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Introduction

@ Renormalization <> physics, combinatorics, algebra, number
theory,...

@ Particles physics described by renormalizable quantum field
theory (Standard Model).

@ Interpretation: physical constants depend on the observation
scale.
Noncommutative space:

@ definition of a new class of renormalization group (harmonic
term).

@ Topical problem of physics: compatibility between quantum
physics and general relativity.

= At high energy scale, space-time could be noncommutative.

— Existence of renormalizable noncommutative QFT is a crucial
question.



@ Commutative scalar theory



@ Commutative scalar theory

© Power counting



@ Commutative scalar theory
© Power counting

© Renormalization



Commutative scalar theor counting normalization Hopf algebra

mmutative QFT

@ Commutative scalar theory
© Power counting
© Renormalization

@ Hopf algebra interpretation



Commutative scalar theor counting normalization Hopf algebra

mmutative QFT

@ Commutative scalar theory
© Power counting
© Renormalization
@ Hopf algebra interpretation

e Noncommutative QFT



Commutative scalar theory
@0

Definition of the theory

@ Action with parameters m and \:

2
Stél = [ Px(5(0u07 + -0+ 10%)



Commutative scalar theory
@0

Definition of the theory

@ Action with parameters m and \:
p_ 1 2 M 4
SIgl = [ dPx(5(0u0) + -6 + 1 6*)

@ Feynman graphs: arbitrary graphs whose vertices are of
coordination 4 (internal) or 1 (external).



Commutative scalar theory
@0

Definition of the theory

@ Action with parameters m and \:
p_ 1 2 M 4
SIgl = [ dPx(5(0u0) + -6 + 1 6*)

@ Feynman graphs: arbitrary graphs whose vertices are of
coordination 4 (internal) or 1 (external).

@ 1Pl graphs: connected and still connected after cutting any
internal line.



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT
0 000 00 00000

Definition of the theory

@ Action with parameters m and \:

2
Stél = [ Px(5(0u07 + -0+ 10%)

@ Feynman graphs: arbitrary graphs whose vertices are of
coordination 4 (internal) or 1 (external).
@ 1Pl graphs: connected and still connected after cutting any
internal line.
Amplitudes of the graphs:
@ Each line carries an oriented impulsion k € RP.



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT
0 000 00 00000

Definition of the theory

@ Action with parameters m and \:

2
Stél = [ Px(5(0u07 + -0+ 10%)

@ Feynman graphs: arbitrary graphs whose vertices are of
coordination 4 (internal) or 1 (external).
@ 1Pl graphs: connected and still connected after cutting any
internal line.
Amplitudes of the graphs:
@ Each line carries an oriented impulsion k € RP.
@ Conservation of impulsion for every vertex.



Commutative scalar theory Power counting Renormalization Hopf algebra >mmutative QF T

o0

Definition of the theory

@ Action with parameters m and \:

2
Stél = [ Px(5(0u07 + -0+ 10%)

@ Feynman graphs: arbitrary graphs whose vertices are of
coordination 4 (internal) or 1 (external).

@ 1Pl graphs: connected and still connected after cutting any
internal line.

Amplitudes of the graphs:
@ Each line carries an oriented impulsion k € RP.
@ Conservation of impulsion for every vertex.

@ Remaining internal impulsions are integrated over in the
amplitude.



Commutative scalar theory Power counting Renormalization Hopf algebra >mmutative QF T

o0

Definition of the theory

@ Action with parameters m and \:

2
Stél = [ Px(5(0u07 + -0+ 10%)

@ Feynman graphs: arbitrary graphs whose vertices are of
coordination 4 (internal) or 1 (external).

@ 1Pl graphs: connected and still connected after cutting any
internal line.

Amplitudes of the graphs:

@ Each line carries an oriented impulsion k € RP.

@ Conservation of impulsion for every vertex.

@ Remaining internal impulsions are integrated over in the
amplitude.
Contribution of a vertex: A.



Commutative scalar theory Power counting Renormalization Hopf algebra >mmutative QF T

o0

Definition of the theory

@ Action with parameters m and \:

2
Stél = [ Px(5(0u07 + -0+ 10%)

@ Feynman graphs: arbitrary graphs whose vertices are of
coordination 4 (internal) or 1 (external).

@ 1Pl graphs: connected and still connected after cutting any
internal line.

Amplitudes of the graphs:
@ Each line carries an oriented impulsion k € RP.
@ Conservation of impulsion for every vertex.
@ Remaining internal impulsions are integrated over in the
amplitude.
Contribution of a vertex: A.
Contribution of an internal line: -—;.
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Physical quantities

@ Physical quantities: correlation functions
In(pis-- -, pn): sum of the amplitudes of all 1Pl Feynman
graphs with N external legs carying the impulsions p;.

@ Particles interpretation: Feynman graphs represent particles of
a certain impulsion propagating along the lines and interacting
at the vertices.

@ Some coefficients of A are divergent. Example: the tadpole.

1
o, Y
/d kk2+m2

is quadratically divergent for D = 4 in the UV sector
(Ik] = o).
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Superficial degree of divergence

Let G be a 1Pl Feynman graph with V vertices, L loops and N
external legs.
@ Amplitude:

L
Ac(p1; -, Pn) = 5(P1+--+PN)/Hdk/ Ic(p2; -, PN, k1, ., ki)
i=1

@ Euler characteristic = L=V +1 — g
@ Scale transformation: p; — pp; and k; — pk;

A(é)) X p“’(G).

@ Superficial degree of divergence of the theory:

w(G)=D+(D~4)V +(2- D).
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Renormalizability

A graph G is said primitively divergent if w(G) > 0.

Theorem

The amplitude of a graph G is absolutely convergent if and only if
G and each of its 1Pl subgraphs are not primitively divergent.

W(G) =D+ (D—4)V +(2— D)g.

@ D >4: VN, 3V, w(G) > 0: non-renormalizable.

e D < 4: finite number of (N, V) such that w(G) > 0:
super-renormalizable.

@ D=4 N=2,4 & w(G) > 0: renormalizable.
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Subtraction scheme

@ Dimensional regularization: analytic continuation D € C.
Singularity of the amplitudes for D = 4.

@ Subtraction operator: Taylor
w(C) j

TAG(pla . 7,DN) - 6 P1+ +PN Z TaF oy tPN)|t:0
0

@ G: prim. div. graph without prim. div. subgraph

AZ = (1 — 7)Ag: renormalized amplitude



Renormalization
(o] le}

General formula

e Contracted graph: let g be a subgraph of G. G/g: graph G
where g is contracted to a point.



Renormalization
(o] le}

General formula

e Contracted graph: let g be a subgraph of G. G/g: graph G
where g is contracted to a point.

@ G: graph with only one prim. div. subgraph g

AR = Ag — TAc — (TAg)(AG/e — TAG/g)



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

(o] e}

General formula

e Contracted graph: let g be a subgraph of G. G/g: graph G
where g is contracted to a point.

@ G: graph with only one prim. div. subgraph g

AR = Ag — TAc — (TAg)(AG/e — TAG/g)

@ General case:

AG =Ac —TAc — Y _(TAAS ),
gCcG

where g is sumed over the 1P| prim. div. subgraphs of G.



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

(o] e} 0C 00000

General formula

e Contracted graph: let g be a subgraph of G. G/g: graph G
where g is contracted to a point.

@ G: graph with only one prim. div. subgraph g

AR = Ag — TAc — (TAg)(AG/e — TAG/g)

@ General case:

AG =Ac —TAc — Y _(TAAS ),
gCcG

where g is sumed over the 1P| prim. div. subgraphs of G.

— Recursive method.



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

(o] e} 0C 00000

General formula

e Contracted graph: let g be a subgraph of G. G/g: graph G
where g is contracted to a point.

@ G: graph with only one prim. div. subgraph g

AR = Ag — TAc — (TAg)(AG/e — TAG/g)

@ General case:

AG =Ac —TAc — Y _(TAAS ),
gCG
where g is sumed over the 1P| prim. div. subgraphs of G.
— Recursive method.

@ Solution of the recursive equations: forest formula (zimmermann).
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@ Locality: All the divergent counterterms cc = Ag — A’g are of
the form of the action, so that they can be included in the
constants: A — Ag, m+— mg...

@ The correlation function 'y(p1,. .., pn) is the sum of the
renormalized amplitudes of all 1Pl Feynman graphs with N
external legs carying the impulsions p; for the renormalized
constants.
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BPHZ renormalization
Properties:

@ The renormalized amplitudes are convergent for D — 4.

@ Locality: All the divergent counterterms cc = Ag — A’g are of
the form of the action, so that they can be included in the
constants: A — Ag, m+— mg...

@ The correlation function 'y(p1,. .., pn) is the sum of the
renormalized amplitudes of all 1Pl Feynman graphs with N
external legs carying the impulsions p; for the renormalized
constants.

— experimental verification.
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Empty graph=1 (unit).
@ Product u: (disconnected) juxtaposition of graphs.
— H: generated algebra. Graded by number of loops.
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Hopf algebra of graphs

@ Complex vector space associated to 1Pl Feynman graphs.
Empty graph=1 (unit).
@ Product u: (disconnected) juxtaposition of graphs.
— H: generated algebra. Graded by number of loops.
e Counit is trivial: ¢ : H — C, ¢(1) = 1.
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Hopf algebra of graphs

@ Complex vector space associated to 1Pl Feynman graphs.
Empty graph=1 (unit).

@ Product u: (disconnected) juxtaposition of graphs.
— H: generated algebra. Graded by number of loops.

e Counit is trivial: ¢ : H — C, g(1) =1,

@ Coproduct: A H —>HRIH

AG=GR1+1R®G+ Y g®G/g
gCcG

where the sum is over the 1Pl prim. div. subgraphs g of G.
e Antipode: 5(G) =—-G -3, 5(g)(G/g), S(1) =1

Theorem (Connes Kreimer)

Endowed with the coproduct A, H is a graded Hopf algebra.
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o Amplitude A : H — A, is a homomorphism.
@ Taylor operator is a projection 7 : A — A..
e Convolution product: if f,g € Hom(H, A.),

frg:=pao(fog)ol

@ Counterterm: twisted antipode

cG = —T(AG + Z Cg AG/g)
gCG
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Renormalized amplitudes

A algebra of Laurent series in ¢.

Amplitude A : H — A, is a homomorphism.
Taylor operator is a projection 7 : A. — A..
Convolution product: if f, g € Hom(H, A.),

"]
"]
"]
"]

frg:=pao(fog)ol

@ Counterterm: twisted antipode

cG = —T(AG + Z Cg AG/g)
gCG

Renormalized amplitude:

AR = (c x A)(G).
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The Moyal space

@ Space of Schwartz functions f,g € S(RP,C).
@ Deformed product:

(+8)0) = g5 [ 4°9dPz Flx + y)al+ 2)e 20

@ For 0 =0: (f xg)(x) = f(x)-g(x).
@ Extension to the multiplier algebra: M.

[+e)= [(re)

@ Tracial property:
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@ Feynman rules: \ — \e'2 (PO p2+p1O~ p3+p207" p3)

@ UV-IR mixing for this theory (Minwalia et a1 "00).
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UV-IR mixing

e Action ¢* on the Moyal space:

2
St61 = [ dOx(5(0:0 + 3-8 + Airo)

.92 1 1 1
@ Feynman rules: \ — \e'2 (PO p2+p1O~ p3+p207" p3)

@ UV-IR mixing for this theory (Minwalia et a1 "00).

_p@"_

ik©p 1
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/\/d kk2+ m2 Xlpl—=0 922

o Tadpole:

— Non-renormalizability of the theory.



Noncommutative QFT
00e00

Harmonic solution

@ Addition of a harmonic term to the action:

2 2
S[qb]:/ x(3(@u8f + 5+ T+ Abxbx %),



Noncommutative QFT
00e00

Harmonic solution

@ Addition of a harmonic term to the action:

2 2
S[qb]:/ x(3(@u8f + 5+ T+ Abxbx %),

@ Power counting (D = 4: renormalizable).



Commutative scalar theor Power counting Renormalization Hopf algebra Noncommutative QFT
00000

Harmonic solution

@ Addition of a harmonic term to the action:

2 2
S[¢]=/ x(3(@u8f + 5+ T+ Abxbx %),

@ Power counting (D = 4: renormalizable).

e Form of the counterterms (structure of the Moyal product).
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= Renormalizability of the theory to all orders (D = 2, 4)

(Grosse Wulkenhaar '04).
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@ Power counting (D = 4: renormalizable).
e Form of the counterterms (structure of the Moyal product).

= Renormalizability of the theory to all orders (D = 2, 4)
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o NeW properties Of the ﬂOW (Disertori Gurau Magnen Rivasseau '06).
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Harmonic solution

@ Addition of a harmonic term to the action:

2 2
Stél = [ dPx(5(0,07 + 520 + - 4 Mg 65 6w ).

@ Power counting (D = 4: renormalizable).
e Form of the counterterms (structure of the Moyal product).

= Renormalizability of the theory to all orders (D = 2, 4)

(Grosse Wulkenhaar '04).
o New properties of the flow (Disertori Gurau Magnen Rivasseau '06).

@ Vacuum of the theory (ac. Tanasa Wallet ‘0s).
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Harmonic solution

@ Addition of a harmonic term to the action:

2 2
Stél = [ dPx(5(0,07 + 520 + - 4 Mg 65 6w ).

@ Power counting (D = 4: renormalizable).
e Form of the counterterms (structure of the Moyal product).

= Renormalizability of the theory to all orders (D = 2, 4)

(Grosse Wulkenhaar '04).
o NeW properties Of the ﬂOW (Disertori Gurau Magnen Rivasseau '06).
@ Vacuum of the theory (ac. Tanasa Wallet ‘0s).

@ Interprétation of the action with a deformation of a
SUPErspace (Bieliavsky A.G. Tuynman '10).
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Harmonic solution

@ Addition of a harmonic term to the action:

2 2
Stél = [ dPx(5(0,07 + 520 + - 4 Mg 65 6w ).

@ Power counting (D = 4: renormalizable).
e Form of the counterterms (structure of the Moyal product).

= Renormalizability of the theory to all orders (D = 2, 4)

(Grosse Wulkenhaar '04).
o NeW properties Of the ﬂOW (Disertori Gurau Magnen Rivasseau '06).
@ Vacuum of the theory (ac. Tanasa Wallet ‘0s).

@ Interprétation of the action with a deformation of a
SUPErspace (Bieliavsky A.G. Tuynman '10).

(] Gauge model (A.G. Wallet Wulkenhaar '07).
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e Addition of the term 1/p? in the action:

5161 = Sl61 + [ 4°p g d(-p)3p)
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@ Power counting (D = 4: renormalizable).
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= Renormalizability of the theory to all orders (D = 4)
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Solution with 1/p?

e Addition of the term 1/p? in the action:

5161 = Sl61 + [ 4°p g d(-p)3p)

@ Power counting (D = 4: renormalizable).
@ Form of the counterterms (structure of the Moyal product).

= Renormalizability of the theory to all orders (D = 4)

(Gurau Magnen Rivasseau Tanasa '09).

@ Invariance under translations.
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Solution with 1/p?

e Addition of the term 1/p? in the action:

5161 = Sl61 + [ 4°p g d(-p)3p)

@ Power counting (D = 4: renormalizable).
@ Form of the counterterms (structure of the Moyal product).

= Renormalizability of the theory to all orders (D = 4)

(Gurau Magnen Rivasseau Tanasa '09).
@ Invariance under translations.

@ Same properties of the flow as in the commutative theory.
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Solution with 1/p?

e Addition of the term 1/p? in the action:

5161 = Sl61 + [ 4°p g d(-p)3p)

@ Power counting (D = 4: renormalizable).
@ Form of the counterterms (structure of the Moyal product).

= Renormalizability of the theory to all orders (D = 4)

(Gurau Magnen Rivasseau Tanasa '09).
@ Invariance under translations.
@ Same properties of the flow as in the commutative theory.

("] Ga uge model (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).
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Conclusion

@ Ingredients of the renormalization: power counting and
locality.
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@ Noncommutative field theory exhibits a new divergence:
UV-IR mixing.
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Conclusion

@ Ingredients of the renormalization: power counting and
locality.

@ BPHZ subtraction scheme has a Hopf algebra structure.

@ Noncommutative field theory exhibits a new divergence:
UV-IR mixing.

@ First solution: with harmonic term. It defines a new class of
renormalization group.
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Conclusion

@ Ingredients of the renormalization: power counting and
locality.

@ BPHZ subtraction scheme has a Hopf algebra structure.

@ Noncommutative field theory exhibits a new divergence:
UV-IR mixing.

@ First solution: with harmonic term. It defines a new class of
renormalization group.

@ Second solution: with term 1/p?. Translation-invariant but
same properties as in the commutative theory.
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