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Word:
2 10 1 6 9 8 7 4 5 3
Descents
Peaks
Patterns
Longest increasing
subsequence
RSK

Cycles:
(1,2,10,3)(4,6,8)(5,9)(7)
Total number of cycles
Number of cycles of
length 𝑖
Conjugacy class

Matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Question: we fix the value of a function, we study another.
Example in LIPN: Bassino et al.

• Condition: Separable i.e. 0 occurrence of the patterns 2413 and 3142
• Function to study: Longest increasing subsequence / proportion of
other patterns.
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Cycle Structure and Spectrum
• # total number of cycles
• #𝑖 number of cycles of length 𝑖

If 0 ≤ 𝑝 < 𝑞 and GCD(𝑝,𝑞) = 1, then

Multiplicity of eigenvalue 𝑒
𝑝
𝑞 2𝜋i is ∑

𝑟≥1
#𝑟𝑞(𝜎)

In particular:
#(𝜎) =Multiplicity of eigenvalue 1

Tr(𝜎𝑘) =∑
𝑖|𝑘
𝑖#𝑖(𝜎) and 𝑘#𝑘(𝜎) =∑

𝑖|𝑘
Tr(𝜎𝑖)𝜇(𝑖)

Where 𝜇(𝑖) is theMöbius function defined as:

𝜇(𝑖) =
⎧
⎨
⎩

0 if 𝑖 is divisible by the square of a prime number,
(−1)𝑟 if 𝑖 is the product of 𝑟 distinct prime numbers.
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Conjugacy Classes

The conjugacy class of 𝜎 is {𝜋𝜎𝜋−1,𝜋 ∈𝔖𝑛}.

Theorem
Let 𝜎,𝜌 be two permutations.
There is equivalence between:

• 𝜎 and 𝜌 are in the same conjugacy class
• 𝜎 and 𝜌 have the same cycle structure, i.e., ∀𝑖 ≥ 1, #𝑖(𝜎) = #𝑖(𝜌).
• 𝜎 and 𝜌 have the same spectrum (consideringmultiplicities)
• ∀𝑖 ≥ 1, Tr(𝜎𝑖) = Tr(𝜌𝑖).
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Conjugacy invariant

• Definition: 𝜎𝑛 is conjugacy invariant if for all 𝜌,

𝜌𝜎𝑛𝜌−1
𝑑=𝜎𝑛.

• 𝜎𝑛 is conjugacy invariant if and only if ℙ(𝜎𝑛 =𝜎) is a function of the
cycle structure of 𝜎.

• Example 1: Ewens
ℙ(𝜎𝑛 =𝜎) =

𝜃#𝜎

𝐶𝑛,𝜃
.

• Example 2: Uniform permutation within a conjugacy class.
• Example 3: Uniform Involutions / Derangements.

Morally: Conditioned on the cycle structure, the permutation is chosen
uniformly.
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Descents

We denote by𝐷(𝜎) = {𝑖 ∶ 𝜎(𝑖 +1) < 𝜎(𝑖)}.
We assume that (𝜎𝑛)𝑛≥1 is a sequence of random permutations such that for
all 𝑛, 𝜎𝑛 is conjugacy invariant of size 𝑛.
Furthermore, we suppose that #1𝜎𝑛

𝑛 →𝛼

Theorem (Kim and Lee 2020)
card(𝐷(𝜎𝑛))−

(1−𝛼2)𝑛
2

√𝑛
𝑑−−−−→

𝑛→∞
𝒩(0, 1−4𝛼

3+3𝛼4
12 ).

Goal: prove similar results for other functions.
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Classical Pattern

Let 𝜋 be a permutation of size 𝑘. An occurrence of the (classical) pattern 𝜋 in
a permutation 𝜎 is a vector (𝑖1,⋯,𝑖𝑘)with 𝑖1 <⋯< 𝑖𝑘 such that 𝜎(𝑖1)…𝜎(𝑖𝑘)
has the same relative order as the elements of 𝜋.
Examples:

• For the permutation 𝜎 = 2173456,
the vector (𝑖1, 𝑖2, 𝑖3) = (2,3,7) is an occurrence of the pattern 𝜋 = 132
(176 has the same relative order as 𝜋 = 132.)

• An occurrence of 21 is an inversion.
• An occurrence of 123⋯𝑘 is an increasing subsequence of length 𝑘.
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Vincular Pattern
Definition
Let 𝜋 be a permutation of size 𝑘 and 𝐴 be a subset of [𝑘−1]. An occurrence of
the vincular pattern (𝜋,𝐴) in a permutation 𝜎 is a vector (𝑖1,⋯,𝑖𝑘)with
𝑖1 <⋯< 𝑖𝑘 satisfying:

• (𝑖1,⋯,𝑖𝑘) is an occurrence of the classical pattern 𝜋 in 𝜎.
• For every 𝑠 in 𝐴, 𝑖𝑠+1 = 𝑖𝑠+1.

Examples:
• (𝜋,∅): is the classical pattern 𝜋
• An occurrence of (21, {1}): is a descent
• For the permutation 𝜎 = 2173456, the vector (𝑖1, 𝑖2, 𝑖3) = (2,3,7)

• is an occurrence of the pattern (𝜋 = 132,𝐴 = {1})
• not an occurrence of (𝜋 = 132,𝐴 = {1,2})

Notation:𝔑𝜋,𝐴(𝜎) ∶ pattern counts (number of occurrences of the patterns).
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Uniform case
FixΠ= (𝜋,𝐴), and let 𝑘 be the size of 𝜋.

Theorem (Hofer (2018))
We assume that 𝜎𝑛 uniform of size 𝑛

𝔑Π(𝜎𝑛)−𝔼(𝔑Π(𝜎𝑛))
𝑛𝑘− 1

2−card(𝐴)

𝑑−−−−→
𝑛→∞

𝒩(0,𝜎2
Π).

With
• 𝜎2

Π > 0.

Generalises:
• 𝑘 = 2: Fulman (2004)
• Consecutive: Goldstein (2005)
• Monotone: Bonà (2010)
• Classical: Janson et al. (2015)
• Without positivity: Féray (2013)
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Ewens

Recall: Ewens distribution.

ℙ(𝜎𝑛 =𝜎) =
𝜃#𝜎

𝐶𝑛,𝜃
.

FixΠ= (𝜋,𝐴), and 𝜃 ≥ 0. Let 𝑘 be the size of 𝜋.

Theorem (Féray (2013))
We assume that 𝜎𝑛 follows the Ewens distribution with parameter 𝜃. Then,

𝔑Π(𝜎𝑛)−𝔼(𝔑Π(𝜎𝑛))
𝑛𝑘− 1

2−card(𝐴)

𝑑−−−−→
𝑛→∞

𝒩(0,𝜎2
Π).
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Few cycles
Let 𝜎𝑛 is conjugacy invariant of size 𝑛

Theorem (Kammoun 2020)
We assume that #(𝜎𝑛)

√𝑛
𝑑−−−−→

𝑛→∞
0.

Then, 𝔑
Π(𝜎𝑛)−𝔼(𝔑Π(𝜎𝑛))

𝑛𝑘−
1
2 −card(𝐴)

𝑑−−−−→
𝑛→∞

𝒩(0,𝜎2
Π).

Theorem (Hamaker and Rhoades (2022))
We assume that: for all 𝑖 #𝑖(𝜎𝑛)

𝑑−−−−→
𝑛→∞

0.

Then, 𝔑
Π(𝜎𝑛)−𝔼(𝔑Π(𝜎𝑛))

𝑛𝑘−
1
2 −card(𝐴)

𝑑−−−−→
𝑛→∞

𝒩(0,𝜎2
Π)

If we combine both techniques.

Theorem (Not written anywhere)
We assume that: for all 𝑖 #𝑖(𝜎𝑛)

√𝑛
𝑑−−−−→

𝑛→∞
0.

Then, 𝔑
Π(𝜎𝑛)−𝔼(𝔑Π(𝜎𝑛))

𝑛𝑘−
1
2 −card(𝐴)

𝑑−−−−→
𝑛→∞

𝒩(0,𝜎2
Π)
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Our result
FixΠ= (𝜋,𝐴),

Theorem (Féray and Kammoun (2023))
We assume that 𝜎𝑛 is conjugacy invariant of size 𝑛 and that

#1(𝜎𝑛)
𝑛

𝑑−−−−→
𝑛→∞

𝛼,
#2(𝜎𝑛)
𝑛

𝑑−−−−→
𝑛→∞

𝛽. Then

𝔑Π(𝜎𝑛)−𝔼(𝔑Π(𝜎𝑛))

𝑛𝑘−
1
2 −card(𝐴)

𝑑−−−−→
𝑛→∞

𝒩(0,𝜎2
Π,𝛼𝛽).

Moreover, if 𝐴 =∅, then 𝜎2
Π,𝛼,𝛽 = 0 if and only if (𝛼,𝛽) = (1,0).

Remarks:
• Hofer (2018) implies that 𝜎2

Π,0,0 > 0 for anyΠ.
• It is easy to see that 𝜎2

Π,1,0 = 0 for anyΠ. (Identity)
• 𝜎2

Π,𝛼𝛽 is a polynomial in (𝛼 & 𝛽). (Hamaker and Rhoades (2022))
• Dubach (2024) proved the same result for classical patterns (𝐴 =∅) +
speed of convergence.

Conjecture: for anyΠ, 𝜎2
Π,𝛼,𝛽 = 0 if and only if (𝛼,𝛽) = (1,0).

Questions: for which patterns, 𝜎2
Π,𝛼,𝛽 does not depend on 𝛽 ? (consecutive)? 14 / 37
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Comparison techniques

• Initially for the longest increasing subsequence / RSK (Kammoun
2018).

• Works for other combinatorial structures (coloured permutations,
k-arrangements, etc.)

We give the proof of

Theorem (Kammoun 2020)
We assume that #(𝜎𝑛)

√𝑛
𝑑−−−−→

𝑛→∞
0.

Then, 𝔑
Π(𝜎𝑛)−𝔼(𝔑Π(𝜎𝑛))

𝑛𝑘−
1
2 −card(𝐴)

𝑑−−−−→
𝑛→∞

𝒩(0,𝜎2
Π).
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Simple randomwalk a directed version of the Cayley graph of𝔖𝑛.

Id

(1,2) (4,3)(1,3)

(1,2,3) (1,3,2)

1
31

3

1
3

1
2

1
2

1
2

1
2 1

2

1
2

11

• If we start from any conjugacy invariant measure, the stationary
measure is Ewens with parameter 0.

• In each step,𝔑Π varies at most by 2
𝑘!𝑛

𝑘−card(𝐴)−1.

||𝔑Π(𝜎𝑛)−𝔑Π(𝜎𝑢𝑛𝑖𝑓
𝑛 )|| ≤ ||𝔑Π(𝜎𝑛)−𝔑Π(𝜎𝐸𝑤

0,𝑛 )||+ ||𝔑
Π(𝜎𝐸𝑤

0,𝑛 )−𝔑
Π(𝜎𝑢𝑛𝑖𝑓

𝑛 )||

≤
2
𝑘!
𝑛𝑘−card(𝐴)−1(#𝜎𝑛+#𝜎

𝑢𝑛𝑖𝑓
𝑛⏟⏟⏟⏟⏟⏟⏟

≈log(𝑛)

)

Wewant that ||𝔑Π(𝜎𝑛)−𝔑Π(𝜎𝑢𝑛𝑖𝑓
𝑛 )|| = 𝑜(𝑛𝑘−card(𝐴)− 1

2 ).
It is sufficient that #𝜎𝑛 = 𝑜(√𝑛).
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Weighted dependency graphs

Initially developed by Féray (2018).
Works for other combinatorial structures.
We give a proof of

Theorem (Féray and Kammoun (2023))
We assume that 𝜎𝑛 is conjugacy invariant of size 𝑛 and that

#1(𝜎𝑛)
𝑛

𝑑−−−−→
𝑛→∞

𝛼,
#2(𝜎𝑛)
𝑛

𝑑−−−−→
𝑛→∞

𝛽. Then

𝔑Π(𝜎𝑛)−𝔼(𝔑Π(𝜎𝑛))

𝑛𝑘−
1
2 −card(𝐴)

𝑑−−−−→
𝑛→∞

𝒩(0,𝜎2
Π,𝛼𝛽).
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Cumulants
Definition

𝜅𝑟(𝑋1,…,𝑋𝑟) = [𝑡1𝑡2⋯𝑡𝑟] log(E(e∑
𝑛
𝑗=1 𝑡𝑗𝑋𝑗 ))

For simplicity, we write 𝜅𝑟(𝑋) ∶= 𝜅𝑟(𝑋,⋯,𝑋).

• 𝑋 ∼𝒩(𝑚,𝜎2) if and only if for all 𝑟 ≥ 3, 𝜅𝑟(𝑋) = 0
• If 𝑋1 and 𝑋2 are independent, then 𝜅𝑟(𝑋1+𝑋2) = 𝜅𝑟(𝑋1)+𝜅𝑟(𝑋2)
• 𝜅𝑟(𝑋 +𝐶) = 𝜅𝑟(𝑋) if 𝑟 ≥ 2
• 𝜅𝑟(𝛼𝑋) = 𝛼𝑟𝜅𝑟(𝑋)
• If {𝑋1,…𝑋𝑖} and {𝑌𝑖+1,…𝑌𝑟} are independent (and non-empty), then

𝜅𝑟(𝑋1,…,𝑋𝑖,𝑌𝑖+1,…,𝑌𝑟) = 0

Proof of the CLT For 𝑟 ≥ 3

𝐾𝑟 (
∑𝑛

𝑖=1𝑋𝑖−𝑛𝔼(𝑋1)

√𝑛
) = 𝐾𝑟 (

∑𝑛
𝑖=1𝑋𝑖

√𝑛
) =

1
𝑛 𝑟

2

𝑛

∑
𝑖=1

𝜅𝑟(𝑋𝑖) =
𝑛
𝑛 𝑟

2
𝜅𝑟(𝑋1) = 𝑜(1)
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Weak dependency

• If {𝑋1,…,𝑋𝑟} are "weakly dependent", then 𝜅𝑟(𝑋1,…,𝑋𝑟) ≈ 0.
• Dependency graphs: a graph with weights on the edges. Vertices are
indexed by random variables, and weights measure the "dependency".

• If the weights are sufficiently "small", we have a CLT for the sum of the
variables.

20 / 37
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Uniform Permutation

• Example: 𝜎𝑛 is uniform and 𝐴𝑖,𝑗 = 1[𝜎𝑛(𝑖) = 𝑗].
• If 𝑖 ≠ 𝑗 and 𝑘 ≠𝑚, then

𝔼(𝐴𝑖,𝑘𝐴𝑗,𝑚) =
1

𝑛(𝑛−1)
≈

1
𝑛2 = 𝔼(𝐴𝑖,𝑘)𝔼(𝐴𝑗,𝑚).

• if 𝑘 ≠𝑚, then 𝔼(𝐴𝑖,𝑘𝐴𝑖,𝑚) = 0 and 𝔼(𝐴𝑖,𝑘)𝔼(𝐴𝑗,𝑚) = 1
𝑛2 .

For any𝑈 = (𝑖ℓ, 𝑗ℓ)1≤ℓ≤𝑟, let 𝐺(𝑈), be the complete graph with vertices𝑈 and

the weight of ((𝑖, 𝑗), (𝑘,𝑙)) is
⎧
⎨
⎩

1 if 𝑖 = 𝑘 or 𝑗 = 𝑙
1
𝑛 otherwise.

For example, if𝑈 = ((1,4), (1,2), (4,3), (1,2)), 𝐺(𝑈)

(1, 2)

(1, 4)

(4, 3)1
𝑛

1
𝑛

1
𝑛

1
𝑛

1
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Uniform Permutation

Theorem (Féray 2018)
For all 𝑟 ≥ 1, there exists 𝐶𝑟 such that: For all integers 𝑛, for all𝑈 = (𝑖ℓ, 𝑗ℓ)1≤ℓ≤𝑟

𝜅𝑟(𝐴𝑖1,𝑗1 ,…,𝐴𝑖𝑟,𝑗𝑟 ) ≤ 𝐶𝑟M(U)𝑛−card(𝑈)

where
• 𝑀(𝑈) is the maximumweight of a spanning tree of 𝐺(𝑈).
• card(𝑈) is the number of distinct elements in𝑈.

For example, if𝑈 = ((1,4), (1,2), (4,3), (1,2)), 𝐺(𝑈) =

(1, 2)

(1, 4)

(4, 3)1
𝑛

1
𝑛

1
𝑛

1
𝑛

1
For all 𝑛, 𝜅𝑟(𝐴1,4,𝐴1,2,𝐴4,3,𝐴1,2)) ≤ 𝐶4

1
𝑛𝑛

−3 =𝐶4𝑛−4
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New graphs

• 𝐺 1(𝑈), the complete graph with vertices𝑈 and the weight of
((𝑖, 𝑗), (𝑘,𝑙)) is 1 if 𝑖 = 𝑘 or 𝑗 = 𝑙 or 𝑖 = 𝑗 or 𝑘 = 𝑙, and 1

𝑛 otherwise.

For example, if𝑈 = ((1,4), (1,2), (4,3), (1,2)), 𝐺 1(𝑈) =

(1, 2)

(1, 4)

(4, 3)

1

1
𝑛

1

• 𝐺 2(𝑈) ∶= ([𝑛],𝐸 =𝑈)

For example, if𝑈 = ((1,4), (1,2), (4,3), (1,2)), 𝐺 2(𝑈) = 1

2

3

4

23 / 37



Definitions Results Proofs Universality (Aléa days)

Uniform Permutation within a Conjugacy Class
𝜎𝜆
𝑛 is uniformwithin the conjugacy class 𝜆 and 𝐴𝑖,𝑗 = 1[𝜎𝜆

𝑛(𝑖) = 𝑗].

Theorem (Féray and Kammoun 2023)
For all 𝑟 ≥ 1, there exists 𝐶𝑟 such that: For all integers 𝑛, for all𝑈 = (𝑖ℓ, 𝑗ℓ)1≤ℓ≤𝑟

𝜅𝑟(𝐴𝑖1,𝑗1 ,…,𝐴𝑖𝑟,𝑗𝑟 ) ≤ 𝐶𝑟M(U)𝑛𝐶𝐶(𝑈)−card(𝑈)

where
• 𝑀(𝑈) is the maximumweight of a spanning tree of 𝐺 1(𝑈), the complete
graph with vertices𝑈 and the weight of ((𝑖, 𝑗), (𝑘,𝑙)) is 1 if 𝑖 = 𝑘 or 𝑗 = 𝑙 or
𝑖 = 𝑗 or 𝑘 = 𝑙, and 1

𝑛 otherwise.
• card(𝑈) is the number of distinct elements in𝑈.
• 𝐶𝐶(𝑈) the number of nontrivial connected components in the graph

𝐺 2(𝑈) = ([𝑛],𝐸 =𝑈)
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Application: Patterns

If we denote by 𝑋 (𝜋,𝐴) the number of occurrences of the pattern (𝜋,𝐴), we
have

𝑋 (𝜋,𝐴)(𝜎𝜆
𝑛) = ∑

𝑖1<⋯<𝑖𝑘
𝑖𝑠+1=𝑖𝑠+1 for 𝑠∈𝐴

∑
𝑗1,…,𝑗𝑘

𝑗𝜋−1(1)<⋯<𝑗𝜋−1(𝑘)

𝐴𝑖1,𝑗1⋯𝐴𝑖𝑘,𝑗𝑘 .

To conclude: Themagic of weighted dependency graphs: We can "easily"
move from controllingmixed cumulants of {𝐴𝑖,𝑗 ∶ (𝑖, 𝑗) ∈ [𝑛]2} to controlling
mixed cumulants of {𝐴𝑖1,𝑖2⋯𝐴𝑖𝑟,𝑗𝑟 ∶ (𝑖1, 𝑗1,…,𝑖𝑟, 𝑗𝑟) ∈ [𝑛]2𝑟}.
We obtain

𝜅𝑟(𝑋 (𝜋,𝐴)(𝜎𝜆
𝑛)) ≤ 𝐶𝑘,𝑟𝑛𝑟(𝑘−card(𝐴)−1)+1,

and thus
𝜅𝑟 (

𝑋 (𝜋,𝐴)(𝜎𝜆
𝑛)−𝔼(𝑋 (𝜋,𝐴)(𝜎𝜆

𝑛))
𝑛𝑘−card(𝐴)− 1

2
) ≤ 𝐶𝑘,𝑟𝑛1− 𝑟

2
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Motivation: universality

Central Limit Theorem
Let 𝑋1,𝑋2,…,𝑋𝑛 be i.i.d with Var(𝑋𝑖) = 𝜎2 <+∞. Then,

√𝑛(
1
𝑛

𝑛

∑
𝑖=1

𝑋𝑖−𝔼(𝑋1))
𝑑−→𝒩(0,𝜎2)

.

The limit is universal (does not depend on the distribution of 𝑋𝑖).

Symmetry/independence + control = universality
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Fisher-Tippett-Gnedenko Theorem

Let 𝑋1,𝑋2,…,𝑋𝑛 be i.i.d and𝑀𝑛 =max(𝑋1,𝑋2,…,𝑋𝑛).
Suppose there exist constants 𝑎𝑛 > 0 and 𝑏𝑛 such that, for every real 𝑥,

ℙ(
𝑀𝑛−𝑏𝑛

𝑎𝑛
≤ 𝑥)→𝐺(𝑥)

where 𝐺(𝑥) is a non-degenerate cumulative distribution function. Then, 𝐺 is
the cumulative distribution function of a Gumbel, Fréchet, or Weibull
variable.
The limit fluctuations depend on the tail of the distribution of 𝑋1.

Symmetry/Independence + Control = Universality
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WignerMatrices

Let’s define the symmetric matrix𝑀 as

𝑀 =
1
√𝑛

⎡
⎢⎢⎢⎢
⎣

𝑎1,1 𝑎1,2 … … 𝑎1,𝑛
𝑎1,2 𝑎2,2 … … 𝑎2,𝑛
⋮ ⋮ ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮
𝑎1,𝑛 𝑎2,𝑛 … … 𝑎𝑛,𝑛

⎤
⎥⎥⎥⎥
⎦

The entries {𝑎𝑖,𝑗}1≤𝑖≤𝑗≤𝑛 are i.i.d. such that 𝔼(𝑎1,1) = 0 and 𝔼(𝑎2
1,1) = 1.

Let 𝜆1 ≤ 𝜆2 ≤…≤𝜆𝑛 be the eigenvalues of𝑀.
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Histogram of Eigenvalues

Gaussian entries Entries 1 or −1
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Wigner’s theorem

"The histogram of eigenvalues is not far from a semi-circle"

Theorem
The empirical spectral measure of the eigenvalues of𝑀

1
𝑛

𝑛

∑
𝑖=1

𝛿𝜆𝑖 ,

converges weakly to the semi-circular law of Wigner as 𝑛 tends to infinity.
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But also*,
• The largest eigenvalue converges to 2
• The fluctuations of the largest eigenvalue are of Tracy-Widom type
• Large deviations of the largest eigenvalues are universal
• The joint limit fluctuations of the first 𝑘 eigenvalues are universal
• The local limit laws are universal
• The fluctuations of the number of points in [a,b] are universal

And for random permutations?

*Some conditions apply on themoments / the tail of the distribution
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Longest Decreasing Subsequence

• (𝜎(𝑖1),…,𝜎(𝑖𝑘)) is a decreasing subsequence of 𝜎 if 𝑖1 < 𝑖2 <⋯< 𝑖𝑘 and
𝜎(𝑖1) >⋯>𝜎(𝑖𝑘).

• LDS(𝜎): The length of the longest decreasing subsequence of 𝜎.
• Example:

𝜎 = (1 2 3 4 5 6 7 8
6 1 8 7 5 2 4 3)

LDS(𝜎) = 5.
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Longest Decreasing Subsequence: Universality

We assume that 𝜎𝑛 is conjugation invariant and #1(𝜎𝑛)
𝑛 →𝛼

Theorem (Dubach
(2024+))

LDS(𝜎𝑛)
√𝑛

𝑑−−−−→
𝑛→∞

2√1−𝛼

Theorem (Kammoun 2018)
If
𝑛

−1
6 min1≤𝑖≤𝑛 ((∑𝑖

𝑗=1 #𝑗(𝜎𝑛))+
√𝑛
𝑖 ∑𝑛

𝑗=𝑖+1 #𝑗(𝜎𝑛))
ℙ−−−−→

𝑛→∞

0, then, LDS(𝜎𝑛)−2√𝑛
6√𝑛

𝑑−−−−→
𝑛→∞

TracyWidom
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Theorem (Guionnet, Kammoun 2023)
If 𝜎𝑛 is conjugacy invariant and #(𝜎𝑛) = 𝑜(√𝑛). Then,
LDS(𝜎𝑛)
√𝑛 satisfies a LD principle

• with speed √𝑛 and rate function 𝐽𝐿𝐷𝑆, 12 .
• with speed 𝑛 and rate function 𝐽𝐿𝐷𝑆,1

With,

𝐽𝐿𝐷𝑆, 12 (𝑥) =
⎧
⎨
⎩

2𝑥cosh−1 𝑥
2 if 𝑥 > 2

+∞ if 𝑥 ≤ 2
.

𝐽𝐿𝐷𝑆,1(𝑥) =
⎧⎪
⎨
⎪
⎩

−1+ 𝑥2
4 +2 ln (

𝑥
2 )− (2+

𝑥2
2 ) ln (

2𝑥2
4+𝑥2 ) if 0 < 𝑥 ≤ 2

0 if 𝑥 > 2
+∞ if 𝑥 ≤ 0

.
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In other words: if 𝜎𝑛 is conjugation invariant and #(𝜎) "is low" then

− log(ℙ(
LDS(𝜎𝑛)
√𝑛

≈ 𝑥)) ≈

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

(−1+ 𝑥2
4 +2 ln (

𝑥
2 )− (2+

𝑥2
2 ) ln (

2𝑥2
4+𝑥2 ))𝑛 if 𝑥 ∈]0,2[]

2𝑥cosh−1 ( 𝑥2 ) √𝑛 if 𝑥 > 2
+∞ if 𝑥 ≤ 0
0 if 𝑥 = 2

.

The same phenomenon appears for 𝜆1 (Wigner Matrices).
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What we know
Type 1: Local events
• ℙ(𝑆 ⊂𝐷(𝜎))

• ℙ(𝜎(10) > 10)

Type 2: LLN / first order /
global convergence

• 𝔑Π

𝑛𝑘−card(𝐴)

• LDS
√𝑛

The limit depends only on #1
𝑛

Type 3: fluctuations (Poisson /
Normal)
• Tr((𝜎𝑛𝜌𝑛𝜋𝑛𝜎−1

𝑛 𝜌−1𝑛 𝜋𝑛)2024)

• 𝔑Π−𝔼(𝔑Π)
𝑛𝑘−card(𝐴)− 1

2

The limit depends on #1
𝑛 and #2

𝑛𝛼 for
some 𝛼

Type 4: others

• LDS−2√𝑛

𝑛
1
6

• Large deviations.
Universality if # is low.
There is still much work to be
done.
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