Combinatorial aspects of renormalization in QFT

Axel de Goursac

Université Catholique de Louvain

Paris, March 29, 2011

- Renormalization ↔ physics, combinatorics, algebra, number theory,...
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.
- ⇒ At high energy scale, space-time could be noncommutative
- → Existence of renormalizable noncommutative QFT is a crucial

- Renormalization ↔ physics, combinatorics, algebra, number theory,...
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.
- ⇒ At high energy scale, space-time could be noncommutative.
- → Existence of renormalizable noncommutative QFT is a crucial question

- Renormalization ↔ physics, combinatorics, algebra, number theory,...
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.
- ⇒ At high energy scale, space-time could be noncommutative.
- → Existence of renormalizable noncommutative QFT is a crucial question

- Renormalization ↔ physics, combinatorics, algebra, number theory,...
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.
- ⇒ At high energy scale, space-time could be noncommutative
- → Existence of renormalizable noncommutative QFT is a crucial

- Renormalization ↔ physics, combinatorics, algebra, number theory,...
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.
- ⇒ At high energy scale, space-time could be noncommutative
- → Existence of renormalizable noncommutative QFT is a crucial question

- Renormalization ↔ physics, combinatorics, algebra, number theory,...
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.
- ⇒ At high energy scale, space-time could be noncommutative.
- ightarrow Existence of renormalizable noncommutative QFT is a crucial question.

- Renormalization ↔ physics, combinatorics, algebra, number theory,...
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.
- ⇒ At high energy scale, space-time could be noncommutative.
- ightarrow Existence of renormalizable noncommutative QFT is a crucial question.

- Renormalization ↔ physics, combinatorics, algebra, number theory,...
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.
- ⇒ At high energy scale, space-time could be noncommutative.
- ightarrow Existence of renormalizable noncommutative QFT is a crucial question.

- 1 Commutative scalar theory
- 2 Power counting
- Renormalization
- 4 Hopf algebra interpretation
- Noncommutative QFT

- 1 Commutative scalar theory
- 2 Power counting
- 3 Renormalization
- 4 Hopf algebra interpretation
- Noncommutative QFT

- 1 Commutative scalar theory
- 2 Power counting
- Renormalization
- 4 Hopf algebra interpretation
- 5 Noncommutative QFT

- 1 Commutative scalar theory
- 2 Power counting
- Renormalization
- 4 Hopf algebra interpretation
- 5 Noncommutative QFT

- 1 Commutative scalar theory
- 2 Power counting
- Renormalization
- 4 Hopf algebra interpretation
- Sometime State State

• Action with parameters m and λ :

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu \phi)^2 + rac{ extbf{m}^2}{2}\phi^2 + \lambda\,\phi^4ig)$$

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: λ.
- Contribution of an internal line:
 \[\frac{1}{k^2 + m^2} \ \ \dots \ \delta \ \delta \ \delta \ \delta \ \delta \ \ \delta \ \d

• Action with parameters m and λ :

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu \phi)^2 + rac{ extbf{m}^2}{2}\phi^2 + \lambda\,\phi^4ig)$$

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: λ
- Contribution of an intern

• Action with parameters m and λ :

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu \phi)^2 + rac{ extbf{m}^2}{2}\phi^2 + \lambda\,\phi^4ig)$$

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: λ

• Action with parameters m and λ :

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu \phi)^2 + rac{ extbf{m}^2}{2}\phi^2 + \lambda\,\phi^4ig)$$

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex.
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: λ .

• Action with parameters m and λ :

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu \phi)^2 + rac{ extbf{m}^2}{2}\phi^2 + \lambda\,\phi^4ig)$$

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex.
- Remaining internal impulsions are integrated over in the
- Contribution of an internal line: $\frac{1}{k^2+m^2}$.

• Action with parameters m and λ :

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu \phi)^2 + rac{ extbf{m}^2}{2}\phi^2 + \lambda\,\phi^4ig)$$

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex.
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: λ .

• Action with parameters m and λ :

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu \phi)^2 + rac{ extbf{m}^2}{2}\phi^2 + \lambda\,\phi^4ig)$$

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex.
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: λ .
- Contribution of an internal line: $\frac{1}{k^2+m^2}$.

• Action with parameters m and λ :

$$\mathcal{S}[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu \phi)^2 + rac{ extbf{m}^2}{2}\phi^2 + \lambda\,\phi^4ig)$$

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex.
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: λ.
- Contribution of an internal line: $\frac{1}{k^2+m^2}$.

Physical quantities

- Physical quantities: correlation functions $\Gamma_N(p_1, \ldots, p_N)$: sum of the amplitudes of all 1PI Feynman graphs with N external legs carying the impulsions p_i .
- Particles interpretation: Feynman graphs represent particles of a certain impulsion propagating along the lines and interacting at the vertices.
- ullet Some coefficients of λ are divergent. Example: the tadpole

$$\int d^D k \frac{1}{k^2 + m^2}$$

is quadratically divergent for D=4 in the UV sector $(|k| \to \infty)$.

Physical quantities

- Physical quantities: correlation functions $\Gamma_N(p_1, \ldots, p_N)$: sum of the amplitudes of all 1PI Feynman graphs with N external legs carying the impulsions p_i .
- Particles interpretation: Feynman graphs represent particles of a certain impulsion propagating along the lines and interacting at the vertices.
- ullet Some coefficients of λ are divergent. Example: the tadpole.

$$\int d^D k \frac{1}{k^2 + m^2}$$

is quadratically divergent for D=4 in the UV sector $(|k| \to \infty)$.

- Physical quantities: correlation functions $\Gamma_N(p_1, \ldots, p_N)$: sum of the amplitudes of all 1PI Feynman graphs with N external legs carying the impulsions p_i .
- Particles interpretation: Feynman graphs represent particles of a certain impulsion propagating along the lines and interacting at the vertices.
- ullet Some coefficients of λ are divergent. Example: the tadpole.

$$\int d^D k \frac{1}{k^2 + m^2}$$

is quadratically divergent for D=4 in the UV sector $(|k| \to \infty)$.

Let G be a 1PI Feynman graph with V vertices, L loops and N external legs.

• Amplitude:

$$A_G(p_1,..,p_N) = \delta(p_1+..+p_N) \int \prod_{i=1}^L dk_i I_G(p_2,..,p_N,k_1,..,k_L)$$

- Euler characteristic $\Rightarrow L = V + 1 \frac{N}{2}$.
- Scale transformation: $p_i \mapsto \rho p_i$ and $k_i \mapsto \rho k_i$

$$A_G^{(\rho)} \propto \rho^{\omega(G)}$$
.

Superficial degree of divergence of the theory:

$$\omega(G) = D + (D - 4)V + (2 - D)\frac{N}{2}$$

Let G be a 1PI Feynman graph with V vertices, L loops and N external legs.

• Amplitude:

$$A_G(p_1,..,p_N) = \delta(p_1+..+p_N) \int \prod_{i=1}^L dk_i I_G(p_2,..,p_N,k_1,..,k_L)$$

- Euler characteristic $\Rightarrow L = V + 1 \frac{N}{2}$.
- Scale transformation: $p_i \mapsto \rho p_i$ and $k_i \mapsto \rho k_i$

$$A_G^{(\rho)} \propto \rho^{\omega(G)}$$
.

Superficial degree of divergence of the theory:

$$\omega(G) = D + (D - 4)V + (2 - D)\frac{N}{2}$$

Let G be a 1PI Feynman graph with V vertices, L loops and N external legs.

• Amplitude:

$$A_G(p_1,..,p_N) = \delta(p_1+..+p_N) \int \prod_{i=1}^L dk_i I_G(p_2,..,p_N,k_1,..,k_L)$$

- Euler characteristic $\Rightarrow L = V + 1 \frac{N}{2}$.
- Scale transformation: $p_i \mapsto \rho p_i$ and $k_i \mapsto \rho k_i$

$$A_G^{(\rho)} \propto \rho^{\omega(G)}$$
.

Superficial degree of divergence of the theory:

$$\omega(G) = D + (D - 4)V + (2 - D)\frac{N}{2}$$

Let G be a 1PI Feynman graph with V vertices, L loops and N external legs.

• Amplitude:

$$A_G(p_1,..,p_N) = \delta(p_1+..+p_N) \int \prod_{i=1}^L dk_i I_G(p_2,..,p_N,k_1,..,k_L)$$

- Euler characteristic $\Rightarrow L = V + 1 \frac{N}{2}$.
- Scale transformation: $p_i \mapsto \rho p_i$ and $k_i \mapsto \rho k_i$

$$A_G^{(\rho)} \propto \rho^{\omega(G)}$$
.

• Superficial degree of divergence of the theory:

$$\omega(G) = D + (D-4)V + (2-D)\frac{N}{2}.$$

A graph G is said primitively divergent if $\omega(G) \geq 0$.

Theorem

$$\omega(G) = D + (D - 4)V + (2 - D)\frac{N}{2}$$

- D > 4: $\forall N, \exists V, \omega(G) \geq 0$: non-renormalizable.
- D < 4: finite number of (N, V) such that $\omega(G) \ge 0$: super-renormalizable.
- D=4: $N=2.4 \Leftrightarrow \omega(G) > 0$: renormalizable

A graph G is said primitively divergent if $\omega(G) \geq 0$.

Theorem

$$\omega(G) = D + (D-4)V + (2-D)\frac{N}{2}.$$

- D > 4: $\forall N, \exists V, \omega(G) \geq 0$: non-renormalizable.
- D < 4: finite number of (N, V) such that $\omega(G) \ge 0$: super-renormalizable.
- D=4: $N=2.4 \Leftrightarrow \omega(G)>0$: renormalizable

A graph G is said primitively divergent if $\omega(G) \geq 0$.

Theorem

$$\omega(G) = D + (D-4)V + (2-D)\frac{N}{2}.$$

- D > 4: $\forall N, \exists V, \omega(G) \geq 0$: non-renormalizable.
- D < 4: finite number of (N, V) such that $\omega(G) \ge 0$: super-renormalizable.
- D=4: $N=2,4 \Leftrightarrow \omega(G) \geq 0$: renormalizable.

A graph G is said primitively divergent if $\omega(G) \geq 0$.

Theorem

$$\omega(G) = D + (D-4)V + (2-D)\frac{N}{2}.$$

- D > 4: $\forall N, \exists V, \omega(G) \geq 0$: non-renormalizable.
- D < 4: finite number of (N, V) such that $\omega(G) \ge 0$: super-renormalizable.
- D=4: $N=2,4 \Leftrightarrow \omega(G) \geq 0$: renormalizable.

A graph G is said primitively divergent if $\omega(G) \geq 0$.

Theorem

$$\omega(G) = D + (D-4)V + (2-D)\frac{N}{2}.$$

- D > 4: $\forall N, \exists V, \omega(G) \geq 0$: non-renormalizable.
- D < 4: finite number of (N, V) such that $\omega(G) \ge 0$: super-renormalizable.
- D = 4: $N = 2, 4 \Leftrightarrow \omega(G) \geq 0$: renormalizable.

Subtraction scheme

- Dimensional regularization: analytic continuation $D \in \mathbb{C}$. Singularity of the amplitudes for D = 4.
- Subtraction operator: Taylor

$$au A_G(p_1,..,p_N) = \delta(p_1+..+p_N) \sum_{j=0}^{\omega(G)} \frac{1}{j!} \frac{\mathrm{d}^j}{\mathrm{d}\,t^j} A_G(tp_2,..,tp_N)|_{t=0}$$

• G: prim. div. graph without prim. div. subgraph

$$A_G^R = (1 - \tau)A_G$$
: renormalized amplitude

Subtraction scheme

- Dimensional regularization: analytic continuation $D \in \mathbb{C}$. Singularity of the amplitudes for D = 4.
- Subtraction operator: Taylor

$$\tau A_G(p_1,..,p_N) = \delta(p_1 + ... + p_N) \sum_{j=0}^{\omega(G)} \frac{1}{j!} \frac{d^j}{dt^j} A_G(tp_2,..,tp_N)|_{t=0}$$

• G: prim. div. graph without prim. div. subgraph

$$A_G^R = (1 - \tau)A_G$$
: renormalized amplitude

Subtraction scheme

- Dimensional regularization: analytic continuation $D \in \mathbb{C}$. Singularity of the amplitudes for D = 4.
- Subtraction operator: Taylor

$$\tau A_G(p_1,..,p_N) = \delta(p_1 + ... + p_N) \sum_{j=0}^{\omega(G)} \frac{1}{j!} \frac{d^j}{dt^j} A_G(tp_2,..,tp_N)|_{t=0}$$

• G: prim. div. graph without prim. div. subgraph

$$A_G^R = (1 - \tau)A_G$$
: renormalized amplitude

- Contracted graph: let g be a subgraph of G. G/g: graph G where g is contracted to a point.
- G: graph with only one prim. div. subgraph g

$$A_G^R = A_G - \tau A_G - (\tau A_g)(A_{G/g} - \tau A_{G/g})$$

General case:

$$A_G^R = A_G - \tau A_G - \sum_{g \in G} (\tau A_g) A_{G/g}^R$$

- → Recursive method
 - Solution of the recursive equations: forest formula (Zimmula (Zimmula)

- Contracted graph: let g be a subgraph of G. G/g: graph G where g is contracted to a point.
- G: graph with only one prim. div. subgraph g

$$A_G^R = A_G - \tau A_G - (\tau A_g)(A_{G/g} - \tau A_{G/g})$$

General case:

$$A_G^R = A_G - \tau A_G - \sum_{g \in G} (\tau A_g) A_{G/g}^R$$

- → Recursive method
 - Solution of the recursive equations: forest formula (Zimmermann).

- Contracted graph: let g be a subgraph of G. G/g: graph G where g is contracted to a point.
- G: graph with only one prim. div. subgraph g

$$A_{G}^{R} = A_{G} - \tau A_{G} - (\tau A_{g})(A_{G/g} - \tau A_{G/g})$$

General case:

$$A_G^R = A_G - \tau A_G - \sum_{g \subset G} (\tau A_g) A_{G/g}^R$$

- → Recursive method
 - Solution of the recursive equations: forest formula (Zimmermann).

- Contracted graph: let g be a subgraph of G. G/g: graph G where g is contracted to a point.
- G: graph with only one prim. div. subgraph g

$$A_G^R = A_G - \tau A_G - (\tau A_g)(A_{G/g} - \tau A_{G/g})$$

General case:

$$A_G^R = A_G - \tau A_G - \sum_{g \subset G} (\tau A_g) A_{G/g}^R$$

- → Recursive method.
 - Solution of the recursive equations: forest formula (Zimmermann).

- Contracted graph: let g be a subgraph of G. G/g: graph G where g is contracted to a point.
- G: graph with only one prim. div. subgraph g

$$A_G^R = A_G - \tau A_G - (\tau A_g)(A_{G/g} - \tau A_{G/g})$$

General case:

$$A_G^R = A_G - \tau A_G - \sum_{g \subset G} (\tau A_g) A_{G/g}^R$$

- → Recursive method.
 - Solution of the recursive equations: forest formula (Zimmermann).

- ullet The renormalized amplitudes are convergent for D o 4.
- Locality: All the divergent counterterms $c_G = A_G A_G^R$ are of the form of the action, so that they can be included in the constants: $\lambda \mapsto \lambda_R$, $m \mapsto m_R$...
- The correlation function $\Gamma_N(p_1, \ldots, p_N)$ is the sum of the renormalized amplitudes of all 1PI Feynman graphs with N external legs carying the impulsions p_i for the renormalized constants.
- \rightarrow experimental verification

- The renormalized amplitudes are convergent for $D \rightarrow 4$.
- Locality: All the divergent counterterms $c_G = A_G A_G^R$ are of the form of the action, so that they can be included in the constants: $\lambda \mapsto \lambda_R$, $m \mapsto m_R$...
- The correlation function $\Gamma_N(p_1,\ldots,p_N)$ is the sum of the renormalized amplitudes of all 1PI Feynman graphs with N external legs carying the impulsions p_i for the renormalized constants
- \rightarrow experimental verification.

- The renormalized amplitudes are convergent for $D \rightarrow 4$.
- Locality: All the divergent counterterms $c_G = A_G A_G^R$ are of the form of the action, so that they can be included in the constants: $\lambda \mapsto \lambda_R$, $m \mapsto m_R$...
- The correlation function $\Gamma_N(p_1, \ldots, p_N)$ is the sum of the renormalized amplitudes of all 1PI Feynman graphs with N external legs carying the impulsions p_i for the renormalized constants.
- → experimental verification.

- The renormalized amplitudes are convergent for $D \rightarrow 4$.
- Locality: All the divergent counterterms $c_G = A_G A_G^R$ are of the form of the action, so that they can be included in the constants: $\lambda \mapsto \lambda_R$, $m \mapsto m_R$...
- The correlation function $\Gamma_N(p_1, \ldots, p_N)$ is the sum of the renormalized amplitudes of all 1PI Feynman graphs with N external legs carying the impulsions p_i for the renormalized constants.
- \rightarrow experimental verification.

- Complex vector space associated to 1PI Feynman graphs.
 Empty graph=1 (unit).
- Product μ : (disconnected) juxtaposition of graphs.
- ightarrow ${\cal H}$: generated algebra. Graded by number of loops.
 - Counit is trivial: $\varepsilon: \mathcal{H} \to \mathbb{C}$, $\varepsilon(1) = 1$.
- ullet Coproduct: $\Delta: \mathcal{H}
 ightarrow \mathcal{H} \otimes \mathcal{H}$

$$\Delta G = G \otimes 1 + 1 \otimes G + \sum_{g \in G} g \otimes G/g$$

where the sum is over the 1PI prim. div. subgraphs g of G

• Antipode: $S(G) = -G - \sum_{g} S(g)(G/g), S(1) = 1.$

Theorem (Connes Kreimer)

Endowed with the coproduct $\Delta,\,\mathcal{H}$ is a graded Hopf algebra.

- Complex vector space associated to 1PI Feynman graphs. Empty graph=1 (unit).
- Product μ : (disconnected) juxtaposition of graphs.

$$\Delta G = G \otimes 1 + 1 \otimes G + \sum_{g \subseteq G} g \otimes G/g$$

- Complex vector space associated to 1PI Feynman graphs. Empty graph=1 (unit).
- Product μ : (disconnected) juxtaposition of graphs.
- $\rightarrow \mathcal{H}$: generated algebra. Graded by number of loops.
 - Counit is trivial: $\varepsilon: \mathcal{H} \to \mathbb{C}$, $\varepsilon(1) = 1$.

$$\Delta G = G \otimes 1 + 1 \otimes G + \sum_{g \in G} g \otimes G/g$$

• Antipode:
$$S(G) = -G - \sum_g S(g)(G/g)$$
, $S(1) = 1$

Complex vector space associated to 1PI Feynman graphs. Empty graph=1 (unit).

- Product μ : (disconnected) juxtaposition of graphs.
- $ightarrow \mathcal{H}$: generated algebra. Graded by number of loops.
 - Counit is trivial: $\varepsilon : \mathcal{H} \to \mathbb{C}$, $\varepsilon(1) = 1$.
 - Coproduct: $\Delta: \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$

$$\Delta G = G \otimes 1 + 1 \otimes G + \sum_{g \in G} g \otimes G/g$$

where the sum is over the 1PI prim. div. subgraphs g of G.

• Antipode:
$$S(G) = -G - \sum_{g} S(g)(G/g), S(1) = 1.$$

Theorem (Connes Kreimer

Endowed with the coproduct Δ , ${\cal H}$ is a graded Hopf algebra

- Complex vector space associated to 1PI Feynman graphs. Empty graph=1 (unit).
- Product μ : (disconnected) juxtaposition of graphs.
- $\rightarrow \mathcal{H}$: generated algebra. Graded by number of loops.
 - Counit is trivial: $\varepsilon : \mathcal{H} \to \mathbb{C}$, $\varepsilon(1) = 1$.
 - Coproduct: $\Delta: \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$

$$\Delta G = G \otimes 1 + 1 \otimes G + \sum_{g \subset G} g \otimes G/g$$

where the sum is over the 1PI prim. div. subgraphs g of G.

• Antipode: $S(G) = -G - \sum_{g} S(g)(G/g), S(1) = 1.$

- Complex vector space associated to 1PI Feynman graphs. Empty graph=1 (unit).
- Product μ : (disconnected) juxtaposition of graphs.
- $\rightarrow \mathcal{H}$: generated algebra. Graded by number of loops.
 - Counit is trivial: $\varepsilon : \mathcal{H} \to \mathbb{C}$, $\varepsilon(1) = 1$.
 - Coproduct: $\Delta: \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$

$$\Delta G = G \otimes 1 + 1 \otimes G + \sum_{g \in G} g \otimes G/g$$

where the sum is over the 1PI prim. div. subgraphs g of G.

• Antipode: $S(G) = -G - \sum_{g} S(g)(G/g), S(1) = 1$.

- Complex vector space associated to 1PI Feynman graphs.
 Empty graph=1 (unit).
- Product μ : (disconnected) juxtaposition of graphs.
- $ightarrow \mathcal{H}$: generated algebra. Graded by number of loops.
 - Counit is trivial: $\varepsilon : \mathcal{H} \to \mathbb{C}$, $\varepsilon(1) = 1$.
 - Coproduct: $\Delta : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$

$$\Delta G = G \otimes 1 + 1 \otimes G + \sum_{g \in G} g \otimes G/g$$

where the sum is over the 1PI prim. div. subgraphs g of G.

• Antipode: $S(G) = -G - \sum_g S(g)(G/g)$, S(1) = 1.

Theorem (Connes Kreimer)

Endowed with the coproduct Δ , \mathcal{H} is a graded Hopf algebra.

- $\mathcal{A}_{\varepsilon}$: algebra of Laurent series in ε .
- Amplitude $A: \mathcal{H} \to \mathcal{A}_{\varepsilon}$ is a homomorphism.
- ullet Taylor operator is a projection $au: \mathcal{A}_{arepsilon} o \mathcal{A}_{arepsilon}.$
- ullet Convolution product: if $f,g\in \mathit{Hom}(\mathcal{H},\mathcal{A}_{arepsilon})$,

$$f * g := \mu_{\mathcal{A}_{\varepsilon}} \circ (f \otimes g) \circ \Delta.$$

Counterterm: twisted antipode

$$c_G = - au \Big(A_G + \sum_{g \in G} c_g A_{G/g} \Big)$$

$$A_G^R = (c * A)(G)$$

- $\mathcal{A}_{\varepsilon}$: algebra of Laurent series in ε .
- ullet Amplitude $A:\mathcal{H} o \mathcal{A}_{arepsilon}$ is a homomorphism.
- Taylor operator is a projection $\tau: A_{\varepsilon} \to A_{\varepsilon}$.
- Convolution product: if $f,g \in Hom(\mathcal{H},\mathcal{A}_{\varepsilon})$

$$f * g := \mu_{\mathcal{A}_{\varepsilon}} \circ (f \otimes g) \circ \Delta.$$

Counterterm: twisted antipode

$$c_G = -\tau \Big(A_G + \sum_{g \subset G} c_g A_{G/g} \Big)$$

$$A_G = (c * A)(G).$$

- $\mathcal{A}_{\varepsilon}$: algebra of Laurent series in ε .
- Amplitude $A:\mathcal{H}\to\mathcal{A}_{arepsilon}$ is a homomorphism.
- Taylor operator is a projection $\tau: \mathcal{A}_{\varepsilon} \to \mathcal{A}_{\varepsilon}$.
- Convolution product: if $f, g \in Hom(\mathcal{H}, \mathcal{A}_{\varepsilon})$,

$$f * g := \mu_{\mathcal{A}_{\varepsilon}} \circ (f \otimes g) \circ \Delta$$

Counterterm: twisted antipode

$$c_G = -\tau \Big(A_G + \sum_{g \in G} c_g A_{G/g} \Big)$$

$$A_G^R = (c * A)(G)$$

- A_{ε} : algebra of Laurent series in ε .
- Amplitude $A: \mathcal{H} \to \mathcal{A}_{\varepsilon}$ is a homomorphism.
- Taylor operator is a projection $\tau: \mathcal{A}_{\varepsilon} \to \mathcal{A}_{\varepsilon}$.
- Convolution product: if $f, g \in Hom(\mathcal{H}, \mathcal{A}_{\varepsilon})$,

$$f * g := \mu_{\mathcal{A}_{\varepsilon}} \circ (f \otimes g) \circ \Delta.$$

Counterterm: twisted antipode

$$c_G = -\tau \Big(A_G + \sum_{g \in G} c_g \, A_{G/g} \Big)$$

$$A_G^R = (c * A)(G)$$

- $\mathcal{A}_{\varepsilon}$: algebra of Laurent series in ε .
- ullet Amplitude $A:\mathcal{H} o\mathcal{A}_{arepsilon}$ is a homomorphism.
- Taylor operator is a projection $\tau: \mathcal{A}_{\varepsilon} \to \mathcal{A}_{\varepsilon}$.
- Convolution product: if $f, g \in Hom(\mathcal{H}, \mathcal{A}_{\varepsilon})$,

$$f * g := \mu_{\mathcal{A}_{\varepsilon}} \circ (f \otimes g) \circ \Delta.$$

• Counterterm: twisted antipode

$$c_G = -\tau \Big(A_G + \sum_{g \in G} c_g \, A_{G/g} \Big)$$

$$A_G^R = (c * A)(G)$$

- $\mathcal{A}_{\varepsilon}$: algebra of Laurent series in ε .
- Amplitude $A: \mathcal{H} \to \mathcal{A}_{\varepsilon}$ is a homomorphism.
- Taylor operator is a projection $\tau: \mathcal{A}_{\varepsilon} \to \mathcal{A}_{\varepsilon}$.
- Convolution product: if $f, g \in Hom(\mathcal{H}, \mathcal{A}_{\varepsilon})$,

$$f * g := \mu_{\mathcal{A}_{\varepsilon}} \circ (f \otimes g) \circ \Delta.$$

• Counterterm: twisted antipode

$$c_G = -\tau \Big(A_G + \sum_{g \in G} c_g A_{G/g} \Big)$$

$$A_G^R = (c * A)(G).$$

- Space of Schwartz functions $f, g \in \mathcal{S}(\mathbb{R}^D, \mathbb{C})$.
- Deformed product:

$$(f \star g)(x) = \frac{1}{\pi^D \theta^D} \int d^D y d^D z f(x+y) g(x+z) e^{-2iy\Theta^{-1}}$$

$$\Theta = \theta \Sigma, \qquad \Sigma = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & \ddots \end{pmatrix}$$

- For $\theta = 0$: $(f \star g)(x) = f(x) \cdot g(x)$
- ullet Extension to the multiplier algebra: $\mathcal{M}_{ heta}$
- Tracial property:

$$\int (f \star g) = \int (f \cdot g)$$

- Space of Schwartz functions $f, g \in \mathcal{S}(\mathbb{R}^D, \mathbb{C})$.
- Deformed product:

$$(f \star g)(x) = \frac{1}{\pi^D \theta^D} \int d^D y d^D z \, f(x+y) g(x+z) e^{-2iy\Theta^{-1}z}$$

$$\Theta = \theta \Sigma, \qquad \Sigma = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ & & \ddots \end{pmatrix}$$

- For $\theta = 0$: $(f \star g)(x) = f(x) \cdot g(x)$.
- ullet Extension to the multiplier algebra: $\mathcal{M}_{ heta}$
- Tracial property:

$$\int (f \star g) = \int (f \cdot g).$$

- Space of Schwartz functions $f, g \in \mathcal{S}(\mathbb{R}^D, \mathbb{C})$.
- Deformed product:

$$(f \star g)(x) = \frac{1}{\pi^D \theta^D} \int d^D y d^D z \, f(x+y) g(x+z) e^{-2iy\Theta^{-1}z}$$

$$\Theta = \theta \Sigma, \qquad \Sigma = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ & & \ddots & \ddots \end{pmatrix}$$

- For $\theta = 0$: $(f \star g)(x) = f(x) \cdot g(x)$.
- Extension to the multiplier algebra: \mathcal{M}_{θ} .
- Tracial property:

$$\int (f \star g) = \int (f \cdot g)$$

- Space of Schwartz functions $f, g \in \mathcal{S}(\mathbb{R}^D, \mathbb{C})$.
- Deformed product:

$$(f \star g)(x) = \frac{1}{\pi^D \theta^D} \int d^D y d^D z \, f(x+y) g(x+z) e^{-2iy\Theta^{-1}z}$$

$$\Theta = \theta \Sigma, \qquad \Sigma = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ & & \ddots & \end{pmatrix}$$

- For $\theta = 0$: $(f \star g)(x) = f(x) \cdot g(x)$.
- Extension to the multiplier algebra: \mathcal{M}_{θ} .
- Tracial property:

$$\int (f \star g) = \int (f \cdot g).$$

- Space of Schwartz functions $f, g \in \mathcal{S}(\mathbb{R}^D, \mathbb{C})$.
- Deformed product:

$$(f \star g)(x) = \frac{1}{\pi^D \theta^D} \int d^D y d^D z \, f(x+y) g(x+z) e^{-2iy\Theta^{-1}z}$$

$$\Theta = \theta \Sigma, \qquad \Sigma = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ & & \ddots & \ddots \end{pmatrix}$$

- For $\theta = 0$: $(f \star g)(x) = f(x) \cdot g(x)$.
- Extension to the multiplier algebra: \mathcal{M}_{θ} .
- Tracial property:

$$\int (f \star g) = \int (f \cdot g).$$

• Action ϕ^4 on the Moyal space:

$$S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi\right)$$

- Feynman rules: $\lambda \mapsto \lambda e^{i\frac{\theta^2}{2}(p_1\Theta^{-1}p_2+p_1\Theta^{-1}p_3+p_2\Theta^{-1}p_3)}$
- UV-IR mixing for this theory (Minwalla et al. '00)
- Tadpole

$$\lambda \int d^4k \frac{e^{ik\Theta p}}{k^2 + m^2} \propto_{|p| \to 0} \frac{1}{\theta^2 p^2}$$

• Action ϕ^4 on the Moyal space:

$$S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi\right)$$

- Feynman rules: $\lambda \mapsto \lambda e^{i\frac{\theta^2}{2}(p_1\Theta^{-1}p_2+p_1\Theta^{-1}p_3+p_2\Theta^{-1}p_3)}$
- UV-IR mixing for this theory (Minwalla et al. '00).
- Tadpole:

$$\lambda \int d^4k \frac{e^{ik\Theta p}}{k^2 + m^2} \propto_{|p| \to 0} \frac{1}{\theta^2 p^2}$$

• Action ϕ^4 on the Moyal space:

$$S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi\right)$$

- Feynman rules: $\lambda \mapsto \lambda e^{i \frac{\theta^2}{2} (p_1 \Theta^{-1} p_2 + p_1 \Theta^{-1} p_3 + p_2 \Theta^{-1} p_3)}$
- UV-IR mixing for this theory (Minwalla et al. '00).
- Tadpole:

$$\lambda \int d^4k \frac{e^{ik\Theta p}}{k^2 + m^2} \propto_{|p| \to 0} \frac{1}{\theta^2 p^2}$$

• Action ϕ^4 on the Moyal space:

$$S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi\right)$$

- Feynman rules: $\lambda \mapsto \lambda e^{i\frac{\theta^2}{2}(p_1\Theta^{-1}p_2+p_1\Theta^{-1}p_3+p_2\Theta^{-1}p_3)}$
- UV-IR mixing for this theory (Minwalla et al. '00).
- Tadpole:

$$\lambda \int d^4k \frac{\mathrm{e}^{ik\Theta p}}{k^2 + m^2} \propto_{|p| \to 0} \frac{1}{\theta^2 p^2}$$

• Action ϕ^4 on the Moyal space:

$$S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi\right)$$

- Feynman rules: $\lambda \mapsto \lambda e^{i\frac{\theta^2}{2}(p_1\Theta^{-1}p_2+p_1\Theta^{-1}p_3+p_2\Theta^{-1}p_3)}$
- UV-IR mixing for this theory (Minwalla et al. '00).
- Tadpole:

$$\lambda \int d^4k \frac{\mathrm{e}^{ik\Theta p}}{k^2 + m^2} \propto_{|p| \to 0} \frac{1}{\theta^2 p^2}$$

• Action ϕ^4 on the Moyal space:

$$S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi\right)$$

- Feynman rules: $\lambda \mapsto \lambda e^{i\frac{\theta^2}{2}(p_1\Theta^{-1}p_2+p_1\Theta^{-1}p_3+p_2\Theta^{-1}p_3)}$
- UV-IR mixing for this theory (Minwalla et al. '00).
- Tadpole:

$$\lambda \int d^4k \frac{e^{ik\Theta p}}{k^2 + m^2} \propto_{|p| \to 0} \frac{1}{\theta^2 p^2}$$

Harmonic solution

• Addition of a harmonic term to the action:

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu\phi)^2 + rac{\Omega^2}{2}x^2\phi^2 + rac{m^2}{2}\phi^2 + \lambda\,\phi\star\phi\star\phi\star\phiig).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product)
- \Rightarrow Renormalizability of the theory to all orders (D = 2, 4) (Grosse Wulkenhaar '04).
- New properties of the flow (Disertori Gurau Magnen Rivasseau '06)
- Vacuum of the theory (A.G. Tanasa Wallet '08).
- Interprétation of the action with a deformation of augustion of august
- Gauge model (A.G. Wallet Wulkenhaar '07).

Harmonic solution

• Addition of a harmonic term to the action:

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu\phi)^2 + rac{\Omega^2}{2}x^2\phi^2 + rac{m^2}{2}\phi^2 + \lambda\,\phi\star\phi\star\phi\star\phiig).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product).
- \Rightarrow Renormalizability of the theory to all orders (D=2,4) (Grosse Wulkenhaar '04).
- New properties of the flow (Disertori Gurau Magnen Rivasseau '06).
- Vacuum of the theory (A.G. Tanasa Wallet '08).
- Interprétation of the action with a deformation of a superspace (Biolineky A.G. Tuyuman '10).
- Gauge model (A.G. Wallet Wulkenhaar '07).

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu\phi)^2 + rac{\Omega^2}{2}x^2\phi^2 + rac{m^2}{2}\phi^2 + \lambda\,\phi\star\phi\star\phi\star\phiig).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product).
- \Rightarrow Renormalizability of the theory to all orders (D = 2, 4) (Grosse Wulkenhaar '04).
 - New properties of the flow (Disertori Gurau Magnen Rivasseau '06).
 - Vacuum of the theory (A.G. Tanasa Wallet '08).
- Interprétation of the action with a deformation of a superspace (Biellarsky A.G. Tuyuman '10).
- Gauge model (A.G. Wallet Wulkenhaar '07).

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu\phi)^2 + rac{\Omega^2}{2}x^2\phi^2 + rac{m^2}{2}\phi^2 + \lambda\,\phi\star\phi\star\phi\star\phiig).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product).
- \Rightarrow Renormalizability of the theory to all orders (D=2,4) (Grosse Wulkenhaar '04).
 - New properties of the flow (Disertori Gurau Magnen Rivasseau '06).
 - Vacuum of the theory (A.G. Tanasa Wallet '08).
 - Interprétation of the action with a deformation of a superspace (Bieliavsky A.G. Tuynman '10).
 - Gauge model (A.G. Wallet Wulkenhaar '07).

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu\phi)^2 + rac{\Omega^2}{2}x^2\phi^2 + rac{m^2}{2}\phi^2 + \lambda\,\phi\star\phi\star\phi\star\phiig).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product).
- \Rightarrow Renormalizability of the theory to all orders (D=2,4) (Grosse Wulkenhaar '04).
 - New properties of the flow (Disertori Gurau Magnen Rivasseau '06).
 - Vacuum of the theory (A.G. Tanasa Wallet '08).
 - Interprétation of the action with a deformation of a superspace (Bieliavsky A.G. Tuynman '10).
 - Gauge model (A.G. Wallet Wulkenhaar '07).

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu\phi)^2 + rac{\Omega^2}{2}x^2\phi^2 + rac{m^2}{2}\phi^2 + \lambda\,\phi\star\phi\star\phi\star\phiig).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product).
- \Rightarrow Renormalizability of the theory to all orders (D=2,4) (Grosse Wulkenhaar '04).
 - New properties of the flow (Disertori Gurau Magnen Rivasseau '06).
 - Vacuum of the theory (A.G. Tanasa Wallet '08).
 - Interprétation of the action with a deformation of a Superspace (Bieliavsky A.G. Tuynman '10).
 - Gauge model (A.G. Wallet Wulkenhaar '07).

$$S[\phi] = \int d^D x ig(rac{1}{2}(\partial_\mu\phi)^2 + rac{\Omega^2}{2}x^2\phi^2 + rac{m^2}{2}\phi^2 + \lambda\,\phi\star\phi\star\phi\star\phiig).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product).
- \Rightarrow Renormalizability of the theory to all orders (D=2,4) (Grosse Wulkenhaar '04).
 - New properties of the flow (Disertori Gurau Magnen Rivasseau '06).
 - Vacuum of the theory (A.G. Tanasa Wallet '08).
 - Interprétation of the action with a deformation of a superspace (Bieliavsky A.G. Tuynman '10).
 - Gauge model (A.G. Wallet Wulkenhaar '07).

$$S[\phi] = \int d^D x (rac{1}{2}(\partial_\mu \phi)^2 + rac{\Omega^2}{2} x^2 \phi^2 + rac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product).
- \Rightarrow Renormalizability of the theory to all orders (D=2,4) (Grosse Wulkenhaar '04).
 - New properties of the flow (Disertori Gurau Magnen Rivasseau '06).
 - Vacuum of the theory (A.G. Tanasa Wallet '08).
 - Interprétation of the action with a deformation of a superspace (Bieliavsky A.G. Tuynman '10).
 - Gauge model (A.G. Wallet Wulkenhaar '07).

$$ilde{S}[\phi] = S[\phi] + \int \mathsf{d}^D p \; rac{a}{2 heta^2 p^2} \hat{\phi}(-p) \hat{\phi}(p).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product)
- \Rightarrow Renormalizability of the theory to all orders (D=4)
- Invariance under translations
- Same properties of the flow as in the commutative theory
- Gauge model (Blaschke Gieres Kronberger Schweda Wohlgenannt '08)

$$\tilde{S}[\phi] = S[\phi] + \int \mathrm{d}^D p \; rac{a}{2 heta^2 p^2} \hat{\phi}(-p) \hat{\phi}(p).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product).
- \Rightarrow Renormalizability of the theory to all orders (D=4)
- Invariance under translations
- Same properties of the flow as in the commutative theory
- Gauge model (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).

$$ilde{S}[\phi] = S[\phi] + \int \mathrm{d}^D p \; rac{a}{2 heta^2 p^2} \hat{\phi}(-p) \hat{\phi}(p).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product).
- \Rightarrow Renormalizability of the theory to all orders (D=4) (Gurau Magnen Rivasseau Tanasa '09).
- Invariance under translations
- Same properties of the flow as in the commutative theory
- Gauge model (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).

$$\tilde{S}[\phi] = S[\phi] + \int \mathsf{d}^D p \; rac{\mathsf{a}}{2 heta^2 p^2} \hat{\phi}(-p) \hat{\phi}(p).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product).
- \Rightarrow Renormalizability of the theory to all orders (D=4)
 - Invariance under translations.
 - Same properties of the flow as in the commutative theory.
 - Gauge model (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).

$$\tilde{S}[\phi] = S[\phi] + \int \mathsf{d}^D p \; rac{\mathsf{a}}{2 heta^2 p^2} \hat{\phi}(-p) \hat{\phi}(p).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product).
- \Rightarrow Renormalizability of the theory to all orders (D=4) (Gurau Magnen Rivasseau Tanasa '09).
 - Invariance under translations.
 - Same properties of the flow as in the commutative theory.
 - Gauge model (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).

$$\tilde{S}[\phi] = S[\phi] + \int \mathrm{d}^D p \; rac{a}{2 heta^2 p^2} \hat{\phi}(-p) \hat{\phi}(p).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product).
- \Rightarrow Renormalizability of the theory to all orders (D=4) (Gurau Magnen Rivasseau Tanasa '09).
 - Invariance under translations.
 - Same properties of the flow as in the commutative theory.
 - Gauge model (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).

$$\tilde{S}[\phi] = S[\phi] + \int \mathsf{d}^D p \; rac{a}{2 heta^2 oldsymbol{
ho}^2} \hat{\phi}(-p) \hat{\phi}(p).$$

- Power counting (D = 4: renormalizable).
- Form of the counterterms (structure of the Moyal product).
- \Rightarrow Renormalizability of the theory to all orders (D=4)
 - Invariance under translations.
 - Same properties of the flow as in the commutative theory.
 - Gauge model (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).

- Ingredients of the renormalization: power counting and locality.
- BPHZ subtraction scheme has a Hopf algebra structure.
- Noncommutative field theory exhibits a new divergence: UV-IR mixing.
- First solution: with harmonic term. It defines a new class of renormalization group.
- Second solution: with term $1/p^2$. Translation-invariant but same properties as in the commutative theory.

- Ingredients of the renormalization: power counting and locality.
- BPHZ subtraction scheme has a Hopf algebra structure.
- Noncommutative field theory exhibits a new divergence: UV-IR mixing.
- First solution: with harmonic term. It defines a new class of renormalization group.
- Second solution: with term $1/p^2$. Translation-invariant but same properties as in the commutative theory.

- Ingredients of the renormalization: power counting and locality.
- BPHZ subtraction scheme has a Hopf algebra structure.
- Noncommutative field theory exhibits a new divergence: UV-IR mixing.
- First solution: with harmonic term. It defines a new class of renormalization group.
- Second solution: with term $1/p^2$. Translation-invariant but same properties as in the commutative theory.

- Ingredients of the renormalization: power counting and locality.
- BPHZ subtraction scheme has a Hopf algebra structure.
- Noncommutative field theory exhibits a new divergence: UV-IR mixing.
- First solution: with harmonic term. It defines a new class of renormalization group.
- Second solution: with term $1/p^2$. Translation-invariant but same properties as in the commutative theory.

- Ingredients of the renormalization: power counting and locality.
- BPHZ subtraction scheme has a Hopf algebra structure.
- Noncommutative field theory exhibits a new divergence: UV-IR mixing.
- First solution: with harmonic term. It defines a new class of renormalization group.
- Second solution: with term $1/p^2$. Translation-invariant but same properties as in the commutative theory.