on x). It is very important to observe that, due to 
the non-transversality of the forbidden planes with respect to E.l, the trace 
of the forbidden planes on each fiber ?T,,-l(x) is not a point for any x as is 
the generic case for two (two-dimensional) planes in ffi4. On the contrary, we 
have for each forbidden plane the following situation: the plane projects on E" 
along a line, and if x does not belong to this line, then there is no intersection 
between the plane and the fiber. When x belongs to this line, then the forbid­
den plane intersects the fiber along a line. Finally, it is easy to observe that 
when x is the intersection of the projections of several forbidden planes, then 
the corresponding lines in the fiber also intersect on a common point. 

This situation allows a very simple description of the homotopy class of the 
cut, which is transversal to E.l and thus intersects each fiber on exactly one 
point: we have only to specify, for every x E Ell, through which connected 
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component of the complementary of the trace of the forbidden planes goes the 
cut. This is what we call a system of data. The data are of three possible types: 
first, for almost all x, the fiber does not intersect any forbidden plane and there 
is only one connected component to choose (the whole fiber). Second, for a x 
which lies on the projection of a single forbidden plane, the fiber is divided 
in two half-planes by its intersection with the forbidden plane and we have 
to choose one of them. Finally, if several forbidden planes are involved, they 
define in the fiber a set of sectors around their common intersection and we 
have to choose one of them. 

It is now almost obvious that systems of data defined by continuous cuts 
are in one-to-one correspondence with the homotopy classes of cuts. In fact, 
consider two cuts defining the same system of data. This means that in every 
fiber their traces belong to the same connected component of the complemen­
tary of the traces of the forbidden planes. Since these components are convex, 
we can draw in each fiber the line segment between the traces of the two cuts, 
bel'lg sure that this segment does not intersect the forbidden planes. Then, we 
can interpolate between the two cuts along these segments in order to define a 
homotopy from one cut to the other. Reciprocally, if for at least one fiber the 
two cuts fall in different connected components, then it is quite clear that it is 
not possible to distort continuously one to the other without crossing one or 
several forbidden planes. 

Thus we have shown that the homotopy classes of cuts are classified by the 
associated system of data. Our task will be now to characterise those systems 
of data which stem from continuous cuts. 

6.3. Propagation of order 

The number of possible systems of data seems enormous, since it corresponds 
to making a choice for each x E Ell' However, we have already seen that for 
almost all x there is in fact no choice since the corresponding fiber does not 
intersect any forbidden plane. A further step in -that direction is to observe 
that for a continuous cut, we make in fact only one choice for each forbidden 
plane. To see this, consider the three-dimensional space defined as the union of 
the fibers 7r1l-1(x) for x belonging to the projection of a forbidden plane. This 
three-dimensional space contains this forbidden plane which disconnects it so 
that the trace of the cut in this space (a curve) must stay in one half-space 
in order not to cross the forbidden plane. Thus the choices in each fiber are 
correlated and this is best seen in projection onto E1.: 7r1. maps the forbidden 
plane onto a straight line and the image of the previous curve must stay on one 
side of this line. It is now obvious that any system of data compatible with a 
continuous cut (we shall say just compatible) must correspond to the "same" 
half plane all along the projection on Ell of any forbidden plane, the correlation 
between half-planes being established through their projection on E1.. 

The next step is to investigate how the choices are or are not correlated 
for intersecting forbidden planes. As observed above, there are three cases to 
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Fig. 14. - Basic mechanism of the propagation of order: the given choices corre­
sponding to the forbidden planes (1) and (2) induce the choice of the sector on the 
central picture for which the choices of the forbidden planes of type (3) is Wldeter­
mined but imposes those of type (4), (5) and (6) planes. 

consider. In any case, the choice to be made for constructing a system of data 
is the choice of a angular sector in the fiber, among 4 possibilities in the first 
case, 8 in the second and 16 in the third. 

Here again, there is an obvious constraint: the chosen sector must be con­
tained in all the half-planes selected with respect to the lines intersecting on 
the considered point. This requirement has no special consequences in the case 
of pairwise intersection (the sector is then a quadrant which is exactly the in­
tersection of the two half-planes associated to the two lines) but the situation 
is quite different for the other cases. To understand that point, refer to Fig. 14 
and let us suppose that we know what is the half-plane selected along the two 
lines (1) and (2), as indicated. Then we see that we cannot say anything about 
the line (3), for which both choices are compatible, but that we can assert what 
is the half-plane selected "above" the lines (4,5,6), for which only one choice is 
compatible with the data already known. 

This elementary property is in fact the very source of the propagation of the 
local order which eventually results in the global quasiperiodicity of the struc­
ture. The global consequence of this propagation is contained in the following 
theorem which expresses what are the compatible systems of data, in the sense 
that they are induced by a continuous cut. 

Theorem 1 The compatible system of data are those for which the closures of 
the projections of all selected half-planes on E.l have a non-empty intersection. 

As we shall see, this theorem entails that any tiling fulfilling the matching 
rules is either quasiperiodic or is the limit of a sequence of quasiperiodic tilings 
(and such a limit is to a large extent undistinguishable of a strictly quasiperiodic 
tiling). But let us begin by the proof of the theorem. 
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Fig. 15. - To each bad triangle we can attach a bad strip. 

6.4. Proof of the theorem 

6.4.1. The pushing procedure 

Since we want to prove that an infinite family of half-planes have a non empty 
intersection, we need some tool for reducing the discussion to finite families. 
Such a tool is conveniently provided by the classical Helly's theorem: 

Theorem 2 (Helly) Consider in IRn a family:F of convex sets (which must 
be finite for arbitrary convex sets but may be arbitrary for compact convex sets) 
such that every finite subfamily of p ~ n + 1 sets has a non-empty intersection. 
Then the whole family :F has a non-empty intersection. 

Since our half planes are not bounded and their family is infinite, we shall 
need some care when using this theorem. Nevertheless, it allows us to restrict 
the discussion to pairs and triplets of half planes (in our case n = 2). The 
only case where two half planes may not intersect is when their boundaries are 
parallel. Let us call bad strip such a pair of half planes. Similarly, let us call 
bad triangle a triplet of half planes which do not intersect on the triangle that 
they define. 

Our task is to show that for a compatible system of data, there is no bad 
strip and no bad triangle. But it is immediate that we can associate a bad strip 
to any bad triangle: recall that the forbidden planes intersect either by pairs, 
by quadruplets or by octuplets, and in the first case, the two are orthogonal 
in both projections on En and E.L. Thus a bad triangle involves necessarily at 
least two vertices where 4 or 8 planes intersect, for which we can attach a bad 
strip (in two or three ways) to the bad triangle, as depicted on Fig. 15. 

Finally, it remains to show that there are no bad stripes. Let us suppose that 
such a bad strip exists. We shall show a contradiction with the continuity of 
the cut through the construction of a family of forbidden planes about which 
we know what are the selected half planes. Observe that there are two kinds of 
bad stripes: those which are parallel to a plane of the type £1, £2 - £4 and those 
which are parallel to a plane of the type £1 + £2, £3 - £4. Since the argument is 
almost the same in both cases, we shall deal in detail only with the first one. 
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Fig. 16. - The pushing procedure (see text). 

For this, consider the Fig. 16, which is drawn in E.L and where the bad strip 
is horizontal. Let us denote by the same letter U the "upper" plane of the bad 
strip (parallel to (cI, C2 - c4)) and its projection on E.L, and similarly by D· the 
other plane of the strip. We can find a vertical forbidden plane, say V (parallel 
to (c3, C2 +c4)), which intersects the upper line U on a "eightfold" intersection 
(one half or one quarter of the planes have this property). Let the selected half 
plane associated to this vertical forbidden plane be the one on the right (which 
means that the would-be cut would cross each fiber intersecting this vertical 
plane on the right side of the intersection line). 

We can get other vertical forbidden planes "selecting their right side" through 
the following pushing procedure described on Fig. 16. Consider the plane la­
belled PI going through the intersection x and recall that x is the projection 
on E.L of a body center of Z4 : x = 1I'.L(e). In the fiber going through e, we 
find the traces of 8 planes, among which those of U, V and Pl. As already 
mentioned, the half plane selected by Pl must intersect the intersection of the 
half planes selected by V and U. We see that there is no choice and that the 
upper-right half plane is selected. 

Following PI, we arrive to its intersection with D, "above" the point y of E.L. 
We are either on a fourfold or on a eightfold intersection, and we can consider 
the plane P2. The same argument shows that P2 selects its lower-right half 
plane. Along P2 we find its intersection with U above z E E.L, and through 
this intersection we can consider the vertical plane V' parallel to V. Then we 
immediately see that the half plane selected by V' is on the right. Observe 
at this point that we need to start with a bad strip of non-zero width for this 
argument to be non trivial, and this requires to consider in E.L the closure 
of the projections of selected half planes, although in each relevant fiber we 
consider the open selected half-plane, simply because our hypothesis is that 
the cut never intersects any forbidden plane. 
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This is the pushing procedure. We can iterate it to exhibit a family of for­
bidden planes parallel to V, of which we know that they select the half plane 
on the right in each fiber that they meet. Moreover, we have three possible 
choices for the direction PI of the "pusher", namely those which projects on 
El. on e~ (this is the direction of plane spanned by (e4. el - e3)), on (e~ - e~) 
«e4 - e3, el + e2)) and on e~ + e~ «el + e4, e2 + e3)). 

Let us discuss the distribution of this family of planes. 

6.4.2. The cone of planes 

In order to compute the distances over which we push the vertical plane, let 
us assume that the distance between U and D (that is, the thickness of the 
bad strip) is m~ + n( ~ + e~). Then simple geometry shows that the distance 
between two consecutive planes of the family is: 

• d = 2m~ + 2n(e~ - e~) when we push with (e4, el - e3) 

• d' = (4n - 2m)ei + (2m - 2n)(~ - e~) for (e4 - e3, el + e2) 

• d" = (2m + 4n)ei + (2m + 2n)(~ - e~) for (el + e4, e2 + e3) 

Now, starting with a given plane V, we can reach any plane sitting at a 
distance from V which is a linear combination with integer positive coefficients 
of these three distances. Since d" = 2d+d', we can omit the third one. Observe 
that the positiveness of the coefficients is very important and corresponds to 
pushing the planes "on the side they select" in order to flush the would-be cut 
to infinity. 

Thus we find a cone of planes. To describe this cone precisely, let us consider 
its trace on the plane spanned by (ell e2 - e4) orthogonal to V (Fig. 17). 
The whole lattice of forbidden planes parallel to V intersects this plane on a 
rectangular lattice C of ratio ../2. Choosing our V as the origin, consider the 
two vectors u = 2mel + 2n(e2 - e4) and v = (4n - 2m)el + (2m - 2n)(e2 - e4) 
corresponding respectively to d and d'. Our family C of planes is the trace on 
the cone defined by the two positive half lines generated by these vectors, of 
the sublattice of C which they span. 

Observe now that the traces on this plane of El. and Ell are respectively the 
first and the second diagonals of the plane. In fact, we must have on El. that 
the projection of e2 - e4 is -../2 times that of ell and on Ell the ratio of the 
two projections is +../2, whence the two diagonals. 

The crucial remark is that whatever the thickness of the bad strip is, i. e., 
whatever the values of m and n are, the edges of this cone fall on the two 
opposite sides of El.' To see this, observe that we have measured the thickness 
upward, so that m - n../2 is positive. Then the projection of u and v on El. 
are respectively 2(m - n../2)ei and 2«-2n - m) + (m + n)../2)ei = 2(../2-
1)(m - n../2)ei, and point both to the interior of the cone. On the contrary, 
the projections of u. and von Ell are 2(m + n../2)el and 2«-2n - m) - (m + 
n)../2)el = 2(../2 + 1)( -m - n../2)el, which point on opposite sides. 
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Fig. 17. - The set of planes about which the pushing procedure allows to assert which 
half plane they select, is the trace of a lattice inside a cone. These planes project 
discretely on E.J.. and densely on En. 

For the other kind of bad strip, say, parallel to el + e2, e3 - e4, the drawing 
of the cone is made in this plane where the relevant forbidden planes form a 
square lattice. The traces of El. and Ell are here tilted by 31l" / 4 with respect to 
this lattice, but besides this details the main conclusion is the same: the two 
half lines which bound the cone project one upon the other on El. while their 
projections on Ell cover Ell' 

In other words, the qualitative situation is always that of Fig. 17. We see 
that the projection of C on El. is discrete, although the projections become 
closer and closer when one goes farther inside the cone. But the projection of 
the same family C on Ell is everywhere dense, and this allows us to conclude 
in the following way: 

Consider an generic point x in Ell, and the fiber above it, with the trace of 
the cut. Since the projection of C is is everywhere dense in Ell, we can find a 
sequence of lines in this projection converging to a limit going through x. This 
sequence is the projection of a sequence in C which escape to infinity in the 
cone, since C is a part of a lattice and does not have any accumulation point. 
This means that we can find as close to x as we want, a fiber in which the trace 
of the cut is pushed on the right as far as we want. This is a contradiction with 
the continuity of the cut and we have shown that a compatible system of data 
does not admit bad stripes (nor bad triangles as a consequence). 
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Fig. 18. - Once four forbidden planes have been found which form a parallelogram, 
the fact that there are no bad stripes nor bad triangles forces the choice for every 
forbidden plane whose projection on E.l does not cross the parallelogram. 

Now we can finish the proof of our theorem. What remains to do is to apply 
ReIly's theorem. For that, consider any forbidden plane and its associated 
selected half plane in EJ.. There exists a parallel plane whose selected half 
plane is on the opposite side: if that was not the case and siQce there is no 
bad stripes, the cut would be entirely at infinity. Thus we have found a strip 
of finite width such that we know for any forbidden plane parallel to this pair 
and falling outside the strip, that the associated selected half plane is the one 
which contains the strip. 

Selecting another direction of forbidden planes, we find in the same way an­
other strip which intersects the previous one on a parallelogram. Now we know 
for any forbidden plane whose projection on EJ. does not cross this parallel­
ogram, that the selected half plane contains the parallelogram: otherwise we 
get a bad triangle, as depicted on Fig. 18. 

Finally, we have to discuss the {infinite!} subfamily of forbidden planes whose 
projection on EJ. intersects the parallelogram. But since they project at finite 
distance of each other, it is no longer necessary to associate to each of them 
a whole half plane and we can work with compact convex sets. Consider in 
EJ. a disc D large enough to contain the parallelogram, and lift it along 7r J. 
on each fiber. Then consider the intersections of our half planes with the discs 
instead of the half planes themselves, for all fibers belonging to the subfamily 
F' under consideration. Observe that the projection on EJ. of these bounded 
convex sets intersects by pairs and by triplets, otherwise we would get a bad 
strip or a bad triangle. Then applying Helly's theorem completes the proof of 
theorem 1. 

6.5. Quasiperiodic tHings and "special tHings" 

Let us now turn to the consequences of theorem 1 on the quasiperiodicity of 
well-decorated tilings {Fig. 19}. We have just shown that any continuous cut 
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defines a system of data such that the intersection of the corresponding (closed) 
half planes is non-empty. Observe first that these intersections are always 
reduced to a single point. In fact, two distinct points in E.L are always separated 
by the projection of some forbidden plane, since each lattice of forbidden planes 
projects on a dense set of lines. Thus two distinct points correspond to two 
different systems of data. Then the conclusion depends on whether this point 
x does or does not belong to the projection of some forbidden plane. 

The simple case is when the point x falls in the complementary of the projec­
tion of the forbidden planes. Then we can consider the plane cut parallel to Ell 
and going through x: it is a regular cut which intersect the atomic surfaces on 
their interiors and defines a quasiperiodic tiling. This is the generic case. 
Observe that in this case, the point x is as well the intersection of all the projec­
tions of the open selected half-planes, in such a way that we have a one-to-one 
correspondence between quasiperiodic tHings and connected components of the 
complementary of the projection on E.L of the forbidden planes. 

But this family of quasiperiodic tilings does not exhaust the set of all well­
decorated tilings, and we have to consider the cases where the point x falls 
on the projection of one or several forbidden planes. We shall call special the 
tHings of this kind. For the sake of simplicity, let us first suppose that x belongs 
to the projection D of one forbidden plane P only. Such a point x corresponds 
to two distinct systems of data, differing by the choice relative to the forbidden 
plane P. It is clearly impossible to choose a "perfectly" plane cut to define 
the corresponding tHings: the only possible plane cut goes through P and we 
have to distort it (as slightly as we want) on one side or on the other, above 
the projection of P on Ell' 

These well-decorated special tHings, which are not as "strongly" quasiperi­
odic as the previous ones, may be conveniently described in our case as limits 
of quasiperiodic tHings in the following way: 

Consider in E.L a smooth arc parameterised by the interval [0, 1], transversal 
to the projections of all forbidden planes and such that the image of 0 belongs 
to the projection D of a forbidden plane. Consider on this arc a sequence 
of points Xn converging to the image x of 0 and such that no point in this 
sequence falls on the projection of a forbidden plane. Then each of these points 
Xn corresponds to a well-behaved quasiperiodic tiling Tn. We define the limit 
tiling T corresponding to x as a simple limit: a vertex belongs to T if and only 
if it belongs to Tn for infinitely many n (observe that we have constrained the 
sequence Xn to belong to a smooth arc in order to avoid pathologies such that 
sequences oscillating or spiralling towards their limit). 

Because of the local constancy of local patterns with respect to shifts of 
the cut along E.L, it is quite obvious that the limit obtained in this way is 
a well-decorated tiling (any bounded region in T occurs in infinitely many 
Tn). It follows in particular that these special tHings have no particular local 
property. But they do have a special global property, namely they contain 
a finite number of infinite worms. For instance, if the limit x belongs to the 
projection D of only one forbidden plane P, then we find in the limit tiling only 
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Fig. 19. - A sample of octagonal tiling, decorated with Ammann rules. 

one infinite worm (whose axis is the projection of P on Ell) and if we consider 
now another sequence x~ converging to x from the other side of D, we find 
in the corresponding limit tiling the "flipped" version of the worm. Of course, 
the superimposition of these two limits is just the trace of the oblique tiling in 
the singular cut defined by x. The axis of the worm is almost a symmetry axis 
of the tiling, which is broken only along the worm: if P belongs to the second 
kind of forbidden planes, the two limit tilings share the same sets of vertices 
and only the vertex decoration along the worm is "flipped" between the limits. 
If P belongs to the first kind of forbidden planes, then the limit tiling is defined 
by a plane cut which go through the boundary of a family of atomic surfaces, 
and the taking of a limit is a consistent way to select half of the concerned 
atomic surfaces. 

If now the intersection x of the closure of the projection of all the selected 
half-planes belongs to several images of forbidden planes, we must be careful 
not to "pinch" the cut between forbidden planes upon flipping worms. Recall 
that, although we have taken the closure of the projection of the selected half­
planes in order to develop our pushing argument, the cut is not allowed to 
intersect the forbidden planes. Observe first that we have to study only a finite 
number of different tilings. In fact, such an x is either the intersection of two, 
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four or eight projections of forbidden planes, and there is only a finite number 
of orbits for such a point under the projection of the 4-dimensionallattice. But 
recall that two tilings whose associated plane cuts are mapped on each other by 
a translation belonging to the high-dimensional lattice are just the same tiling, 
up to a global translation which is the projection on Ell of the high-dimensional 
translation. 

Consider a special tiling for which the point x falls on the intersection of only 
two projections of forbidden planes. Let e be the intersection of these planes 
(we know that e is a face center), and consider the fiber parallel to E.L going 
through e. We see that we can flip freely each of the worms associated to the 
two forbidden planes. In fact, each choice of passing the cut on one side or the 
other of each forbidden plane correspond to a quadrant in this fiber, and the 
cut is never pinched. But the situation is quite different when x belongs to the 
intersection of four or eight forbidden planes (then e is respectively a vertex or 
a body center of the 4-dimensionallattice). Defining one of the corresponding 
special tHings as a limit, the traces of the associated sequence of cuts in the 
fiber going through e is a sequence of points converging to the intersection of 
the traces of the forbidden planes. This sequence of points is contained in one 
of the eight or sixteen sectors defined in this fiber and the tiling of the worms 
in the limit tiling is prescribed by this sector. We get complete worms only for 
the forbidden planes bounding this sector, and we can flip one of them. This 
operation just yields the limit tiling obtained in a sector adjacent to the initial 
one. Finally, we see that we access only eight different special tilings associated 
to fourfold intersectioIl$ and sixteen in the case of eightfold intersections. 

Let us now explain in which sense these special tilings are "less" quasiperi­
odic than regular ones. Recall that in the standard computation of the Fourier 
transform, we take the multiplicative product of the Lebesgue measure carried 
by the plane cut and of the measure carried by the atomic surfaces. But such 
a multiplicative product of generalised functions exists only under a transver­
sality condition which is precisely violated when the cut intersects the atomic 
surface on its boundary. Thus the computation breaks down and this notion 
of quasiperiodicity does not apply to the special tilings involving coming on 
the projection of forbidden planes of the first kind. Observe on the other hand 
that nothing dramatic happens to the special tilings: since the ambiguous ver­
tices (those on the worm) constitute a vanishingly small fraction of the set of 
vertices of the tiling, the statistical notions such as autocorrelation functions, 
which define the physically relevant quantities, are exactly the same for special 
tilings and for regular tHings. 
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7. GENERALISED AMMANN TILINGS 

7.1. Definitions 

As already explained, we need two sets of forbidden planes in order to imple­
ment the Ammann decorations of the octagonal tHings: the first set corresponds 
to the edge part of the decoration, and the second set to the vertex part. We 
shall now study what happens when one keeps only one of these two sets, and 
the associated decoration. As we shall see, the corresponding decorated tHings 
are still highly ordered: they are either quasiperiodic or periodic, up to some 
discrepancies that we shall explain. 

We shall call generalised Ammann tHings of the first kind those for which 
we keep only the edge decoration to define the matching rule, and accordingly 
generalised tHings of the second kind those with only the vertex decoration. 
Let us first discuss which symmetry properties may remain for the generalised 
tHings, provided that they are ordered enough to keep some symmetry. 

7.2. Symmetry considerations 

Recall that the octagonal group acting in the plane is a Coxeter group generated 
by two reflections, and we may take for instance as generating mirrors of this 
action in Ell the two lines spanned respectively by el and el + ea. This group 
contains two subgroups isomorphic to the symmetry group of the square, which 
is still a Coxeter group. We may take as mirrors generating the first subgroup 
the two lines spanned by e1 and e2, and as mirrors generating the second one 
those spanned by el + e2 and e2 + e3. We have a similar construction in El.. 

These two subgroups are linked with the two kinds of forbidden planes in 
the following way: recall that we have lifted in JR4 the action of the octagonal 
group, so that we have in particular an action of the two subgroups, and we 
know how to transform any 2-dimensional plane embedded in JR4 under these 
actions: in other words, we have an action of the octagonal group and of its 
subgroups on the Grassmannian manifold g~ of the 2-dimensional planes of 
JR4. 

Then it is easy to see that the planes simultaneously non-transversal to the 
four directions of the first set of forbidden planes are invariant under the action 
of the first subgroup, and their set is a one-dimensional smooth submanifold 
SI of g~. We have a similar result for the second set of forbidden planes and 
our second subgroup, which yields another smooth submanifold Sa of g~. The 
two curves S1 and Sa intersect on two points in g~. The corresponding planes, 
which are invariant through both subgroups, are invariant through the whole 
octagonal group and are obviously our Ell and El.. 

Finally, the canonical cut construction of the octagonal tHings generalises 
as follows: setting once for all El. as the plane carrying the atomic surface, 
we consider a plane cut non intersecting the first set of forbidden planes. The 
direction of such a plane is surely non-transversal to the four directions of for-
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bidden planes, so that the direction of the cut belongs to 51. Setting as atomic 
surface the projection of the unit hypercube on E.L along the cut, we take the 
intersections of the cut with the lattice of these atomic surfaces and project 
these points on Ell along E.L to get the vertices of a generalised Ammann tilings 
of the first kind. It is made of the same rhombi and squares as the octago­
nal tiling and possesses the symmetry of the square to the same extent that 
the Ammann tHings are octagonal. Also, it admits the edge decoration by its 
very construction. We set an obviously similar construction for the generalised 
tilings of the second kind. 

A remarkable property of both 51 and ~ is that these two curves con­
tains infinitely many points corresponding to planes with a completely rational 
direction. For such a direction, the cut construction yields periodic tHings. 
Otherwise, we get quasiperiodic tilings. 

However, we are concerned by the converse problem: we would like to show 
that any tiling admitting the edge decoration alone (or the vertex decoration 
alone) is (up to some discrepancies for special tilings) a periodic or quasiperiodic 
tiling. For the sake of clarity, we shall work out the construction for the case of 
the generalised Ammann tHings of the first kind (edge decoration). Also, from 
now on, we shall consider as forbidden planes the first family only. 

7.3. Setting the method 

This problem is clearly more difficult than for the octagonal case. In that 
latter case, we had for symmetry r{'..asons only one candidate for the direction 
of the plane cut we were looking for inside the homotopy class of cuts defining 
a given tiling: namely the direction of Ell. This is no longer the case, since any 
direction belonging to the curve 51 of the Grassmannian manifold is a possible 
candidate, and this forces us to refine our method. 

We shall still describe a genera!" cut by its intersections with fibers parallel 
to E.L. Since the generalised tilings are still built by projecting the selected 
points on Ell, we may as previously limit our considerations to cuts everywhere 
transversal to E.L, (in order to get a one-to-one projection of the cut on Ell 
along E.L) so that the cut yields exactly one intersection in each fiber. Then, 
since E.L is non-transversal to the directions of the forbidden planes, we define 
the same notion of system of data as in the octagonal case: nothing is changed 
from that point of view. 

Our problem is again to show that a compatible system of data is associated 
to a homotopy class of cuts which contains a plane. In the octagonal case, we 
mapped the forbidden planes on E.L along Ell, which was the only direction 
to be considered, and developed the globalisation argument in E.L. This is the 
point we have to generalise in order to take into account that we have now a 
whole one-parameter family 51 of possible plane directions for the cut. 

Let us consider the 3-dimensional space £1 = E.L X [,1, where [,1 = m is a 
local chart of 51, which we define as follows: take anyone of the four directions 
of forbidden planes and consider in this plane the traces of the planes belonging 
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to Sl. On account of the non-transversality, these traces are straight lines and 
we take as coordinate along Sl the tangent of the angle <p between the trace 
of Ell and that of the given plane; because of the symmetry, this definition 
does not depend on the chosen direction of forbidden planes (up to a sign). 
We restrict the domain S'1 of the chart to angles <p E [-7r/4, +7r/4] because 
for larger angles we get overlapping tiles. It is easy to see from elementary 
geometry that when we vary <p, the projections on E.L of the basis vectors 
keep the same relative angles, the length of the projections of e1 (resp. e2) 
remains equal to that of e3 (resp. e4), and the ratio of these lengths varies like 
tan( <p + 7r / 4). For <p = ±7r / 4, one or the other pair yields a null projection, 
so that the atomic surface become a square and the corresponding tilings are 
simple square tHings built with one or the other of our square tiles. 

The 3-dimensional space £1 is to be considered as a stack of copies ~I" of 
E.L, each attached to the direction in Sl along which we project JR4 on E.L: 
the fiber ~o above <p = 0 is the one for which JR4 is projected along Ell, and is 
just E.L as we have used it when dealing with the octagonal case. 

Now, we define the map 

F1 : JR4 x S~ 1-+ £1 

which send a pair (~, <p) E JR4 x S'1 on the projection of ~ on E.L along the 
direction designated by <p, so that the image is a point in the fiber ~I'" Then, 
due to the non-transversality of the forbidden planes to any plane in Sl1 the 
image by F1 of any forbidden plane P is a straight line in each fiber ~I'" and 
due to the choice of the parameterisation tan( <p) along .e1, these lines align 
along a plane in £1 when <p describes Sf. Thus, the image P = FI(P, S1) is a 
two dimensional plane in £1. 

Let us describe briefly the geometry of this collection of planes. Consider first 
the images of two parallel forbidden planes: their traces in each fiber ~I" are 
parallel lines, but due to the irrational direction of E.L, the distance between 
these lines changes with the projecting direction <p, so that there are no parallel 
planes in the collection. Second, observe that two planes P and pI intersect 
along a line contained in a fiber ~I" if and only if, first, they come from parallel 
forbidden planes, and second, the direction <p corresponds to a rational plane. 
Then we find a whole infinite family of planes intersecting on the same line, 
coming from an affine sublattice of parallel forbidden planes. Moreover, in such 
a fiber ~I" where <p is the coordinate of a rational plane, we find a whole lattice 
of parallel lines on which intersect the images of sublattices of forbidden planes: 
in these fibers, the traces of our planes build a periodic decomposition of the 
fiber. On the contrary, the fibers corresponding to irrational directions in Sl 
are densely filled by the traces of the planes, in the way we are used to for the 
projection on E.L along Ell, which is now found as ~o· 

On the other hand, consider the intersection D of two planes P and pI 
coming from non-parallel forbidden planes P and P'. Its trace on each fiber 
~I" is the intersection of the corresponding projections of P and pIon E.L. 
But since non-parallel forbiq,deh planes are transversal, they actually intersect 
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in JR4 and this trace is the projection of the intersection ~ = p n pl. Thus the 
whole line D is the image .rl(~' S1). In particular, the discussion of section 6.1 
applies and we see that such a line D is either the intersection of two planes 
p and pI (if ~ is a face center) or of four such planes if ~ is a body center. 
Finally, observe that, once again because the direction of E.l. is irrational, for 
no pair of lines (D, D') are parallel. 

7.3.1. Systems oE data in £1 

Our next task is to translate in the space £1 the notion of system of data, since 
the globalisation procedure using Helly's theorem will take place in £1. Let us 
return in JR4 considered as usual as the trivial fiber bundle E.l. x Ell' in which 
we describe a cut by considering for each x E Ell its trace on the corresponding 
fiber. Recall that for non-transversality reasons the forbidden planes disconnect 
the fibers that they intersect, so that we characterise the homotopy class of a 
cut by specifying the relevant connected component in each fiber. Recall also 
that the choice made at one point x E Ell relatively to one forbidden plane 
is forced (by the non-intersection condition) all along the projection of this 
forbidden plane on Ell, so that the choice is in fact attached to each forbidden 
plane rather than to points of its projection on Ell. Now we can translate such 
a choice in £1 simply by observing that it is quite independent of the direction 
cp of the projection: we copy this choice in each fiber 4.>", of £1 and this amounts 
to select one of the two half-spaces defined in £1 by the image of the forbidden 
plane (observe that the domain S1' of the chart £1 on SI is small enough to 
allow this procedure). 

The strategy to prove that the edge decoration is sufficient to enforce periodic 
or quasiperiodic order (up to something) will as in the octagonal case consist in 
showing that a system of data is compatible with its definition by a continuous 
cut if and only if the associated half-spaces selected in £1 have a non-empty 
intersection. 

We shall prove the following: 

Theorem 3 The compatible systems of data are those for which the closures 
of all selected half-spaces in £1 have a non-empty intersection. 

7.4. Reduction to "bad prisms" 

In view of the application of Helly's theorem in £}, we have to show that, for a 
system of data defined by a continuous cut, any pair, triplet and quadruplet (£1 
is 3-dimensional!) of selected half-spaces in £1 has a non-empty intersection. 
Observe first that since there is no pair of parallel planes, the intersection of 
two selected half spaces is never empty. Next, it is immediate that in order for 
a triplet of half-spaces to have an empty intersection, the pairwise intersections 
of the corresponding planes must be three parallel lines, in which case each 
of them is contained in a fiber 4.>", and the three planes come from parallel 
forbidden planes. We shall refer to this configuration as a "bad prism" . 
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Now we want to show that to any "bad quadruplet" of half-spaces, we can 
attach a bad prism (just as we have attached a bad strip to any bad triangle 
in section 6.4.1). There are several configurations to study and we shall just 
sketch the arguments. 

Let us classify the possible configurations according to the number of parallel 
lines among the intersections of our four planes. If we have four parallel lines, 
then the configuration is a prism with a quadrangular basis and any triplet 
of planes among the four defines a bad prism. If we have three parallel lines, 
then the configuration is a bad prism crossed by the forth plane and we simply 
retain the bad prism. The situation with only two parallel lines just does not 
exist, so that it remains to examine tetrahedral configurations. 

To deal with them, we use two facts: first, considering any edge of the 
tetrahedron which is not contained in a fiber ~'P' we know that it comes from 
an intersection of forbidden planes. Depending on the intersection and of the 
half-planes selected in the corresponding fiber of lR4 , we may be able to find 
one or several other forbidden planes going through the same intersection about 
which we know which are the selected half-planes (see Fig. 14). These planes 
are mapped in el onto planes containing the given edge. Second, considering 
a "bad tetrahedron" and any other plane crossing it, we can build another 
bad tetrahedron bounded by this last plane (whatever the selected side is). 
This allows to get rid of some special configurations, and the inspection of all 
possible cases shows that it is always possible to associate a bad prism to a bad 
tetrahedron. 

7.5. Proof of the theorem 

The reduction to bad prisms allows us to work out the proof in a planar section 
of el . Suppose for instance that the direction of forbidden planes involved in 
the bad prism is (el' e2 - e4)) and consider the plane in el spanned by £1 
and the direction e~ (or ~ + e~) in EJ... In this plane, the trace (and the 
projection) of the bad prism is the bad triangle depicted on Fig. 20. The 
vertices of the triangle project on £1 on 'PI. 'P2, 'P3 such that 'PI < 'P2 < 'P3 
(inequalities are strict because there is no "vertical" plane P in e1 : such a 
plane would be the image of a forbidden plane located at infinity in lR4 ). Let 
us choose a cp Ej'P}' 'P2[ (or, equivalently 'P Ej'P2, 'P3[) corresponding to an 
irrational plane (in order to avoid superimposition of projections of forbidden 
planes) and consider the situation in the fiber ~'P (Fig. 21): whatever the choice 
of cp is, the forbidden planes whose images in e1 build the bad prism project 
on two bad stripes (PI, P2 ) and (P3 , P2) to which we can apply our pushing 
procedure. 

This is the key of the proof: in the octagonal case, we made use of only one 
bad strip, but we had two rationally independent distances to push a forbidden 
plane along it, using as the "pusher" two forbidden planes of the two different 
kinds. Now, we have only the four forbidden planes of the first kind, so that we 
have only one choice for the "pusher" and the whole procedure generates only a 
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Fig. 20. - The traces of the planes Pi, P2 and P3 forming a bad prism define a bad 
triangle in the relevant plane of &1. 

v V ' V" 

Fig. 21. - The trace of the bad prism in any fiber <1>'1' with CPl < cP < CP3 contains 
two bad stripes, so that the pushing procedure allow to push the plane V on two 
distances d and d'. 

half one-parameter sublattice of forbidden planes "about which we know which 
half-plane is selected" . Recall that this does not result in any contradiction, 
for which we need a suitably oriented cone of planes. This difficulty is solved in 
the present framework by the occurrence of two bad stripes in the construction, 
which together allow to recover a whole cone of planes. 

In fact, there is nothing more to say about the pushing procedure. The only 
point to be studied is the relative position of the cone of planes with respect 
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Fig. 22. - The three forbidden planes Pl, P2 and P3 are located in ]R4 in positions 
corresponding to the slope of their images P l , P 2 and P 3 in £1, in such a way that 
in projection on Ell' P2 falls between Pl and P3 • 

to the pair (E,L, Ell)' For this, let us first consider simultaneously the two 
figures Fig. 20 and Fig. 22, which represents through its trace in the plane 
(e3, e2 + e4) C R4 the lattice offorbidden planes (eb e2 - e4) among which are 
the three planes PI. P2 , P3 forming our bad prism. 

In order to correlate the lines in Fig. 20 and the corresponding points in 
Fig. 22, observe that the slope of the lines in the first figure corresponds to the 
distance to E,L of the corresponding vertices in the second one: the vertices 
whose projection on E,L moves quickly with the direction cp of the projection 
(and which corresponds to large slopes on Fig. 20) are those which are far from 
E,L on Fig. 22. Thus we see that the projections on Ell along E,L of the vertices 
PI. P2 , P3 are such that the projection of P2 lies between those of PI and P3 • 

This piece of information will be sufficient for us. Let us return to Fig. 16 to 
observe that, since our "pusher" makes an angle of 7r / 4 with both the pushed 
plane V and the direction of the bad strip, the components of the displacement 
in the coordinates (el' e2 - e4) are just twice the components of the width of 
the bad strip in the coordinates (e3, e2 + e4), so that the basis of our cone of 
planes is obtained by copying in the plane (el' e2 - e4) of Fig. 17 the two vectors 
(PI - P2 ) and (P3 - P2 ) read on Fig. 22, and doubling them. Then the remark 
above entails that this cone contains E,L, and thus that the vertices it contains 
project densely on Ell, which was the point to be proved. 
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The end of the proof runs exactly like in the octagonal case and does not need 
details: the pushing procedure exhibits a contradiction with the continuity of 
the cut, so that a compatible system of data does not have any bad prism, and 
applying Helly's theorem then concludes the proof of theorem 3. 

7.6. Order in generalised Ammann tHings of the first kind 

Let us now turn to the consequences of this theorem for the ordering of the 
well-decorated tilings. As for the octagonal case, we shall distinguish between 
the generic situation and the special tilings. 

The generic case is such that the intersection of the (closed) half-spaces de­
fined by the system of data does not intersect any image P of a forbidden 
plane, so that it is also the intersection of the corresponding family of open 
half-spaces. Such an intersection is a connected component of the complemen­
tary in e1 of the images P = F1 (P, S1) of all the forbidden planes P. Let 
us describe these connected components. The main point is that all of them 
are entirely contained in a single fiber cP"". In fact, the collection of planes P 
contains planes as close to the fibers as we want (coming from forbidden planes 
as far as we want in IR4) so that any two points in different fibers can be sep­
arated by such a plane and do not belong to the same connected component. 
Now there are two cases: in fibers corresponding to irrational directions, the 
traces of the planes P are dense and the connected components are reduced 
to single points. In fibers corresponding to rational directions, the planes P 
fall on four discrete grids which generate a periodic decomposition of the fiber 
(which we refrain from calling a tiling for the sake of clarity). In both cases, the 
system of data may be defined by a plane cut parallel to the plane designated 
by the coordinate rp of the fiber cPcp which contains the intersection, and going 
through the corresponding point of E-.l (in the irrational case) or anywhere in 
the interior of the corresponding cell (in the rational case). The correspond­
ing generalised Ammann tHings are respectively quasiperiodic and 
periodic, as illustrated on Fig. 23. 

Concerning the special tilings, it is still true that they correspond to inter­
sections of closed half-spaces entirely contained in a single fiber cP"", but now 
the situation is rather different when rp corresponds to a rational direction and 
when it corresponds to an irrational one. 

If rp corresponds to an irrational direction, the discussion of section 6.5 ap­
plies completely: we find a finite number of infinite worms, which we can flip 
according to a non-pinching restriction. Averaged physical quantities do not 
distinguish between quasiperiodic and special tilings corresponding to the same 
rp. 

The family of special tHings is paradoxically much more larger in the periodic 
case, where rp correspond to a rational direction of the cut. As mentioned above 
the forbidden planes project on such a fiber cP"" on the boundaries of a periodic 
cellular decomposition of the plane, in which each cell corresponds to a periodic 
tiling. Of course, two cells mapped on each other by the translation group of 
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Fig. 23. - Two examples of generalised Ammann tilings of the first kind: (top) pe­
riodic tiling corresponding to cp = arctan(3 - 2\1'2); (bottom) quasiperiodic tiling 
corresponding to cp = 15°. 

the periodic decomposition of ~rp define the same tiling, so that we find in 
fact finitely many different periodic tilings associated to the angle cp. Let us 
consider the special tilings associated to an edge of a cell: this line is the image 
of a whole sublattice of parallel forbidden planes. They are (with one exception 
to be dealt with below) associated with a whole lattice of worms which we can 
flip independently. If we start from a regular tiling associated with the interior 
of a cell, and we flip all the worms associated with a given edge of this cell, we 
end of course with the regular tiling associated with the adjacent cell. But we 
can flip any arbitrary subset of worms, still keeping a well-decorated tiling. 

If now we come on a vertex of a cell, there are again two cases: if this point 
is the image of a face center (in which case this vertex is the intersection of 
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two orthogonal lines and belongs to four cells), then we find two perpendicular 
lattices of worms which do not "interact", in the sense that here again we 
can flip any arbitrary subset of both family of worms, still keeping a correct 
decoration. When the vertex is the projection of a body center, the situation 
is much more complicated: let wand w' be the two families of relevant worms, 
which form an angle of 7r / 4. It is obviously possible to flip an arbitrary subset 
of either w or w', but let us try to combine flips from the two families: let 
us flip first a worm from w. This operation breaks all the worms of w' on 
their intersections with the flipped one and produces pieces of worms of a third 
direction w", but these are broken on their intersections with all the other 
worms of w. Thus it seems that when one flips one worm, only the worms 
parallel to this one remain complete. It is unclear in this case whether it is 
possible or not to find well decorated special tilings besides the above-mentioned 
ones. 

Finally, let us say a word about the strangest tiling of all, which is obtained 
for tp = ±7r / 4 and has no worms at all: it is the regular square tiling! Without 
insisting, let us mention that it is possible to produce a well decorated special 
tiling associated to it by taking a limit of tiling along a sequence with tpn -- 7r / 4, 
depicted on Fig. 24. 

As a conclusion on this section, let us remark that the notion of matching 
rules (even strong like these) seems not to fit so easily with the notion of 
(quasi)periodicity. Everything goes smoothly as long as regular tHings are 
concerned. But we cannot escape the special tilings (recall that they are locally 
the same as regular ones, so that no local matching rule can reject them), and 
in the periodic case, special tilings may differ from a periodic one for a finite 
fraction of their vertices, so that physical averaged quantities may reveal that 
they are less ordered than periodic ones. 

7.7. Generalised Ammann tilings of the second kind: an example 
of weak rules 

One can develop the same theory with the vertex decoration and the second 
family of forbidden planes. We shall not repeat the arguments, leaving them 
as an exercise to the reader. Let us only set up the framework. 

We need now an auxiliary space £2 = E.L X £2, where £2 is a local chart on 
~ defined in a quite similar way as £1: considering the traces of the planes 
belonging to S2 on the direction of any forbidden plane of the second kind, we 
observe that these traces are lines so that we define the coordinate 1/1 of a plane 
in S2 as the angle between Ell and the given plane of ~, and we set on £2 
the parameter tan(1/1). Notice that now the domain Sf1 of the chart is limited 
to 1/1 E [-7r/8, +7r/81, in order to avoid overlapping tiles. Here again, simple 
geometry shows that when we vary 1/1, the lengths of the projections on E.L of 
the basis vectors remain the same, but the pair (e2' e4) rotates relatively to the 
pair (el, e3) of twice the variation of 1/1. For the extremal values 1/1 = ±7r /8, the 
two pairs become collinear and we get as atomic surface a square whose edges 
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Fig. 24. - Special tiling associated to the regular square tiling. It is obtained by 
taking a limit for cp -+ 11'/4, such that the limit cut goes through a vertex of the 
periodic decomposition of the fiber <1>,../4. If the limit cut goes only through an edge, 
one of the worm is sent to infinity, and of course if the limit cut goes through the 
interior of a cell, we get the regular square tiling. 

are the sum of the projections of two basis vectors. The existence domains of 
two rhombi over the four vanish, so that we get tilings made of the two squares 
an two of the rhombi. These tilings are periodic. 

We show on Fig. 25 some examples of generalised Ammann tilings of the 
second kind. 

The important point is that the matching rules thus obtained are only weak 
rules, in the sense of Levitov ([I]). 

To elucidate this point, let us return to the very beginning of our theory 
(section 4.3). By its very definition, the forbidden set touches the atomic sur­
faces on their boundaries. But the forbidden planes of the first kind on which 
we have retracted this forbidden set no longer intersect the atomic surfaces. 
However, we have completely forgotten about atomic surfaces during the de­
velopment of the theory, dealing only with the forbidden planes. In fact, our 
rules for the octagonal tilings and for the generalised Ammann tilings of the 
first kind are strong rules only if the following property holds: it is not possible 
to distort a cut so as to switch an intersection point from a given atomic surface 
to a neighbouring one, without intersecting a forbidden plane. 

To verify that this the case for the first family of forbidden planes and not 
for the second, the simplest way is to refer to the "closeness property" of the 
atomic surfaces. This property plays an important role in the geometry of 
quasicrystals ([28],[19]), but we do not need to explain it in the large and we 
shall only make use of the following simple argument: 

Consider the lattice of octagonal atomic surfaces, appended by there centers 
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Fig. 25. - Two examples of generalised Ammann tilings of the second kind: top: the 
periodic tiling obtained for 1/J = 1r /8; bottom: a quasiperiodic tiling corresponding to 
1/J = 10°. 

to the vertices of the four dimensional simple lattice 7/..4 . It is possible to 
"complete" these atomic octagons in order to get a manifold without boundary. 
This is done in two steps. The first one consists in gluing along the edges of the 
octagons four sets of rectangles of the type {ei, e2 + e3 + e4}. The two edges 
parallel to e~ are glued on two atomic surfaces, and we are left with the four sets 
of edges of the type e2 + e3 + e4. But it is easy to see that these segments form 
the edges of a lattice of small octagons contained in planes parallel to Ell. We 
just add these octagons as our second step and we are done: the "completed" 
atomic surfaces have no longer any boundary. 

In fact, this procedure is interesting because it changes nothing to the con­
struction of the tiling: the new pieces are non transversal to Ell, so that a 
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Fig. 26. - A (slightly metaphoric) description of the closure of the atomic surfaces 
of the octagonal tiling: the first step consists in gluing rectangles to the edges of the 
main octagon in El.; the second step closes the surface by adding a small octagon 
contained in Ell' The main octagons in El. are disconnected from each others by the 
forbidden planes whose traces are drawn on the figure. 

generic plane cut never intersect them. The geometry of the complete atomic 
surface is illustrated on Fig. 26. 

Now, we are lucky, because the forbidden planes also intersect the completed 
atomic surfaces in a non-transversal way, namely along line segments. On 
Fig. 26, one can see that, first, the four forbidden planes of second kind in­
tersect the original atomic surface (the large octagon) along the diagonals and 
then cross the small octagon also along the diagonals while, second, the four 
forbidden planes of the first kind divide in two the rectangles before crossing 
the small octagon. All eight planes intersect on the center of the small octagon 
which is located on the body center of the lattice (the center of large octagons 
being on the vertices of this lattice). 

Thank to this highly non generic configuration, it is easy to discuss our 
question. Consider a cut intersecting the atomic surface of Fig. 26 inside the 
large octagon, and let us try to move this point: its trajectory defines a line 
on the atomic surface and it is quite obvious that it is impossible to make such 
a line between two large octagons without intersecting one of the forbidden 



MATCHING RULES 187 

Fig. 27. - The vertex rules are only weak: it is possible to Hip a hexagon while 
keeping a well-decorated tiling; however, such a Hip does not open new possibilities 
besides the reverse ftip . 

planes of the first kind, whose traces surround completely the large octagon. 

This confirms that the rules involving the forbidden planes of the first kind 
are strong ones (for regular tilings). But now consider the second family of 
forbidden planes: we see that their traces on the completed atomic surfaces 
build closed polygons made of four pairs of segments joining the center of a 
large octagon to one of its vertices, then to the center of the small octagon 
sharing this vertex. We see that a cut constrained not to exit of this polygon 
may wander from one large octagon to a neighbouring one, but cannot go 
further. Thus the matching rules for the generalised Ammann tilings of the 
second kind are only weak: given such a regular tiling, it is possible to flip 
some hexagons without violating the rule. Such a flip creates a new hexagon, 
but you cannot flip it without violating the rule: a cut compatible with the 
forbidden plane may only oscillate between two and only two atomic surfaces. 
This is illustrated on Fig. 27, where one can see that the characteristic feature 
of the "flippable" hexagons is that their two tips (right angles) bear the same 
trace of the large Ammann arrow (a square), which is not always the case for 
tips occupied by a pair of rhombi. 
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8. CONCLUSION 

Let us first stress that nothing in the methods we have explained is limited 
to the two-dimensional case. For instance, the same ideas work for devising 
matching rules for the 3-dimensional (icosahedral) Penrose tilings (for which 
the method of forbidden planes was initially developed). 

Now, one can draw several conclusions from this theory. The main one is 
that (at least in the author's mind ... ) the existence of matching rules is no 
longer mysterious. But this approach solves also a long-standing conjecture 
in this field, which was that matching rules are intrinsically linked with self­
similarity. The case of generalised Ammann tHings shows that this is not the 
case: for almost all cp (along St) and 1/1 (along ~), the quasiperiodic tilings do 
not have any self-similarity property. On the contrary, the real geometric key 
to matching rules seems to reside in non-transversality properties. 

In the present framework, non-transversality is involved in three different 
ways. First, the direction of the cut must be non-transversal to a sufficient 
number of lattice subspaces. This corresponds to the existence of worms and 
is absolutely inherent to this approach. Second, we have described the cut 
through its intersections with fibers (here parallel to E.d which intersect non­
transversally the forbidden planes, so that they are disconnected by these in­
tersections. This allows a straightforward description of the homotopy classes 
of cuts. This context could perhaps be slightly relaxed: in situations where 
there does not exist a common fiber simultaneously non-transversal to all the 
forbidden planes, one could perhaps work with several fibers, each of them 
being non-transversal to a sufficient subset of forbidden planes. 

The third way non-transversality is involved concerns the shape of the atomic 
surfaces: as we have seen, they must be bounded along the intersections of their 
carrier (here E.d with the forbidden planes. This is the second condition to 
get worms, and is also inherent to this approach. In view of the structure 
determination of quasicrystals (which amounts essentially to construct a set of 
atomic surfaces) this constraint is of primary importance. In fact, if you trust 
that matching rules have something to do with real quasicrystals, you can 
restrict your search for atomic surfaces to a limited class of polyhedra, which is 
of course an enormous restriction. Thus, besides its own geometrical interest, 
we may hope that this theory will help solving the structure of quasicrystals. 



MATCHING RULES 

References 

[1) L. S. Levitov, Commun. Math. Phys. 119 (1988 ) 627. 
[2) A. Katz, Commun. Math. Phys. 118 (1988) 263. 
[3) F. Gahler, Journal of Non-Crystalline Solids 153 & 154 (1993) 160. 
[4) J. E. S. Socolar, Commun. Math. Phys. 129 (1990) 599. 
[5) R. Penrose, Mathematical Intelligencer 2 (1979) 32. 
[6) N. G. de Bruijn, Nederl. Akad. Wetensch. Proc. Ser. A 43 (1981) 39. 
[7) H. Bohr, Acta Math. 45 (1924) 29. 
[8) H. Bohr, Acta Math. 46 (1925) 101. 
[9) H. Bohr, Acta Math. 47 (1926) 237. 

189 

(10) A. S. Besicovitch, Almost periodic functions, Cambridge University Press, 
Cambridge, (1932). 

[11) P. Bak, Scripta Met. 20 (1986) 1199. 
[12) A. Janner and T. Janssen, Phys. Rev. B 15 (1977) 643. 
[13) P. M. de Wolff, Acta Cryst. A30 (1974) 777. 
[14) A. Katz and M. Duneau, Journal de Physique 47 (1986) 181. 
[15) C. Oguey, M. Duneau and A. Katz, Commun. Math. Phys. 118 (1988) 99. 
[16) P. Kramer, J. Math. Phys. 29 (1988) 516. 
[17) B. Griinbaum and G. C. Shephard, THings and Patterns, W. H.Freeman, 

San Francisco, (1987) 
[18) Beenker F. P. M., Algebraic theory of non-periodic tHings by two simple 

building blocks: a square and a rhombus (Eindhoven, TH-Report 82-WSK-
04,1982). 

[19) A. Katz and D. Gratias, in Lectures on Quasicrystals (Aussois 1994), 
edited by F. Hippert and D. Gratias, Les Editions de Physique, Paris 
(1994). 

[20] L. Danzer, Discrete Math. 76 (1989) 1. 
(21) P. Stampfli, Helv. Phys. Acta 59 (1986) 1260. 
(22) E. Zobetz, Acta Cryst. A48 (1992) 328. 
[23] J. E. S. Socolar, Phys. Rev. B 39 (1989) 10519. 
(24) R. Klitzing, M. Schlott mann and M. Baake, Int. J. Mod. Phys. B 7 (1993) 

1455. 
(25) R. Klitzing and M. Baake, Journal de Physique I 4 (1994) 893. 
(26) T. Kupke and H. R. Trebin, Journal de Physique I 3 (1993) 564. 
(27) R. Ammann, B. Griinbaum and G. C. Sherphard, Discrete Comput. Geom. 

8 (1992) 1. 
[28) P. A. Kalugin, Europhys. Lett. 9 (1989) 545. 


